A multigrid waveform relaxation method for solving the poroelasticity equations

In this work, a multigrid waveform relaxation method is proposed for solving a collocated finite difference discretization of the linear Biot’s model. This gives rise to the first space–time multigrid solver for poroelasticity equations in the literature. The waveform relaxation iteration is based o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics Jg. 37; H. 4; S. 4805 - 4820
Hauptverfasser: Franco, S. R., Rodrigo, C., Gaspar, F. J., Pinto, M. A. V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.09.2018
Springer Nature B.V
Schlagworte:
ISSN:0101-8205, 2238-3603, 1807-0302
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this work, a multigrid waveform relaxation method is proposed for solving a collocated finite difference discretization of the linear Biot’s model. This gives rise to the first space–time multigrid solver for poroelasticity equations in the literature. The waveform relaxation iteration is based on a point-wise Vanka smoother that couples the pressure variable at a grid-point with the displacements around it. A semi-algebraic mode analysis is proposed to theoretically analyze the convergence of the multigrid waveform relaxation algorithm. This analysis is novel since it combines the semi-algebraic analysis, suitable for parabolic problems, with the non-standard analysis for overlapping smoothers. The practical utility of the method is illustrated through several numerical experiments in one and two dimensions.
AbstractList In this work, a multigrid waveform relaxation method is proposed for solving a collocated finite difference discretization of the linear Biot’s model. This gives rise to the first space–time multigrid solver for poroelasticity equations in the literature. The waveform relaxation iteration is based on a point-wise Vanka smoother that couples the pressure variable at a grid-point with the displacements around it. A semi-algebraic mode analysis is proposed to theoretically analyze the convergence of the multigrid waveform relaxation algorithm. This analysis is novel since it combines the semi-algebraic analysis, suitable for parabolic problems, with the non-standard analysis for overlapping smoothers. The practical utility of the method is illustrated through several numerical experiments in one and two dimensions.
Author Rodrigo, C.
Pinto, M. A. V.
Franco, S. R.
Gaspar, F. J.
Author_xml – sequence: 1
  givenname: S. R.
  surname: Franco
  fullname: Franco, S. R.
  organization: Department of Mathematics, State University of Centro-Oeste, Federal University of Paraná, Graduate Program in Numerical Methods in Engineering
– sequence: 2
  givenname: C.
  orcidid: 0000-0002-1598-2831
  surname: Rodrigo
  fullname: Rodrigo, C.
  email: carmenr@unizar.es
  organization: IUMA and Applied Mathematics Department, University of Zaragoza
– sequence: 3
  givenname: F. J.
  surname: Gaspar
  fullname: Gaspar, F. J.
  organization: CWI, Centrum Wiskunde & Informatica
– sequence: 4
  givenname: M. A. V.
  surname: Pinto
  fullname: Pinto, M. A. V.
  organization: Department of Mechanical Engineering, Federal University of Paraná
BookMark eNp9kF1LwzAUhoNMcM79AO8CXldPPpo2l2P4BYPd6HVI23TraJstyab792arIAiamwPhec55ea_RqLe9QeiWwD0ByB48B0Z4AiRPQABL5AUakxyyBBjQERoDAZLkFNIrNPV-A_FxAELFGC1nuNu3oVm5psIf-mBq6zrsTKs_dWhsjzsT1rbC8Rt72x6afoXD2uCtdTZCPjRlE47Y7PZn3N-gy1q33ky_5wS9Pz2-zV-SxfL5dT5bJCXjPCS0zovcFDLjmlFTcV3WpuQirTKhcybrIs8pTVlGpSEkskANLwRNJTMapBRsgu6GvVtnd3vjg9rYvevjSUVBpkJQIUmksoEqnfXemVrFtOegwemmVQTUqUA1FKhigepUoJLRJL_MrWs67Y7_OnRwfGT7lXE_mf6WvgBqf4TN
CitedBy_id crossref_primary_10_1002_nla_2306
crossref_primary_10_1137_21M1429072
crossref_primary_10_32604_cmes_2021_014239
crossref_primary_10_1007_s40430_022_03410_4
crossref_primary_10_1080_15502287_2021_1910750
crossref_primary_10_1007_s40314_024_02902_4
crossref_primary_10_1002_nla_2500
crossref_primary_10_1140_epjp_s13360_022_02887_1
crossref_primary_10_1080_10407782_2022_2156411
crossref_primary_10_1137_19M1308669
crossref_primary_10_1002_nla_2271
crossref_primary_10_1016_j_camwa_2024_08_018
crossref_primary_10_1080_10407790_2024_2351543
crossref_primary_10_1016_j_compgeo_2024_106978
crossref_primary_10_1080_10407790_2023_2262746
Cites_doi 10.1002/9780470172766
10.1137/0731087
10.1007/s10596-008-9114-x
10.1006/jcph.1997.5854
10.1016/0021-9991(86)90008-2
10.1007/BF01934186
10.1007/s00791-007-0061-1
10.1007/978-3-0348-5712-3_23
10.1090/S0025-5718-1977-0431719-X
10.1002/nla.1977
10.1002/nag.1062
10.1016/j.apnum.2016.02.006
10.1016/j.jcp.2010.03.018
10.1016/j.cma.2015.09.019
10.1137/16M1090193
10.1063/1.1721956
10.1002/nme.2295
10.1016/S0168-9274(02)00190-3
10.1137/15M1014280
10.1016/j.apnum.2007.11.014
10.1007/978-3-322-94761-1
10.1061/9780784412992.110
10.1063/1.1712886
10.1002/nla.762
ContentType Journal Article
Copyright SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s40314-018-0603-9
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1807-0302
EndPage 4820
ExternalDocumentID 10_1007_s40314_018_0603_9
GroupedDBID -EM
.4S
.DC
06D
0R~
203
29F
2WC
30V
4.4
406
5GY
69Q
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXHO
ABXPI
ACAOD
ACCUX
ACDTI
ACGFO
ACGFS
ACHSB
ACIPV
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEGXH
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
APOWU
ARCSS
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BAPOH
BGNMA
C1A
CS3
CSCUP
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
KQ8
KWQ
LLZTM
M4Y
M~E
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OK1
P2P
PT4
RLLFE
RNS
ROL
RSC
RSV
SCD
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
XSB
Z7R
Z83
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
OVT
JQ2
ID FETCH-LOGICAL-c344t-2f8b8eb974a32ed4acfec465d76a839fb882253729e11f8b02e4b62593ea09963
IEDL.DBID RSV
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443034900046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0101-8205
2238-3603
IngestDate Wed Sep 24 12:41:38 EDT 2025
Sat Nov 29 01:53:05 EST 2025
Tue Nov 18 21:31:44 EST 2025
Fri Feb 21 02:27:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Multigrid waveform relaxation
65F10
Poroelasticity
Semi-algebraic mode analysis
Space–time grids
65M55
65M22
Vanka smoother
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-2f8b8eb974a32ed4acfec465d76a839fb882253729e11f8b02e4b62593ea09963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1598-2831
PQID 2095662691
PQPubID 2044245
PageCount 16
ParticipantIDs proquest_journals_2095662691
crossref_citationtrail_10_1007_s40314_018_0603_9
crossref_primary_10_1007_s40314_018_0603_9
springer_journals_10_1007_s40314_018_0603_9
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Computational & applied mathematics
PublicationTitleAbbrev Comp. Appl. Math
PublicationYear 2018
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References LubichCOstermannAMultigrid dynamic iteration for parabolic equationsBIT19872721623489412410.1007/BF019341860623.65125
WienandsRJoppichWPractical Fourier analysis for multigrid methods2005Boca RatonChapman and Hall/CRC Press1062.65133
Hu X, Rodrigo C, Gaspar FJ (2017) Using hierarchical matrices in the solution of the time-fractional heat equation by multigrid waveform relaxation. arXiv:1706.07632v1 [math.NA]
WesselingPAn introduction to multigrid methods1992ChichesterWiley0760.65092
BiotMAGeneral theory of three-dimensional consolidationJ Appl Phys194112215516410.1063/1.171288667.0837.01
VandewalleSParallel Multigrid waveform relaxation for parabolic problems1993Stuttgart, B.GTeubner10.1007/978-3-322-94761-10816.65057
Favino M, Grillo A, Krause R (2013) A stability condition for the numerical simulation of poroelastic systems. In: Hellmich C, Pichler B, Adam D (eds) Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics, pp 919–928. https://doi.org/10.1061/9780784412992.110
GasparFJLisbonaFJOosterleeCWA stabilized difference scheme for deformable porous media and its numerical resolution by multigrid methodsComput Vis Sci20081126776238983610.1007/s00791-007-0061-1
BrandtARigorous quantitative analysis of multigrid, I: constant coefficients two-level cycle with L2-normSIAM J Numer Anal199431616951730130268110.1137/07310870817.65126
BrandtAMultigrid solvers for non-elliptic and singular-perturbation steady-state problems1981RehovotThe Weizmann Institute of Science
VankaSBlock-implicit multigrid solution of Navier-Stokes equations in primitive variablesJ Comput Phys198665113815884845110.1016/0021-9991(86)90008-20606.76035
Gaspar FJ, Rodrigo C (2017) Multigrid waveform relaxation for the time-fractional heat equation. SIAM J Sci Comput 39(4):A1201–A1224. https://doi.org/10.1137/16M1090193
Aguilar G, Gaspar F, Lisbona F, Rodrigo C (2008) Numerical stabilization of Biot’s consolidation model by a perturbation on the flow equation. Int J Numer Meth Eng 75(11):1282–1300. https://doi.org/10.1002/nme.2295
Molenaar J (1991) A two-grid analysis of the combination of mixed finite elements and Vanka-type relaxation. In: Hackbusch W, Trottenberg U (eds) Multigrid Methods III. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique, vol 98. Birkhäuser, Basel
LewisRSchreflerBThe finite element method in the static and dynamic deformation and consolidation of porous media1998New YorkWiley0935.74004
Gaspar FJ, Lisbona FJ, Vabishchevich PN (2003) A finite difference analysis of Biot’s consolidation model. Appl Numer Math 44(4):487–506. https://doi.org/10.1016/S0168-9274(02)00190-3
PhillipsPWheelerMOvercoming the problem of locking in linear elasticity and poroelasticity: an heuristic approachComput Geosci200913151210.1007/s10596-008-9114-x1172.74017
Haga JB, Osnes H, Langtangen HP (2012) On the causes of pressure oscillations in low-permeable and low-compressible porous media. Int J Numer Anal Meth Geomech 36(12):1507–1522. https://doi.org/10.1002/nag.1062
OosterleeCGasparFWashioTWienandsRMultigrid line smoothers for higher order upwind discretizations of convection-dominated problemsJ Comput Phys19981392274307161409010.1006/jcph.1997.58540908.65111
Nordbotten JM (2016) Stable cell-centered finite volume discretization for biot equations. SIAM J Numer Anal 54(2):942–968. https://doi.org/10.1137/15M1014280
OosterleeCWGasparFJMultigrid relaxation methods for systems of saddle point typeAppl Numer Math2008581219331950246482210.1016/j.apnum.2007.11.0141148.76040
FerronatoMCastellettoNGambolatiGA fully coupled 3-d mixed finite element model of Biot consolidationJ Comput Phys2010229124813483010.1016/j.jcp.2010.03.0181305.76055
RodrigoCGasparFHuXZikatanovLStability and monotonicity for some discretizations of the Biot’s consolidation modelComput Methods Appl Mech Eng2016298183204342771110.1016/j.cma.2015.09.019
TerzaghiKTheoretical soil mechanics1943New YorkWiley10.1002/9780470172766
TrottenbergUOosterleeCWSchüllerAMultigrid2001New YorkAcademic Press0976.65106
BiotMATheory of elasticity and consolidation for a porous anisotropic solidJ Appl Phys19552621821856687410.1063/1.17219560067.23603
MacLachlanSPOosterleeCWLocal fourier analysis for multigrid with overlapping smoothers applied to systems of pdesNumer Linear Algebra Appl2011184751774284019810.1002/nla.7621265.65256
BrandtAMulti-level adaptive solutions to boundary-value problemsMath Comput19773113833339043171910.1090/S0025-5718-1977-0431719-X0373.65054
GanderMJ50 years of time parallel time integration2015ChamSpringer International Publishing691131337.65127
FriedhoffSMacLachlanSA generalized predictive analysis tool for multigrid methodsNumer Linear Algebra Appl2015224618647336782610.1002/nla.19771349.65427
RodrigoCGasparFLisbonaFOn a local fourier analysis for overlapping block smoothers on triangular gridsAppl Numer Math201610596111348807610.1016/j.apnum.2016.02.0061382.65419
FJ Gaspar (603_CR13) 2008; 11
S Vanka (603_CR29) 1986; 65
C Lubich (603_CR17) 1987; 27
P Phillips (603_CR23) 2009; 13
MJ Gander (603_CR10) 2015
R Wienands (603_CR31) 2005
M Ferronato (603_CR8) 2010; 229
603_CR19
603_CR14
603_CR15
603_CR7
603_CR11
U Trottenberg (603_CR27) 2001
603_CR12
S Friedhoff (603_CR9) 2015; 22
K Terzaghi (603_CR26) 1943
C Rodrigo (603_CR25) 2016; 105
MA Biot (603_CR2) 1941; 12
603_CR1
MA Biot (603_CR3) 1955; 26
P Wesseling (603_CR30) 1992
R Lewis (603_CR16) 1998
SP MacLachlan (603_CR18) 2011; 18
S Vandewalle (603_CR28) 1993
A Brandt (603_CR6) 1994; 31
C Rodrigo (603_CR24) 2016; 298
A Brandt (603_CR5) 1981
CW Oosterlee (603_CR22) 2008; 58
A Brandt (603_CR4) 1977; 31
C Oosterlee (603_CR21) 1998; 139
603_CR20
References_xml – reference: Gaspar FJ, Rodrigo C (2017) Multigrid waveform relaxation for the time-fractional heat equation. SIAM J Sci Comput 39(4):A1201–A1224. https://doi.org/10.1137/16M1090193
– reference: FerronatoMCastellettoNGambolatiGA fully coupled 3-d mixed finite element model of Biot consolidationJ Comput Phys2010229124813483010.1016/j.jcp.2010.03.0181305.76055
– reference: LewisRSchreflerBThe finite element method in the static and dynamic deformation and consolidation of porous media1998New YorkWiley0935.74004
– reference: BrandtARigorous quantitative analysis of multigrid, I: constant coefficients two-level cycle with L2-normSIAM J Numer Anal199431616951730130268110.1137/07310870817.65126
– reference: OosterleeCWGasparFJMultigrid relaxation methods for systems of saddle point typeAppl Numer Math2008581219331950246482210.1016/j.apnum.2007.11.0141148.76040
– reference: GasparFJLisbonaFJOosterleeCWA stabilized difference scheme for deformable porous media and its numerical resolution by multigrid methodsComput Vis Sci20081126776238983610.1007/s00791-007-0061-1
– reference: BiotMAGeneral theory of three-dimensional consolidationJ Appl Phys194112215516410.1063/1.171288667.0837.01
– reference: RodrigoCGasparFLisbonaFOn a local fourier analysis for overlapping block smoothers on triangular gridsAppl Numer Math201610596111348807610.1016/j.apnum.2016.02.0061382.65419
– reference: Hu X, Rodrigo C, Gaspar FJ (2017) Using hierarchical matrices in the solution of the time-fractional heat equation by multigrid waveform relaxation. arXiv:1706.07632v1 [math.NA]
– reference: TrottenbergUOosterleeCWSchüllerAMultigrid2001New YorkAcademic Press0976.65106
– reference: GanderMJ50 years of time parallel time integration2015ChamSpringer International Publishing691131337.65127
– reference: Gaspar FJ, Lisbona FJ, Vabishchevich PN (2003) A finite difference analysis of Biot’s consolidation model. Appl Numer Math 44(4):487–506. https://doi.org/10.1016/S0168-9274(02)00190-3
– reference: Haga JB, Osnes H, Langtangen HP (2012) On the causes of pressure oscillations in low-permeable and low-compressible porous media. Int J Numer Anal Meth Geomech 36(12):1507–1522. https://doi.org/10.1002/nag.1062
– reference: TerzaghiKTheoretical soil mechanics1943New YorkWiley10.1002/9780470172766
– reference: OosterleeCGasparFWashioTWienandsRMultigrid line smoothers for higher order upwind discretizations of convection-dominated problemsJ Comput Phys19981392274307161409010.1006/jcph.1997.58540908.65111
– reference: BrandtAMulti-level adaptive solutions to boundary-value problemsMath Comput19773113833339043171910.1090/S0025-5718-1977-0431719-X0373.65054
– reference: Favino M, Grillo A, Krause R (2013) A stability condition for the numerical simulation of poroelastic systems. In: Hellmich C, Pichler B, Adam D (eds) Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics, pp 919–928. https://doi.org/10.1061/9780784412992.110
– reference: Molenaar J (1991) A two-grid analysis of the combination of mixed finite elements and Vanka-type relaxation. In: Hackbusch W, Trottenberg U (eds) Multigrid Methods III. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique, vol 98. Birkhäuser, Basel
– reference: VankaSBlock-implicit multigrid solution of Navier-Stokes equations in primitive variablesJ Comput Phys198665113815884845110.1016/0021-9991(86)90008-20606.76035
– reference: BiotMATheory of elasticity and consolidation for a porous anisotropic solidJ Appl Phys19552621821856687410.1063/1.17219560067.23603
– reference: BrandtAMultigrid solvers for non-elliptic and singular-perturbation steady-state problems1981RehovotThe Weizmann Institute of Science
– reference: RodrigoCGasparFHuXZikatanovLStability and monotonicity for some discretizations of the Biot’s consolidation modelComput Methods Appl Mech Eng2016298183204342771110.1016/j.cma.2015.09.019
– reference: WienandsRJoppichWPractical Fourier analysis for multigrid methods2005Boca RatonChapman and Hall/CRC Press1062.65133
– reference: PhillipsPWheelerMOvercoming the problem of locking in linear elasticity and poroelasticity: an heuristic approachComput Geosci200913151210.1007/s10596-008-9114-x1172.74017
– reference: LubichCOstermannAMultigrid dynamic iteration for parabolic equationsBIT19872721623489412410.1007/BF019341860623.65125
– reference: WesselingPAn introduction to multigrid methods1992ChichesterWiley0760.65092
– reference: MacLachlanSPOosterleeCWLocal fourier analysis for multigrid with overlapping smoothers applied to systems of pdesNumer Linear Algebra Appl2011184751774284019810.1002/nla.7621265.65256
– reference: Nordbotten JM (2016) Stable cell-centered finite volume discretization for biot equations. SIAM J Numer Anal 54(2):942–968. https://doi.org/10.1137/15M1014280
– reference: FriedhoffSMacLachlanSA generalized predictive analysis tool for multigrid methodsNumer Linear Algebra Appl2015224618647336782610.1002/nla.19771349.65427
– reference: Aguilar G, Gaspar F, Lisbona F, Rodrigo C (2008) Numerical stabilization of Biot’s consolidation model by a perturbation on the flow equation. Int J Numer Meth Eng 75(11):1282–1300. https://doi.org/10.1002/nme.2295
– reference: VandewalleSParallel Multigrid waveform relaxation for parabolic problems1993Stuttgart, B.GTeubner10.1007/978-3-322-94761-10816.65057
– volume-title: Practical Fourier analysis for multigrid methods
  year: 2005
  ident: 603_CR31
– volume-title: Theoretical soil mechanics
  year: 1943
  ident: 603_CR26
  doi: 10.1002/9780470172766
– volume: 31
  start-page: 1695
  issue: 6
  year: 1994
  ident: 603_CR6
  publication-title: SIAM J Numer Anal
  doi: 10.1137/0731087
– volume-title: Multigrid solvers for non-elliptic and singular-perturbation steady-state problems
  year: 1981
  ident: 603_CR5
– ident: 603_CR15
– volume: 13
  start-page: 5
  issue: 1
  year: 2009
  ident: 603_CR23
  publication-title: Comput Geosci
  doi: 10.1007/s10596-008-9114-x
– volume-title: Multigrid
  year: 2001
  ident: 603_CR27
– volume: 139
  start-page: 274
  issue: 2
  year: 1998
  ident: 603_CR21
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1997.5854
– volume: 65
  start-page: 138
  issue: 1
  year: 1986
  ident: 603_CR29
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(86)90008-2
– volume: 27
  start-page: 216
  year: 1987
  ident: 603_CR17
  publication-title: BIT
  doi: 10.1007/BF01934186
– volume: 11
  start-page: 67
  issue: 2
  year: 2008
  ident: 603_CR13
  publication-title: Comput Vis Sci
  doi: 10.1007/s00791-007-0061-1
– ident: 603_CR19
  doi: 10.1007/978-3-0348-5712-3_23
– volume: 31
  start-page: 333
  issue: 138
  year: 1977
  ident: 603_CR4
  publication-title: Math Comput
  doi: 10.1090/S0025-5718-1977-0431719-X
– start-page: 69
  volume-title: 50 years of time parallel time integration
  year: 2015
  ident: 603_CR10
– volume: 22
  start-page: 618
  issue: 4
  year: 2015
  ident: 603_CR9
  publication-title: Numer Linear Algebra Appl
  doi: 10.1002/nla.1977
– ident: 603_CR14
  doi: 10.1002/nag.1062
– volume: 105
  start-page: 96
  year: 2016
  ident: 603_CR25
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2016.02.006
– volume: 229
  start-page: 4813
  issue: 12
  year: 2010
  ident: 603_CR8
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2010.03.018
– volume: 298
  start-page: 183
  year: 2016
  ident: 603_CR24
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2015.09.019
– ident: 603_CR11
  doi: 10.1137/16M1090193
– volume: 26
  start-page: 182
  issue: 2
  year: 1955
  ident: 603_CR3
  publication-title: J Appl Phys
  doi: 10.1063/1.1721956
– ident: 603_CR1
  doi: 10.1002/nme.2295
– ident: 603_CR12
  doi: 10.1016/S0168-9274(02)00190-3
– volume-title: The finite element method in the static and dynamic deformation and consolidation of porous media
  year: 1998
  ident: 603_CR16
– ident: 603_CR20
  doi: 10.1137/15M1014280
– volume: 58
  start-page: 1933
  issue: 12
  year: 2008
  ident: 603_CR22
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2007.11.014
– volume-title: Parallel Multigrid waveform relaxation for parabolic problems
  year: 1993
  ident: 603_CR28
  doi: 10.1007/978-3-322-94761-1
– volume-title: An introduction to multigrid methods
  year: 1992
  ident: 603_CR30
– ident: 603_CR7
  doi: 10.1061/9780784412992.110
– volume: 12
  start-page: 155
  issue: 2
  year: 1941
  ident: 603_CR2
  publication-title: J Appl Phys
  doi: 10.1063/1.1712886
– volume: 18
  start-page: 751
  issue: 4
  year: 2011
  ident: 603_CR18
  publication-title: Numer Linear Algebra Appl
  doi: 10.1002/nla.762
SSID ssj0000400126
ssj0037144
Score 2.241814
Snippet In this work, a multigrid waveform relaxation method is proposed for solving a collocated finite difference discretization of the linear Biot’s model. This...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4805
SubjectTerms Algebra
Applications of Mathematics
Applied physics
Computational mathematics
Computational Mathematics and Numerical Analysis
Finite difference method
Iterative methods
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematical models
Mathematics
Mathematics and Statistics
Poroelasticity
Relaxation method (mathematics)
Title A multigrid waveform relaxation method for solving the poroelasticity equations
URI https://link.springer.com/article/10.1007/s40314-018-0603-9
https://www.proquest.com/docview/2095662691
Volume 37
WOSCitedRecordID wos000443034900046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1807-0302
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037144
  issn: 0101-8205
  databaseCode: RSV
  dateStart: 20130401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBQgFRKMgDEyhSHm7ijBWiYqEgXuoWxckFVUItNKXw87lzHhUIkGBNbMvyne3v89nfARwHXuhgYtP8pm4SQZHKimXgW3GGxLcCTAKUJtlEMBio4TC8Lt9x59Vt9yokaVbq-rGbZKV1or7Ksn3bs8JlWKHdTnG-hpvbh_pghb3SYUxRLMesSFcIfBNvpu2uW4U2v2vy8-a0QJxfgqRm7-k3_9XrTdgooaboFb6xBUs4bkGzhJ2inNR5C9Yva-nWfBuuesJcMnycjlLxFs-RUa3gJy_vxoiiyDkt6LMgv-XzCEHVBeH4CRVi2WcC9gJfCg3xfAfu--d3ZxdWmXXBSjwpZ5abKa1QE8-IPRdTGScZJtLvpoEfE5rKNGFyt8vRPnQcKmu7KDWzKLI2wU3f24XGeDLGPRA-eYLOtPaVlpJ4lSLwJ5EwF9H5MHPTNtjVcEdJKUnOmTGeolpM2QxfRMMX8fBFYRtO6irPhR7Hb4U7lQ2jcmrmkcvSi0TjQqcNp5XNFr9_bGz_T6UPYM01RufbaB1ozKaveAiryXw2yqdHxmM_AIuW4pM
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CurB-sRq1Rw8KQv7SPdxLGKp2FbRKr2Fze6sFKTVbq3-fCfZR1FU0OtuEkIyyXxfJvkG4MRzAgsjk9Y3dZMICveNkHuuESZIfMvDyEOuk014vZ4_GAQ3-TvutLjtXoQk9U5dPnbjSmmdqK9vmK7pGMEiLHFyWEow__buoTxYUVZpKUyRbcdKkS4T-CbeTO6uUYQ2v2vys3OaI84vQVLte1rVf_V6A9ZzqMmamW1swgKOtqCaw06WL-p0C9a6pXRrug3XTaYvGT5OhjF7C2eoUC1TT17e9SSyLOc0o8-M7FadRzCqzgjHj6mQkn0mYM_wJdMQT3fgvnXRP28bedYFI3I4nxp24ksfJfGM0LEx5mGUYMTdRuy5IaGpRBImtxsq2oeWRWVNG7lULIpmm-Cm6-xCZTQe4R4wlyxBJlK6vuSceJVP4I8jYS6i80FixzUwi-EWUS5JrjJjPIlSTFkPn6DhE2r4RFCD07LKc6bH8VvhejGHIl-aqbCV9CLRuMCqwVkxZ_PfPza2_6fSx7DS7nc7onPZuzqAVVsbgLqZVofKdPKKh7AczabDdHKkrfcDMmzldw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBalWsVt2DJyWYxzaPY1GLotaCD3pbsslGCpLWJlZ_vjN5FUUF8ZrMhmRnNvt9O7vfABw6lmeoQMfxja-JBIW7ms8dW_MjhXzLUYGjeFZswun13MHA6xd1TpNyt3uZkszPNJBKU5yejMPopDr4xkl1HWmwq-m2bmnePCxw2kdPdP3usVpkoQg1CF_kv2ZSp8vFvpFD49TXLtOc3z3y80Q1Q59fEqbZPNSt__sL1mC1gKCsk8fMOsypuAH1Ao6yYrAnDVi5qSRdkw247bBs8-HTZBiyN3-qCO0yOgrznjmX5bWoGV5mGM-0TsGwOUN8P0IjkoNGwM_US64tnmzCQ_f8_vRCK6oxaIHFeaqZkStdJZF_-JapQu4HkQq43Q4d20eUFUnE6mabsoDKMNBWNxWXxK4wChCG2tYW1OJRrLaB2RghMpLSdiXnyLdcBIVcIRZDmu9FZtgEvex6ERRS5VQx41lUIstZ9wnsPkHdJ7wmHFVNxrlOx2_GrdKfohiyiTBJkhHpnWc04bj03-z2jw_b-ZP1ASz1z7ri-rJ3tQvLZuZ_2rDWglo6eVV7sBhM02Ey2c8C-QNFGO5b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multigrid+waveform+relaxation+method+for+solving+the+poroelasticity+equations&rft.jtitle=Computational+and+Applied+Mathematics&rft.au=Franco%2C+S.+R.&rft.au=Rodrigo%2C+C.&rft.au=Gaspar%2C+F.+J.&rft.au=Pinto%2C+M.+A.+V.&rft.date=2018-09-01&rft.pub=Springer+International+Publishing&rft.issn=0101-8205&rft.eissn=1807-0302&rft.volume=37&rft.issue=4&rft.spage=4805&rft.epage=4820&rft_id=info:doi/10.1007%2Fs40314-018-0603-9&rft.externalDocID=10_1007_s40314_018_0603_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0101-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0101-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0101-8205&client=summon