Software Implementation of an Algorithm for Automatic Detection of Lineaments and Their Properties in Open-Pit Dumps

This paper presents an algorithm and description of its software implementation for detection of lineaments (ground erosions or cracks) in aerial images of open pits. The proposed approach is based on the apparatus of convolutional neural networks for semantic classification of binarized images of l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Programming and computer software Jg. 50; H. 1; S. 31 - 41
Hauptverfasser: Popov, S. E., Potapov, V. P., Zamaraev, R. Y.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Moscow Pleiades Publishing 01.02.2024
Springer Nature B.V
Schlagworte:
ISSN:0361-7688, 1608-3261
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents an algorithm and description of its software implementation for detection of lineaments (ground erosions or cracks) in aerial images of open pits. The proposed approach is based on the apparatus of convolutional neural networks for semantic classification of binarized images of lineament objects, as well as graph theory for determining the geometric location of linearized lineament objects with subsequent calculation of their lengths and areas. As source data, three-channel RGB images of high-resolution aerial photography (10×10 cm) are used. The software module of the model is logically divided into three levels: preprocessing, detection, and post-processing. The first level implements the preprocessing of input data to form a training sample based on successive transformations of RGB images into binary images by using the OpenCV library. A neural network of the U-Net type, which includes convolutional (Encoder) and scanning (Decoder) blocks, represents the second level of the information model. At this level, automatic detection of objects is implemented. The third level of the model is responsible for calculating their areas and lengths. The result provided by the convolutional neural network is passed to it as input data. The lineament area is calculated by summing the total number of points and multiplying by the pixel size. The lineament length is calculated by linearizing the areal object into a segmented object with node pixels and, then, calculating the lengths between them while taking into account the resolution of the source image. The software module can work with fragments of the source image by combining them. The module is implemented in Python and its source code is available at https://gitlab.ict.sbras.ru/popov/lineaments/-/tree/master/lineaments-cnn .
AbstractList This paper presents an algorithm and description of its software implementation for detection of lineaments (ground erosions or cracks) in aerial images of open pits. The proposed approach is based on the apparatus of convolutional neural networks for semantic classification of binarized images of lineament objects, as well as graph theory for determining the geometric location of linearized lineament objects with subsequent calculation of their lengths and areas. As source data, three-channel RGB images of high-resolution aerial photography (10×10 cm) are used. The software module of the model is logically divided into three levels: preprocessing, detection, and post-processing. The first level implements the preprocessing of input data to form a training sample based on successive transformations of RGB images into binary images by using the OpenCV library. A neural network of the U-Net type, which includes convolutional (Encoder) and scanning (Decoder) blocks, represents the second level of the information model. At this level, automatic detection of objects is implemented. The third level of the model is responsible for calculating their areas and lengths. The result provided by the convolutional neural network is passed to it as input data. The lineament area is calculated by summing the total number of points and multiplying by the pixel size. The lineament length is calculated by linearizing the areal object into a segmented object with node pixels and, then, calculating the lengths between them while taking into account the resolution of the source image. The software module can work with fragments of the source image by combining them. The module is implemented in Python and its source code is available at https://gitlab.ict.sbras.ru/popov/lineaments/-/tree/master/lineaments-cnn .
This paper presents an algorithm and description of its software implementation for detection of lineaments (ground erosions or cracks) in aerial images of open pits. The proposed approach is based on the apparatus of convolutional neural networks for semantic classification of binarized images of lineament objects, as well as graph theory for determining the geometric location of linearized lineament objects with subsequent calculation of their lengths and areas. As source data, three-channel RGB images of high-resolution aerial photography (10×10 cm) are used. The software module of the model is logically divided into three levels: preprocessing, detection, and post-processing. The first level implements the preprocessing of input data to form a training sample based on successive transformations of RGB images into binary images by using the OpenCV library. A neural network of the U-Net type, which includes convolutional (Encoder) and scanning (Decoder) blocks, represents the second level of the information model. At this level, automatic detection of objects is implemented. The third level of the model is responsible for calculating their areas and lengths. The result provided by the convolutional neural network is passed to it as input data. The lineament area is calculated by summing the total number of points and multiplying by the pixel size. The lineament length is calculated by linearizing the areal object into a segmented object with node pixels and, then, calculating the lengths between them while taking into account the resolution of the source image. The software module can work with fragments of the source image by combining them. The module is implemented in Python and its source code is available at https://gitlab.ict.sbras.ru/popov/lineaments/-/tree/master/lineaments-cnn.
Author Zamaraev, R. Y.
Popov, S. E.
Potapov, V. P.
Author_xml – sequence: 1
  givenname: S. E.
  orcidid: 0000-0001-9495-6561
  surname: Popov
  fullname: Popov, S. E.
  email: popov@ict.sbras.ru
  organization: Federal Research Center for Information and Computational Technologies
– sequence: 2
  givenname: V. P.
  orcidid: 0000-0002-1530-5902
  surname: Potapov
  fullname: Potapov, V. P.
  email: vadimptpv@gmail.com
  organization: Federal Research Center for Information and Computational Technologies
– sequence: 3
  givenname: R. Y.
  orcidid: 0000-0003-4822-4794
  surname: Zamaraev
  fullname: Zamaraev, R. Y.
  email: zamaraev@ict.nsc.ru
  organization: Federal Research Center for Information and Computational Technologies
BookMark eNqFkU1LxDAQhoMouK7-AG8Bz9Vkk02T4-LnwoLCrueSptM10iY1SRH_vS2rCIp6msP7PDPDzBHad94BQqeUnFPK-MWaMEFzIeWME0qIJHtoQgWRGZsJuo8mY5yN-SE6ivGZjBDnE5TWvk6vOgBetl0DLbikk_UO-xprhxfN1gebnlpc-4AXffLtEBt8BQnMJ7eyDvRoxkGp8OYJbMAPwXcQkoWIrcP3HbjswSZ81bddPEYHtW4inHzUKXq8ud5c3mWr-9vl5WKVGcZ5ypgpSVUKCTPDBNGqzEFoprkiVDMltNasrkw1F2UNkkkDSs2lyEtVgzGqMmyKznZ9u-BfeoipePZ9cMPIgpG5zDnnhPxHMUUlVwOV7ygTfIwB6sLY3alS0LYpKCnGRxQ_HjGY9JvZBdvq8PanM9s5cWDdFsLXTr9L7-nPm-M
CitedBy_id crossref_primary_10_1134_S1069351324700551
Cites_doi 10.1016/j.autcon.2018.12.011
10.3390/s141019307
10.1109/TPAMI.2016.2572683
10.1016/j.optlaseng.2008.03.016
10.1007/s11668-018-0493-6
10.1016/j.measurement.2012.07.019
10.1111/mice.12141
10.1007/s11771-020-4530-8
10.1177/1475921718804132
10.1134/S1062739122030164
10.3390/app9142867
10.1007/s40799-016-0094-9
10.1111/mice.12353
10.3390/s21175894
10.1016/j.ijmst.2020.06.007
10.1016/j.engfracmech.2020.107166
10.22260/ISARC2017/0066
10.1155/2020/7240129
10.1016/j.conbuildmat.2020.119383
10.1007/978-3-030-01234-2_49
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2024. ISSN 0361-7688, Programming and Computer Software, 2024, Vol. 50, No. 1, pp. 31–41. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2024, published in Programmirovanie, 2024, Vol. 50, No. 1.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2024. ISSN 0361-7688, Programming and Computer Software, 2024, Vol. 50, No. 1, pp. 31–41. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2024, published in Programmirovanie, 2024, Vol. 50, No. 1.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1134/S0361768824010080
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1608-3261
EndPage 41
ExternalDocumentID 10_1134_S0361768824010080
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9O
PF0
PT4
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c344t-3cb0db68e2c360a9b7e6a3a4901a396aaa3fdcd56bfe838ce995867b9fecc9dc3
IEDL.DBID P5Z
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001229421400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0361-7688
IngestDate Fri Nov 07 23:42:43 EST 2025
Fri Nov 07 23:44:04 EST 2025
Sat Nov 29 04:55:45 EST 2025
Tue Nov 18 21:50:48 EST 2025
Fri Feb 21 02:40:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-3cb0db68e2c360a9b7e6a3a4901a396aaa3fdcd56bfe838ce995867b9fecc9dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9495-6561
0000-0003-4822-4794
0000-0002-1530-5902
PQID 3058391849
PQPubID 2043762
PageCount 11
ParticipantIDs proquest_journals_3058744400
proquest_journals_3058391849
crossref_citationtrail_10_1134_S0361768824010080
crossref_primary_10_1134_S0361768824010080
springer_journals_10_1134_S0361768824010080
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Programming and computer software
PublicationTitleAbbrev Program Comput Soft
PublicationYear 2024
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References Sun, Liu, Fang (CR4) 2018; 18
Yeum, Dyke (CR11) 2015; 30
Krull, Patrick, Har, White, Sottos (CR3) 2016; 40
CR19
Kong, Li (CR7) 2019; 99
CR16
CR15
CR14
Yuan, Ge, Su, Guo, Suo, Liu, Yu (CR18) 2021; 21
Li, Huang, Chen, Yao, Guo, Zheng, Yang (CR8) 2020; 235
Dong, Tang, Li, Chen, Xue (CR12) 2020; 27
CR21
Zhang, Zhang, Qi, Liu (CR5) 2014; 14
Valença, Dias-da-Costa, Júlio, Araújo, Costa (CR10) 2013; 46
Shelhamer, Long, Darrell (CR20) 2017; 39
Yu, Wang, Gu, Li (CR13) 2019; 18
Kong, Li (CR6) 2018; 33
Vanlanduit, Vanherzeele, Longo, Guillaume (CR9) 2009; 47
Potapov, Oparin, Mikov, Popov (CR1) 2022; 58
Xu, Su, Wang, Cai, Cui, Chen (CR17) 2019; 9
Hao, Du, Zhao, Sun, Zhang, Wang, Qiao (CR2) 2020; 30
Y. Yu (3820_CR13) 2019; 18
D. Li (3820_CR8) 2020; 235
C.M. Yeum (3820_CR11) 2015; 30
B. Krull (3820_CR3) 2016; 40
L. Dong (3820_CR12) 2020; 27
X. Kong (3820_CR7) 2019; 99
Y. Yuan (3820_CR18) 2021; 21
3820_CR19
3820_CR16
3820_CR14
E. Shelhamer (3820_CR20) 2017; 39
3820_CR15
H. Sun (3820_CR4) 2018; 18
W. Zhang (3820_CR5) 2014; 14
3820_CR21
J. Valença (3820_CR10) 2013; 46
V.P. Potapov (3820_CR1) 2022; 58
X. Kong (3820_CR6) 2018; 33
S. Vanlanduit (3820_CR9) 2009; 47
X. Hao (3820_CR2) 2020; 30
H. Xu (3820_CR17) 2019; 9
References_xml – ident: CR21
– ident: CR19
– volume: 99
  start-page: 125
  year: 2019
  end-page: 139
  ident: CR7
  article-title: Non-contact fatigue crack detection in civil infrastructure through image overlapping and crack breathing sensing
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.12.011
– volume: 14
  start-page: 19307
  year: 2014
  end-page: 19328
  ident: CR5
  article-title: Automatic crack detection and classification method for subway tunnel safety monitoring
  publication-title: Sensors
  doi: 10.3390/s141019307
– volume: 39
  start-page: 640
  year: 2017
  end-page: 651
  ident: CR20
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Int.
  doi: 10.1109/TPAMI.2016.2572683
– volume: 47
  start-page: 371
  year: 2009
  end-page: 378
  ident: CR9
  article-title: A digital image correlation method for fatigue test experiments
  publication-title: Opt. Laser. Eng.
  doi: 10.1016/j.optlaseng.2008.03.016
– volume: 18
  start-page: 1010
  year: 2018
  end-page: 1016
  ident: CR4
  article-title: Research on fatigue crack growth detection of M (T) specimen based on image processing technology
  publication-title: J. Fail. Anal. Prev.
  doi: 10.1007/s11668-018-0493-6
– ident: CR14
– ident: CR15
– ident: CR16
– volume: 46
  start-page: 433
  year: 2013
  end-page: 441
  ident: CR10
  article-title: Automatic crack monitoring using photogrammetry and image processing
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.07.019
– volume: 30
  start-page: 759
  year: 2015
  end-page: 770
  ident: CR11
  article-title: Vision-based automated crack detection for bridge inspection,
  publication-title: Aided Civ. Inf.
  doi: 10.1111/mice.12141
– volume: 27
  start-page: 3078
  year: 2020
  end-page: 3089
  ident: CR12
  article-title: Discrimination of mining microseismic events and blasts using convolutional neural networks and original waveform
  publication-title: J. Cent. S. Univ.
  doi: 10.1007/s11771-020-4530-8
– volume: 18
  start-page: 143
  year: 2019
  end-page: 163
  ident: CR13
  article-title: A novel deep learning-based method for damage identification of smart building structures
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921718804132
– volume: 58
  start-page: 486
  year: 2022
  end-page: 50
  ident: CR1
  article-title: Information technologies in problems of nonlinear geomechanics, Part I: Earth remote sensing data and lineament analysis of deformation wave processes
  publication-title: J. Min. Sci.
  doi: 10.1134/S1062739122030164
– volume: 9
  start-page: 2867
  year: 2019
  ident: CR17
  article-title: Automatic bridge crack detection using a convolutional neural network
  publication-title: Appl. Sci.
  doi: 10.3390/app9142867
– volume: 40
  start-page: 937
  year: 2016
  end-page: 945
  ident: CR3
  article-title: Automatic optical crack tracking for double cantilever beam specimens
  publication-title: Exp. Tech.
  doi: 10.1007/s40799-016-0094-9
– volume: 33
  start-page: 783
  year: 2018
  end-page: 799
  ident: CR6
  article-title: Vision-based fatigue crack detection of steel structures using video feature tracking,
  publication-title: Aided Civ. Inf.
  doi: 10.1111/mice.12353
– volume: 21
  start-page: 5894
  year: 2021
  ident: CR18
  article-title: Crack length measurement using convolutional neural networks and image processing
  publication-title: Sensors
  doi: 10.3390/s21175894
– volume: 30
  start-page: 659
  year: 2020
  end-page: 668
  ident: CR2
  article-title: Dynamic tensile behaviour and crack propagation of coal under coupled static-dynamic loading
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2020.06.007
– volume: 235
  start-page: 107
  year: 2020
  end-page: 166
  ident: CR8
  article-title: Experimental study on fracture and fatigue crack propagation processes in concrete based on DIC technology
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2020.107166
– volume: 33
  start-page: 783
  year: 2018
  ident: 3820_CR6
  publication-title: Aided Civ. Inf.
  doi: 10.1111/mice.12353
– volume: 235
  start-page: 107
  year: 2020
  ident: 3820_CR8
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2020.107166
– ident: 3820_CR15
  doi: 10.22260/ISARC2017/0066
– ident: 3820_CR16
– volume: 9
  start-page: 2867
  year: 2019
  ident: 3820_CR17
  publication-title: Appl. Sci.
  doi: 10.3390/app9142867
– volume: 99
  start-page: 125
  year: 2019
  ident: 3820_CR7
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.12.011
– volume: 18
  start-page: 143
  year: 2019
  ident: 3820_CR13
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921718804132
– volume: 30
  start-page: 659
  year: 2020
  ident: 3820_CR2
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2020.06.007
– volume: 14
  start-page: 19307
  year: 2014
  ident: 3820_CR5
  publication-title: Sensors
  doi: 10.3390/s141019307
– volume: 39
  start-page: 640
  year: 2017
  ident: 3820_CR20
  publication-title: IEEE Trans. Pattern Anal. Mach. Int.
  doi: 10.1109/TPAMI.2016.2572683
– volume: 40
  start-page: 937
  year: 2016
  ident: 3820_CR3
  publication-title: Exp. Tech.
  doi: 10.1007/s40799-016-0094-9
– ident: 3820_CR14
  doi: 10.1155/2020/7240129
– volume: 30
  start-page: 759
  year: 2015
  ident: 3820_CR11
  publication-title: Aided Civ. Inf.
  doi: 10.1111/mice.12141
– ident: 3820_CR19
  doi: 10.1016/j.conbuildmat.2020.119383
– volume: 58
  start-page: 486
  year: 2022
  ident: 3820_CR1
  publication-title: J. Min. Sci.
  doi: 10.1134/S1062739122030164
– volume: 47
  start-page: 371
  year: 2009
  ident: 3820_CR9
  publication-title: Opt. Laser. Eng.
  doi: 10.1016/j.optlaseng.2008.03.016
– volume: 27
  start-page: 3078
  year: 2020
  ident: 3820_CR12
  publication-title: J. Cent. S. Univ.
  doi: 10.1007/s11771-020-4530-8
– volume: 21
  start-page: 5894
  year: 2021
  ident: 3820_CR18
  publication-title: Sensors
  doi: 10.3390/s21175894
– ident: 3820_CR21
  doi: 10.1007/978-3-030-01234-2_49
– volume: 18
  start-page: 1010
  year: 2018
  ident: 3820_CR4
  publication-title: J. Fail. Anal. Prev.
  doi: 10.1007/s11668-018-0493-6
– volume: 46
  start-page: 433
  year: 2013
  ident: 3820_CR10
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.07.019
SSID ssj0010044
Score 2.2739358
Snippet This paper presents an algorithm and description of its software implementation for detection of lineaments (ground erosions or cracks) in aerial images of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 31
SubjectTerms Accuracy
Aerial photography
Algorithms
Artificial Intelligence
Artificial neural networks
Automation
Color imagery
Computer Science
Concrete
Cracks
Datasets
Flaw detection
Graph theory
Image classification
Image resolution
Libraries
Localization
Mathematical models
Methods
Modules
Neural networks
Object recognition
Operating Systems
Pixels
Preprocessing
Semantics
Software
Software Engineering
Software Engineering/Programming and Operating Systems
Source code
SummonAdditionalLinks – databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7Q4MCF8RSDgXLgBKpom_SR48SYOKBpYgPtVuVVmAQdagv8fZy0HeIxJDjHSavGsT_XzmeETkSYChVApEoDwR0K1sBhriudKBARZV7q-9zyzF5Hw2E8nbJRfY-7aKrdm5SktdRV3xF6PgZb6wE4jsEHGUYaiNNXwdvFpl_DzfhukTowKcoqQek5RrxOZf64xGdn9IEwvyRFra8ZtP_1lptoo4aWuFfpwhZa0dk2ajdtG3B9indQOQbT-8ZzjS018FN9-yjD8xTzDPce7-f5rHx4woBnce-lnFtWV9zXpS3bsnIQwmpub8fBFIUnJt2AR-bHfm4YWvEsw6ZUxRnNStwHjSl20e3gcnJx5dTNFxxJKC0dIoWrRBhrX5LQ5UxEOuSEU8APnLCQc05SJVUQilTHJJaasSAOI8FSUAqmJNlDrWye6X2EXcUAFwjiCU5AJTyuuKtiPw2jVPkwsYPcZhcSWTOTmwYZj4mNUAhNvn3VDjpdTHmuaDl-E-42W5vUJ7RIwM4BNoT4li0djigFC9dBZ81OfwwvfdbBn6QP0boPIKmqAu-iVpm_6CO0Jl_LWZEfW71-B7gu8II
  priority: 102
  providerName: Springer Nature
Title Software Implementation of an Algorithm for Automatic Detection of Lineaments and Their Properties in Open-Pit Dumps
URI https://link.springer.com/article/10.1134/S0361768824010080
https://www.proquest.com/docview/3058391849
https://www.proquest.com/docview/3058744400
Volume 50
WOSCitedRecordID wos001229421400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1608-3261
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0010044
  issn: 0361-7688
  databaseCode: P5Z
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1608-3261
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0010044
  issn: 0361-7688
  databaseCode: K7-
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1608-3261
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0010044
  issn: 0361-7688
  databaseCode: BENPR
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals - Owned
  customDbUrl:
  eissn: 1608-3261
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010044
  issn: 0361-7688
  databaseCode: RSV
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6Vx4FL0xZQ06aRD5yoLHbX3odPVVpAlVpFK0IrxGXl10KksKHJAn-_Y8dL1FZw6WUPfqwtzXgenvE3AAcqq5VJ0VPlqZKUozSgIoo0zVOVcxHXSSI9zuz3fDwuLi5EGS7cliGtspOJXlCbuXZ35EfIl6jL0R8Rn25_UVc1ykVXQwmNDdhyKAmudEOZXj5GEVy0chWrjCma1UWIasaMH01co2tDjebwbaI_9dLa2PwrPurVzmnvfzf8Cl4Gg5OMVhzyGl7Y5g30umIOJJztXWgnKJAf5MISDxh8E94kNWReE9mQ0ewKf95e3xC0csnorp17rFdybFufzOXHoWNrpX8zh1MMOXdBCFK66_6Fw20l04a4BBZaTltyjHy03IMfpyfnX77SUJKBasZ5S5lWkVFZYRPNskgKldtMMsnRqpBMZFJKVhtt0kzVtmCFtkKkRZYrUSOrCKPZPmw288a-BRIZgdaCYrGSDBkllkZGpkjqLK9NghP7EHUEqXTAK3dlM2aV91sYr_6hYR8OH6fcrsA6nhs86OhWhXO7rNZEe7I75xzlXh8-doyx7n5yrXfPr_UedhK0lVbJ4APYbBd39gNs6_t2ulwMYevzybg8G8LGt5wOPYfj92zy8zczq_-G
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvlKe6UMAHuICsJrETxweEVixVq11WK3WRegt-ha7UZtvdtFX_FL-RsZN0Bai99cDVj1hOvnnls2cA3ums1DbFSJWnWlGO2oDKKDJUpFpwGZdJokKe2ZEYj_PDQzlZg1_dXRh_rLLTiUFR27nx_8h3EJdoyzEekZ9Pz6ivGuXZ1a6ERgOLobu6xJBt-Wl_gN_3fZLsfp1-2aNtVQFqGOc1ZUZHVme5SwzLIiW1cJliiqNhVExmSilWWmPTTJcuZ7lxUqZ5JrQscbfSGobPvQf3OcuFl6uhoNeshWdHG240pujG5y2LGjO-c-AbfRtaUJ9PJ_rTDq6c27_42GDmdjf_txf0GB61DjXpNxLwBNZc9RQ2u2IVpNVdz6A-QINzqRaOhITIJ-2dq4rMS6Iq0j_-iZupj04IevGkf17PQy5bMnB1OKwWxmHg7lS4E4hTLJl6koVMPJ2x8Hlpyawi_oAOncxqMkA5WT6H73ey9xewXs0rtwUkshK9Ic1irRgKQqysimyelJkobYITexB1AChMm4_dlwU5LkJcxnjxD2Z68OF6ymmTjOS2wdsdTopWLy2LFUhu7Baco17vwccOiKvuG9d6eftab-Hh3vTbqBjtj4evYCNBv7A5-L4N6_Xi3L2GB-aini0Xb4I8Efhx1_j8DQsKXHU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQoKoXnq26PH3gBIpIYufh44plBQKtVlpacYv8pCtBFmUN_H3GjgMqBaSq54yTKB6Pv8k3_gahA5EboTLIVGkmeEQhGkQsjmVUZKKgLDFpyr3O7GUxGpXX12wc-pzOu2r3jpJszzQ4labaHt8rE3qQ0OMJxN0EgHIJ-5FTp4GcfYm6OnqXrk9-vdAIjq5sycokcuaB1nz3Fn9uTK9o8w1B6ved4ep_v_EaWgmQE_dbH1lHC7reQKtdOwccVvcmshMIyU-80dhLBt-FU0k1nhnMa9y_vZk1U_v7DgPOxf0HO_Nqr3igrS_n8naQ2mruT83BEIWvHA2Bx-6Hf-OUW_G0xq6EJRpPLR6AJ82_oZ_D06uTsyg0ZYgkodRGRIpYibzUqSR5zJkodM4Jp4ArOGE555wYJVWWC6NLUkrNWFbmhWAGnIUpSb6jxXpW6x8Ix4oBXhAkEZyAqyRc8ViVqckLo1IY2ENxNyOVDIrlrnHGbeUzF0Krv75qDx2-DLlv5To-M97pprkKK3deQfwDzAh5L_vwckEpRL4eOupm_fXyh8_a-ifrffRlPBhWl-eji230NQUc1RaK76BF2zzoXbQsH-103ux5d38GijH8Sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Software+Implementation+of+an+Algorithm+for+Automatic+Detection+of+Lineaments+and+Their+Properties+in+Open-Pit+Dumps&rft.jtitle=Programming+and+computer+software&rft.au=Popov%2C+S+E&rft.au=Potapov%2C+V+P&rft.au=Zamaraev%2C+R+Y&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0361-7688&rft.eissn=1608-3261&rft.volume=50&rft.issue=1&rft.spage=31&rft.epage=41&rft_id=info:doi/10.1134%2FS0361768824010080&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-7688&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-7688&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-7688&client=summon