Software Implementation of an Algorithm for Automatic Detection of Lineaments and Their Properties in Open-Pit Dumps
This paper presents an algorithm and description of its software implementation for detection of lineaments (ground erosions or cracks) in aerial images of open pits. The proposed approach is based on the apparatus of convolutional neural networks for semantic classification of binarized images of l...
Gespeichert in:
| Veröffentlicht in: | Programming and computer software Jg. 50; H. 1; S. 31 - 41 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Moscow
Pleiades Publishing
01.02.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0361-7688, 1608-3261 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper presents an algorithm and description of its software implementation for detection of lineaments (ground erosions or cracks) in aerial images of open pits. The proposed approach is based on the apparatus of convolutional neural networks for semantic classification of binarized images of lineament objects, as well as graph theory for determining the geometric location of linearized lineament objects with subsequent calculation of their lengths and areas. As source data, three-channel RGB images of high-resolution aerial photography (10×10 cm) are used. The software module of the model is logically divided into three levels: preprocessing, detection, and post-processing. The first level implements the preprocessing of input data to form a training sample based on successive transformations of RGB images into binary images by using the OpenCV library. A neural network of the U-Net type, which includes convolutional (Encoder) and scanning (Decoder) blocks, represents the second level of the information model. At this level, automatic detection of objects is implemented. The third level of the model is responsible for calculating their areas and lengths. The result provided by the convolutional neural network is passed to it as input data. The lineament area is calculated by summing the total number of points and multiplying by the pixel size. The lineament length is calculated by linearizing the areal object into a segmented object with node pixels and, then, calculating the lengths between them while taking into account the resolution of the source image. The software module can work with fragments of the source image by combining them. The module is implemented in Python and its source code is available at
https://gitlab.ict.sbras.ru/popov/lineaments/-/tree/master/lineaments-cnn
. |
|---|---|
| AbstractList | This paper presents an algorithm and description of its software implementation for detection of lineaments (ground erosions or cracks) in aerial images of open pits. The proposed approach is based on the apparatus of convolutional neural networks for semantic classification of binarized images of lineament objects, as well as graph theory for determining the geometric location of linearized lineament objects with subsequent calculation of their lengths and areas. As source data, three-channel RGB images of high-resolution aerial photography (10×10 cm) are used. The software module of the model is logically divided into three levels: preprocessing, detection, and post-processing. The first level implements the preprocessing of input data to form a training sample based on successive transformations of RGB images into binary images by using the OpenCV library. A neural network of the U-Net type, which includes convolutional (Encoder) and scanning (Decoder) blocks, represents the second level of the information model. At this level, automatic detection of objects is implemented. The third level of the model is responsible for calculating their areas and lengths. The result provided by the convolutional neural network is passed to it as input data. The lineament area is calculated by summing the total number of points and multiplying by the pixel size. The lineament length is calculated by linearizing the areal object into a segmented object with node pixels and, then, calculating the lengths between them while taking into account the resolution of the source image. The software module can work with fragments of the source image by combining them. The module is implemented in Python and its source code is available at
https://gitlab.ict.sbras.ru/popov/lineaments/-/tree/master/lineaments-cnn
. This paper presents an algorithm and description of its software implementation for detection of lineaments (ground erosions or cracks) in aerial images of open pits. The proposed approach is based on the apparatus of convolutional neural networks for semantic classification of binarized images of lineament objects, as well as graph theory for determining the geometric location of linearized lineament objects with subsequent calculation of their lengths and areas. As source data, three-channel RGB images of high-resolution aerial photography (10×10 cm) are used. The software module of the model is logically divided into three levels: preprocessing, detection, and post-processing. The first level implements the preprocessing of input data to form a training sample based on successive transformations of RGB images into binary images by using the OpenCV library. A neural network of the U-Net type, which includes convolutional (Encoder) and scanning (Decoder) blocks, represents the second level of the information model. At this level, automatic detection of objects is implemented. The third level of the model is responsible for calculating their areas and lengths. The result provided by the convolutional neural network is passed to it as input data. The lineament area is calculated by summing the total number of points and multiplying by the pixel size. The lineament length is calculated by linearizing the areal object into a segmented object with node pixels and, then, calculating the lengths between them while taking into account the resolution of the source image. The software module can work with fragments of the source image by combining them. The module is implemented in Python and its source code is available at https://gitlab.ict.sbras.ru/popov/lineaments/-/tree/master/lineaments-cnn. |
| Author | Zamaraev, R. Y. Popov, S. E. Potapov, V. P. |
| Author_xml | – sequence: 1 givenname: S. E. orcidid: 0000-0001-9495-6561 surname: Popov fullname: Popov, S. E. email: popov@ict.sbras.ru organization: Federal Research Center for Information and Computational Technologies – sequence: 2 givenname: V. P. orcidid: 0000-0002-1530-5902 surname: Potapov fullname: Potapov, V. P. email: vadimptpv@gmail.com organization: Federal Research Center for Information and Computational Technologies – sequence: 3 givenname: R. Y. orcidid: 0000-0003-4822-4794 surname: Zamaraev fullname: Zamaraev, R. Y. email: zamaraev@ict.nsc.ru organization: Federal Research Center for Information and Computational Technologies |
| BookMark | eNqFkU1LxDAQhoMouK7-AG8Bz9Vkk02T4-LnwoLCrueSptM10iY1SRH_vS2rCIp6msP7PDPDzBHad94BQqeUnFPK-MWaMEFzIeWME0qIJHtoQgWRGZsJuo8mY5yN-SE6ivGZjBDnE5TWvk6vOgBetl0DLbikk_UO-xprhxfN1gebnlpc-4AXffLtEBt8BQnMJ7eyDvRoxkGp8OYJbMAPwXcQkoWIrcP3HbjswSZ81bddPEYHtW4inHzUKXq8ud5c3mWr-9vl5WKVGcZ5ypgpSVUKCTPDBNGqzEFoprkiVDMltNasrkw1F2UNkkkDSs2lyEtVgzGqMmyKznZ9u-BfeoipePZ9cMPIgpG5zDnnhPxHMUUlVwOV7ygTfIwB6sLY3alS0LYpKCnGRxQ_HjGY9JvZBdvq8PanM9s5cWDdFsLXTr9L7-nPm-M |
| CitedBy_id | crossref_primary_10_1134_S1069351324700551 |
| Cites_doi | 10.1016/j.autcon.2018.12.011 10.3390/s141019307 10.1109/TPAMI.2016.2572683 10.1016/j.optlaseng.2008.03.016 10.1007/s11668-018-0493-6 10.1016/j.measurement.2012.07.019 10.1111/mice.12141 10.1007/s11771-020-4530-8 10.1177/1475921718804132 10.1134/S1062739122030164 10.3390/app9142867 10.1007/s40799-016-0094-9 10.1111/mice.12353 10.3390/s21175894 10.1016/j.ijmst.2020.06.007 10.1016/j.engfracmech.2020.107166 10.22260/ISARC2017/0066 10.1155/2020/7240129 10.1016/j.conbuildmat.2020.119383 10.1007/978-3-030-01234-2_49 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2024. ISSN 0361-7688, Programming and Computer Software, 2024, Vol. 50, No. 1, pp. 31–41. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2024, published in Programmirovanie, 2024, Vol. 50, No. 1. |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2024. ISSN 0361-7688, Programming and Computer Software, 2024, Vol. 50, No. 1, pp. 31–41. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2024, published in Programmirovanie, 2024, Vol. 50, No. 1. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1134/S0361768824010080 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1608-3261 |
| EndPage | 41 |
| ExternalDocumentID | 10_1134_S0361768824010080 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9O PF0 PT4 QOS R89 R9I RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c344t-3cb0db68e2c360a9b7e6a3a4901a396aaa3fdcd56bfe838ce995867b9fecc9dc3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001229421400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0361-7688 |
| IngestDate | Fri Nov 07 23:42:43 EST 2025 Fri Nov 07 23:44:04 EST 2025 Sat Nov 29 04:55:45 EST 2025 Tue Nov 18 21:50:48 EST 2025 Fri Feb 21 02:40:17 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c344t-3cb0db68e2c360a9b7e6a3a4901a396aaa3fdcd56bfe838ce995867b9fecc9dc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9495-6561 0000-0003-4822-4794 0000-0002-1530-5902 |
| PQID | 3058391849 |
| PQPubID | 2043762 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_3058744400 proquest_journals_3058391849 crossref_citationtrail_10_1134_S0361768824010080 crossref_primary_10_1134_S0361768824010080 springer_journals_10_1134_S0361768824010080 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: New York |
| PublicationTitle | Programming and computer software |
| PublicationTitleAbbrev | Program Comput Soft |
| PublicationYear | 2024 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | Sun, Liu, Fang (CR4) 2018; 18 Yeum, Dyke (CR11) 2015; 30 Krull, Patrick, Har, White, Sottos (CR3) 2016; 40 CR19 Kong, Li (CR7) 2019; 99 CR16 CR15 CR14 Yuan, Ge, Su, Guo, Suo, Liu, Yu (CR18) 2021; 21 Li, Huang, Chen, Yao, Guo, Zheng, Yang (CR8) 2020; 235 Dong, Tang, Li, Chen, Xue (CR12) 2020; 27 CR21 Zhang, Zhang, Qi, Liu (CR5) 2014; 14 Valença, Dias-da-Costa, Júlio, Araújo, Costa (CR10) 2013; 46 Shelhamer, Long, Darrell (CR20) 2017; 39 Yu, Wang, Gu, Li (CR13) 2019; 18 Kong, Li (CR6) 2018; 33 Vanlanduit, Vanherzeele, Longo, Guillaume (CR9) 2009; 47 Potapov, Oparin, Mikov, Popov (CR1) 2022; 58 Xu, Su, Wang, Cai, Cui, Chen (CR17) 2019; 9 Hao, Du, Zhao, Sun, Zhang, Wang, Qiao (CR2) 2020; 30 Y. Yu (3820_CR13) 2019; 18 D. Li (3820_CR8) 2020; 235 C.M. Yeum (3820_CR11) 2015; 30 B. Krull (3820_CR3) 2016; 40 L. Dong (3820_CR12) 2020; 27 X. Kong (3820_CR7) 2019; 99 Y. Yuan (3820_CR18) 2021; 21 3820_CR19 3820_CR16 3820_CR14 E. Shelhamer (3820_CR20) 2017; 39 3820_CR15 H. Sun (3820_CR4) 2018; 18 W. Zhang (3820_CR5) 2014; 14 3820_CR21 J. Valença (3820_CR10) 2013; 46 V.P. Potapov (3820_CR1) 2022; 58 X. Kong (3820_CR6) 2018; 33 S. Vanlanduit (3820_CR9) 2009; 47 X. Hao (3820_CR2) 2020; 30 H. Xu (3820_CR17) 2019; 9 |
| References_xml | – ident: CR21 – ident: CR19 – volume: 99 start-page: 125 year: 2019 end-page: 139 ident: CR7 article-title: Non-contact fatigue crack detection in civil infrastructure through image overlapping and crack breathing sensing publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.12.011 – volume: 14 start-page: 19307 year: 2014 end-page: 19328 ident: CR5 article-title: Automatic crack detection and classification method for subway tunnel safety monitoring publication-title: Sensors doi: 10.3390/s141019307 – volume: 39 start-page: 640 year: 2017 end-page: 651 ident: CR20 article-title: Fully convolutional networks for semantic segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Int. doi: 10.1109/TPAMI.2016.2572683 – volume: 47 start-page: 371 year: 2009 end-page: 378 ident: CR9 article-title: A digital image correlation method for fatigue test experiments publication-title: Opt. Laser. Eng. doi: 10.1016/j.optlaseng.2008.03.016 – volume: 18 start-page: 1010 year: 2018 end-page: 1016 ident: CR4 article-title: Research on fatigue crack growth detection of M (T) specimen based on image processing technology publication-title: J. Fail. Anal. Prev. doi: 10.1007/s11668-018-0493-6 – ident: CR14 – ident: CR15 – ident: CR16 – volume: 46 start-page: 433 year: 2013 end-page: 441 ident: CR10 article-title: Automatic crack monitoring using photogrammetry and image processing publication-title: Measurement doi: 10.1016/j.measurement.2012.07.019 – volume: 30 start-page: 759 year: 2015 end-page: 770 ident: CR11 article-title: Vision-based automated crack detection for bridge inspection, publication-title: Aided Civ. Inf. doi: 10.1111/mice.12141 – volume: 27 start-page: 3078 year: 2020 end-page: 3089 ident: CR12 article-title: Discrimination of mining microseismic events and blasts using convolutional neural networks and original waveform publication-title: J. Cent. S. Univ. doi: 10.1007/s11771-020-4530-8 – volume: 18 start-page: 143 year: 2019 end-page: 163 ident: CR13 article-title: A novel deep learning-based method for damage identification of smart building structures publication-title: Struct. Health Monit. doi: 10.1177/1475921718804132 – volume: 58 start-page: 486 year: 2022 end-page: 50 ident: CR1 article-title: Information technologies in problems of nonlinear geomechanics, Part I: Earth remote sensing data and lineament analysis of deformation wave processes publication-title: J. Min. Sci. doi: 10.1134/S1062739122030164 – volume: 9 start-page: 2867 year: 2019 ident: CR17 article-title: Automatic bridge crack detection using a convolutional neural network publication-title: Appl. Sci. doi: 10.3390/app9142867 – volume: 40 start-page: 937 year: 2016 end-page: 945 ident: CR3 article-title: Automatic optical crack tracking for double cantilever beam specimens publication-title: Exp. Tech. doi: 10.1007/s40799-016-0094-9 – volume: 33 start-page: 783 year: 2018 end-page: 799 ident: CR6 article-title: Vision-based fatigue crack detection of steel structures using video feature tracking, publication-title: Aided Civ. Inf. doi: 10.1111/mice.12353 – volume: 21 start-page: 5894 year: 2021 ident: CR18 article-title: Crack length measurement using convolutional neural networks and image processing publication-title: Sensors doi: 10.3390/s21175894 – volume: 30 start-page: 659 year: 2020 end-page: 668 ident: CR2 article-title: Dynamic tensile behaviour and crack propagation of coal under coupled static-dynamic loading publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2020.06.007 – volume: 235 start-page: 107 year: 2020 end-page: 166 ident: CR8 article-title: Experimental study on fracture and fatigue crack propagation processes in concrete based on DIC technology publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2020.107166 – volume: 33 start-page: 783 year: 2018 ident: 3820_CR6 publication-title: Aided Civ. Inf. doi: 10.1111/mice.12353 – volume: 235 start-page: 107 year: 2020 ident: 3820_CR8 publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2020.107166 – ident: 3820_CR15 doi: 10.22260/ISARC2017/0066 – ident: 3820_CR16 – volume: 9 start-page: 2867 year: 2019 ident: 3820_CR17 publication-title: Appl. Sci. doi: 10.3390/app9142867 – volume: 99 start-page: 125 year: 2019 ident: 3820_CR7 publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.12.011 – volume: 18 start-page: 143 year: 2019 ident: 3820_CR13 publication-title: Struct. Health Monit. doi: 10.1177/1475921718804132 – volume: 30 start-page: 659 year: 2020 ident: 3820_CR2 publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2020.06.007 – volume: 14 start-page: 19307 year: 2014 ident: 3820_CR5 publication-title: Sensors doi: 10.3390/s141019307 – volume: 39 start-page: 640 year: 2017 ident: 3820_CR20 publication-title: IEEE Trans. Pattern Anal. Mach. Int. doi: 10.1109/TPAMI.2016.2572683 – volume: 40 start-page: 937 year: 2016 ident: 3820_CR3 publication-title: Exp. Tech. doi: 10.1007/s40799-016-0094-9 – ident: 3820_CR14 doi: 10.1155/2020/7240129 – volume: 30 start-page: 759 year: 2015 ident: 3820_CR11 publication-title: Aided Civ. Inf. doi: 10.1111/mice.12141 – ident: 3820_CR19 doi: 10.1016/j.conbuildmat.2020.119383 – volume: 58 start-page: 486 year: 2022 ident: 3820_CR1 publication-title: J. Min. Sci. doi: 10.1134/S1062739122030164 – volume: 47 start-page: 371 year: 2009 ident: 3820_CR9 publication-title: Opt. Laser. Eng. doi: 10.1016/j.optlaseng.2008.03.016 – volume: 27 start-page: 3078 year: 2020 ident: 3820_CR12 publication-title: J. Cent. S. Univ. doi: 10.1007/s11771-020-4530-8 – volume: 21 start-page: 5894 year: 2021 ident: 3820_CR18 publication-title: Sensors doi: 10.3390/s21175894 – ident: 3820_CR21 doi: 10.1007/978-3-030-01234-2_49 – volume: 18 start-page: 1010 year: 2018 ident: 3820_CR4 publication-title: J. Fail. Anal. Prev. doi: 10.1007/s11668-018-0493-6 – volume: 46 start-page: 433 year: 2013 ident: 3820_CR10 publication-title: Measurement doi: 10.1016/j.measurement.2012.07.019 |
| SSID | ssj0010044 |
| Score | 2.2739358 |
| Snippet | This paper presents an algorithm and description of its software implementation for detection of lineaments (ground erosions or cracks) in aerial images of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 31 |
| SubjectTerms | Accuracy Aerial photography Algorithms Artificial Intelligence Artificial neural networks Automation Color imagery Computer Science Concrete Cracks Datasets Flaw detection Graph theory Image classification Image resolution Libraries Localization Mathematical models Methods Modules Neural networks Object recognition Operating Systems Pixels Preprocessing Semantics Software Software Engineering Software Engineering/Programming and Operating Systems Source code |
| SummonAdditionalLinks | – databaseName: SpringerLink Contemporary (1997 - Present) dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7Q4MCF8RSDgXLgBKpom_SR48SYOKBpYgPtVuVVmAQdagv8fZy0HeIxJDjHSavGsT_XzmeETkSYChVApEoDwR0K1sBhriudKBARZV7q-9zyzF5Hw2E8nbJRfY-7aKrdm5SktdRV3xF6PgZb6wE4jsEHGUYaiNNXwdvFpl_DzfhukTowKcoqQek5RrxOZf64xGdn9IEwvyRFra8ZtP_1lptoo4aWuFfpwhZa0dk2ajdtG3B9indQOQbT-8ZzjS018FN9-yjD8xTzDPce7-f5rHx4woBnce-lnFtWV9zXpS3bsnIQwmpub8fBFIUnJt2AR-bHfm4YWvEsw6ZUxRnNStwHjSl20e3gcnJx5dTNFxxJKC0dIoWrRBhrX5LQ5UxEOuSEU8APnLCQc05SJVUQilTHJJaasSAOI8FSUAqmJNlDrWye6X2EXcUAFwjiCU5AJTyuuKtiPw2jVPkwsYPcZhcSWTOTmwYZj4mNUAhNvn3VDjpdTHmuaDl-E-42W5vUJ7RIwM4BNoT4li0djigFC9dBZ81OfwwvfdbBn6QP0boPIKmqAu-iVpm_6CO0Jl_LWZEfW71-B7gu8II priority: 102 providerName: Springer Nature |
| Title | Software Implementation of an Algorithm for Automatic Detection of Lineaments and Their Properties in Open-Pit Dumps |
| URI | https://link.springer.com/article/10.1134/S0361768824010080 https://www.proquest.com/docview/3058391849 https://www.proquest.com/docview/3058744400 |
| Volume | 50 |
| WOSCitedRecordID | wos001229421400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1608-3261 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0010044 issn: 0361-7688 databaseCode: P5Z dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1608-3261 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0010044 issn: 0361-7688 databaseCode: K7- dateStart: 20000101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1608-3261 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0010044 issn: 0361-7688 databaseCode: BENPR dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals - Owned customDbUrl: eissn: 1608-3261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010044 issn: 0361-7688 databaseCode: RSV dateStart: 20000101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6Vx4FL0xZQ06aRD5yoLHbX3odPVVpAlVpFK0IrxGXl10KksKHJAn-_Y8dL1FZw6WUPfqwtzXgenvE3AAcqq5VJ0VPlqZKUozSgIoo0zVOVcxHXSSI9zuz3fDwuLi5EGS7cliGtspOJXlCbuXZ35EfIl6jL0R8Rn25_UVc1ykVXQwmNDdhyKAmudEOZXj5GEVy0chWrjCma1UWIasaMH01co2tDjebwbaI_9dLa2PwrPurVzmnvfzf8Cl4Gg5OMVhzyGl7Y5g30umIOJJztXWgnKJAf5MISDxh8E94kNWReE9mQ0ewKf95e3xC0csnorp17rFdybFufzOXHoWNrpX8zh1MMOXdBCFK66_6Fw20l04a4BBZaTltyjHy03IMfpyfnX77SUJKBasZ5S5lWkVFZYRPNskgKldtMMsnRqpBMZFJKVhtt0kzVtmCFtkKkRZYrUSOrCKPZPmw288a-BRIZgdaCYrGSDBkllkZGpkjqLK9NghP7EHUEqXTAK3dlM2aV91sYr_6hYR8OH6fcrsA6nhs86OhWhXO7rNZEe7I75xzlXh8-doyx7n5yrXfPr_UedhK0lVbJ4APYbBd39gNs6_t2ulwMYevzybg8G8LGt5wOPYfj92zy8zczq_-G |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvlKe6UMAHuICsJrETxweEVixVq11WK3WRegt-ha7UZtvdtFX_FL-RsZN0Bai99cDVj1hOvnnls2cA3ums1DbFSJWnWlGO2oDKKDJUpFpwGZdJokKe2ZEYj_PDQzlZg1_dXRh_rLLTiUFR27nx_8h3EJdoyzEekZ9Pz6ivGuXZ1a6ERgOLobu6xJBt-Wl_gN_3fZLsfp1-2aNtVQFqGOc1ZUZHVme5SwzLIiW1cJliiqNhVExmSilWWmPTTJcuZ7lxUqZ5JrQscbfSGobPvQf3OcuFl6uhoNeshWdHG240pujG5y2LGjO-c-AbfRtaUJ9PJ_rTDq6c27_42GDmdjf_txf0GB61DjXpNxLwBNZc9RQ2u2IVpNVdz6A-QINzqRaOhITIJ-2dq4rMS6Iq0j_-iZupj04IevGkf17PQy5bMnB1OKwWxmHg7lS4E4hTLJl6koVMPJ2x8Hlpyawi_oAOncxqMkA5WT6H73ey9xewXs0rtwUkshK9Ic1irRgKQqysimyelJkobYITexB1AChMm4_dlwU5LkJcxnjxD2Z68OF6ymmTjOS2wdsdTopWLy2LFUhu7Baco17vwccOiKvuG9d6eftab-Hh3vTbqBjtj4evYCNBv7A5-L4N6_Xi3L2GB-aini0Xb4I8Efhx1_j8DQsKXHU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQoKoXnq26PH3gBIpIYufh44plBQKtVlpacYv8pCtBFmUN_H3GjgMqBaSq54yTKB6Pv8k3_gahA5EboTLIVGkmeEQhGkQsjmVUZKKgLDFpyr3O7GUxGpXX12wc-pzOu2r3jpJszzQ4labaHt8rE3qQ0OMJxN0EgHIJ-5FTp4GcfYm6OnqXrk9-vdAIjq5sycokcuaB1nz3Fn9uTK9o8w1B6ved4ep_v_EaWgmQE_dbH1lHC7reQKtdOwccVvcmshMIyU-80dhLBt-FU0k1nhnMa9y_vZk1U_v7DgPOxf0HO_Nqr3igrS_n8naQ2mruT83BEIWvHA2Bx-6Hf-OUW_G0xq6EJRpPLR6AJ82_oZ_D06uTsyg0ZYgkodRGRIpYibzUqSR5zJkodM4Jp4ArOGE555wYJVWWC6NLUkrNWFbmhWAGnIUpSb6jxXpW6x8Ix4oBXhAkEZyAqyRc8ViVqckLo1IY2ENxNyOVDIrlrnHGbeUzF0Krv75qDx2-DLlv5To-M97pprkKK3deQfwDzAh5L_vwckEpRL4eOupm_fXyh8_a-ifrffRlPBhWl-eji230NQUc1RaK76BF2zzoXbQsH-103ux5d38GijH8Sg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Software+Implementation+of+an+Algorithm+for+Automatic+Detection+of+Lineaments+and+Their+Properties+in+Open-Pit+Dumps&rft.jtitle=Programming+and+computer+software&rft.au=Popov%2C+S+E&rft.au=Potapov%2C+V+P&rft.au=Zamaraev%2C+R+Y&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0361-7688&rft.eissn=1608-3261&rft.volume=50&rft.issue=1&rft.spage=31&rft.epage=41&rft_id=info:doi/10.1134%2FS0361768824010080&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-7688&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-7688&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-7688&client=summon |