Motor imagery EEG task recognition using a nonlinear Granger causality feature extraction and an improved Salp swarm feature selection

•Brain network features were extracted by a Granger causal analysis.•Brain functional connectivity contributes to improving MI task classification.•An effective swarm optimization algorithm are used for feature selection. In the study of motor imagery (MI) brain-computer interfaces (BCIs), how to im...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical signal processing and control Vol. 88; p. 105626
Main Authors: Lin, Ruijing, Dong, Chaoyi, Zhou, Peng, Ma, Pengfei, Ma, Shuang, Chen, Xiaoyan, Liu, Huanzi
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.02.2024
Subjects:
ISSN:1746-8094, 1746-8108
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Brain network features were extracted by a Granger causal analysis.•Brain functional connectivity contributes to improving MI task classification.•An effective swarm optimization algorithm are used for feature selection. In the study of motor imagery (MI) brain-computer interfaces (BCIs), how to improve task classification accuracy has been always one of major challenges in the applications of MI-BCIs. As a type of crucial temporal and spatial feature, nonlinear Granger Causality (NGC) analysis was applied to feature extraction of MI-electroencephalogram (EEG) signals because the constructed brain network features can reflect the causal relationship between different channels in various brain regions. However, the MI-BCI task recognition often suffer from the information redundancy of NGC features, and these redundant features will increase the complexity of the machine learning models and accordingly reduce the prediction accuracy of the classification algorithms. To address this problem, this paper proposes a step-by-step tent chaos simulated annealing salp swarm feature selection (STCSA_SaSFS) algorithm to select an optimal set of features in a wrapper feature selection model. Then, the effectiveness of this feature selection method is verified using a support vector machine (SVM) classifier. Through the study of task related MI-BCI EEG data from ten subjects, the experiments showed that the highest classification accuracy of NGC feature extraction plus STCSA_SaSFS reached 97.19%, and the average classification accuracy was 89.57%. This average classification accuracy was 20.07% higher than that of NGC feature extraction without any feature selection, and it is also 2.96% higher than that of NGC feature extraction plus a traditional SaSFS algorithm. The effectiveness of STCSA_SaSFS was also compared with that of other smart swarm optimization algorithms, such as the sparrow search feature selection algorithm (SpSFS). STCSA_SaSFS outperforms SpSFS with an average classification accuracy of 8.07%. The algorithm was validated using a public dataset validation consisting of 10 subjects, which ultimately showed that the feature selection method proposed in this paper (STSA_SaSAFS) has a large advantage in the classification performance of motor imagery brain-computer interface tasks.
AbstractList •Brain network features were extracted by a Granger causal analysis.•Brain functional connectivity contributes to improving MI task classification.•An effective swarm optimization algorithm are used for feature selection. In the study of motor imagery (MI) brain-computer interfaces (BCIs), how to improve task classification accuracy has been always one of major challenges in the applications of MI-BCIs. As a type of crucial temporal and spatial feature, nonlinear Granger Causality (NGC) analysis was applied to feature extraction of MI-electroencephalogram (EEG) signals because the constructed brain network features can reflect the causal relationship between different channels in various brain regions. However, the MI-BCI task recognition often suffer from the information redundancy of NGC features, and these redundant features will increase the complexity of the machine learning models and accordingly reduce the prediction accuracy of the classification algorithms. To address this problem, this paper proposes a step-by-step tent chaos simulated annealing salp swarm feature selection (STCSA_SaSFS) algorithm to select an optimal set of features in a wrapper feature selection model. Then, the effectiveness of this feature selection method is verified using a support vector machine (SVM) classifier. Through the study of task related MI-BCI EEG data from ten subjects, the experiments showed that the highest classification accuracy of NGC feature extraction plus STCSA_SaSFS reached 97.19%, and the average classification accuracy was 89.57%. This average classification accuracy was 20.07% higher than that of NGC feature extraction without any feature selection, and it is also 2.96% higher than that of NGC feature extraction plus a traditional SaSFS algorithm. The effectiveness of STCSA_SaSFS was also compared with that of other smart swarm optimization algorithms, such as the sparrow search feature selection algorithm (SpSFS). STCSA_SaSFS outperforms SpSFS with an average classification accuracy of 8.07%. The algorithm was validated using a public dataset validation consisting of 10 subjects, which ultimately showed that the feature selection method proposed in this paper (STSA_SaSAFS) has a large advantage in the classification performance of motor imagery brain-computer interface tasks.
ArticleNumber 105626
Author Ma, Shuang
Chen, Xiaoyan
Ma, Pengfei
Liu, Huanzi
Lin, Ruijing
Dong, Chaoyi
Zhou, Peng
Author_xml – sequence: 1
  givenname: Ruijing
  orcidid: 0000-0002-7271-5430
  surname: Lin
  fullname: Lin, Ruijing
  organization: College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China
– sequence: 2
  givenname: Chaoyi
  orcidid: 0000-0001-8433-8903
  surname: Dong
  fullname: Dong, Chaoyi
  email: dongchaoyi@imut.edu.cn
  organization: College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China
– sequence: 3
  givenname: Peng
  surname: Zhou
  fullname: Zhou, Peng
  organization: College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China
– sequence: 4
  givenname: Pengfei
  orcidid: 0000-0003-1497-5100
  surname: Ma
  fullname: Ma, Pengfei
  organization: College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China
– sequence: 5
  givenname: Shuang
  surname: Ma
  fullname: Ma, Shuang
  organization: College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China
– sequence: 6
  givenname: Xiaoyan
  orcidid: 0000-0002-6127-959X
  surname: Chen
  fullname: Chen, Xiaoyan
  organization: College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China
– sequence: 7
  givenname: Huanzi
  orcidid: 0000-0002-0846-0664
  surname: Liu
  fullname: Liu, Huanzi
  organization: College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China
BookMark eNp9kMFOAjEURRuDiYD-gKv-wGA7lKEkbgxBNMG4UNfNm_YNKQ6dSVtQfsDvtoC6cMGiadPc89p7eqTjGoeEXHM24IwXN6tBGVo9yFk-TBejIi_OSJePRZFJzmTn98wm4oL0QlgxJuSYiy75empi46ldwxL9js5mcxohvFOPulk6G23j6CZYt6RA05u1dQiezj24lKcaNgFqG3e0QogbjxQ_owd9wMCZtNLo1jdbNPQF6paGD_Drv3TAGg_hS3JeQR3w6mfvk7f72ev0IVs8zx-nd4tMD4WIWV6ORZlXw4lEEAWKsUBeVqOcs9IwbaRhJReSA5_wEYjUWUpd4aRAUzHIkQ37JD_O1b4JwWOlWp-6-53iTO1NqpXam1R7k-poMkHyH6RthP23U1dbn0ZvjyimUluLXgVt0Wk0NhmOyjT2FP4NHGWUTA
CitedBy_id crossref_primary_10_1016_j_asoc_2024_112686
crossref_primary_10_3390_diagnostics14171857
crossref_primary_10_1007_s43621_025_01403_6
crossref_primary_10_1016_j_physbeh_2025_114971
crossref_primary_10_1016_j_bspc_2024_107061
crossref_primary_10_1177_1088467X251370595
crossref_primary_10_1016_j_chemolab_2025_105343
crossref_primary_10_1371_journal_pone_0313261
crossref_primary_10_1016_j_neuroscience_2025_06_036
Cites_doi 10.2307/1912791
10.1142/S0129065713500135
10.1109/IJCNN.2016.7727644
10.1109/ACCESS.2020.3018962
10.1016/j.bspc.2016.10.015
10.1016/S1388-2457(02)00057-3
10.1109/TBME.2004.827072
10.1016/j.compbiomed.2019.103495
10.1103/PhysRevE.73.066216
10.1016/0013-4694(92)90133-3
10.1016/j.sigpro.2008.01.026
10.1046/j.1365-294X.2002.01650.x
10.1016/j.advengsoft.2017.07.002
10.1007/s00521-016-2236-5
10.1155/2019/7895924
10.1155/2016/1489692
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.bspc.2023.105626
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2023_105626
S1746809423010595
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c344t-2b74b2f398ea46e474e1bf5210bd0cd8d0b1481a1915a417488cfe96edf0a2e03
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001093208300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Sat Nov 29 07:04:28 EST 2025
Tue Nov 18 21:49:33 EST 2025
Fri Feb 23 02:34:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Feature selection
Motor imagery
Granger Causality analysis
Salp Swarm algorithm
Smart swarm optimization
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-2b74b2f398ea46e474e1bf5210bd0cd8d0b1481a1915a417488cfe96edf0a2e03
ORCID 0000-0002-6127-959X
0000-0001-8433-8903
0000-0003-1497-5100
0000-0002-7271-5430
0000-0002-0846-0664
OpenAccessLink https://dx.doi.org/10.1016/j.bspc.2023.105626
ParticipantIDs crossref_primary_10_1016_j_bspc_2023_105626
crossref_citationtrail_10_1016_j_bspc_2023_105626
elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105626
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Setiono, Liu (b0090) 1997; 8
Dupanloup, Schneider, Excoffier (b0160) 2002; 11
Wolpaw, Birbaumer, Mcfarland (b0010) 2002; 113
Pengfei, Chaoyi, Ruijing (b0045) 2022; 371
Aiming, Kun, Quan (b0110) 2017; 17
Udhaya Kumar, Hannah (b0115) 2017; 28
Granger (b0125) 1969
Heming, Jinduo, Wenlong (b0170) 2019; 7
Chakladar, Dey, Roy (b0100) 2020; 60
Ocak (b0095) 2008; 88
Brunato M, Battiti R. X-mifs: Exact mutual information for feature selection[C]. //2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 2016: 3469-3476.
Vikas, Subrata, Dipti (b0085) 2004; 15
Lai, Ibrahim, Abdullah (b0035) 2019, 2019.
Minmin, Aimin, Feixiang (b0120) 2018; 30
Xinxin (b0135) 2015; 28
Junhua, Jianyi, Qibin (b0030) 2013; 23
Trad, Al-Ani, Jemni (b0055) 2016; 7
Zhao, He (b0040) 2013
Shuang, Chaoyi, Tingting (b0060) 2022; 2022
Meijia, Chaoyi, Xiaoyan (b0140) 2020; 21
Rayatnia, Khanbabaie (b0180) 2019; 32
Jianjun, Shuying, Angeliki (b0015) 2020; 10
Pfurtscheller (b0025) 1992; 83
Yue, Haiyan (b0155) 2014
Azarmi, Ashtiani, Shalbaf (b0070) 2019; 115
Kim, Ryu, Kim (b0050) 2016; 2016
Heming, Zichao, Chao (b0175) 2022; 37
Xiaoqing, Qingwei, Zhou (b0005) 2016; 42
Schalk, McFarland, Hinterberger, Birbaumer, Wolpaw (b0185) 2004; 51
Marinazzo, Pellicoro, Stramaglia (b0130) 2006; 73
Zhou peng, Dong Chaoyi, Chen Xiaoyan, et al. A Salp Swarm Algorithm Based on Stepped Tent Chaos and Simulated Annealing[J]. Acta Electronica Sinica, 2021, 49(09): 1724-1735.
Li Zhanshan, Yang Xinkai, Hu Biao, et al. Differential Evolutionsalp Salp Swarm Feature Selection Algorithm[J]. Journal of Jilin University (Information Science Edition), 2021, 39(01):1-7.
Wang, Tao, Cong (b0075) 2020; 8
Mirvaziri, Mobarakeh (b0105) 2017; 32
Mirjalili, Gandomi, Mirjalili (b0145) 2017; 114
Hongtao, Ting, Bezerianos (b0020) 2019; 1
Li, Jingna, Ye (b0065) 2016, 2016.
Heming (10.1016/j.bspc.2023.105626_b0170) 2019; 7
Rayatnia (10.1016/j.bspc.2023.105626_b0180) 2019; 32
Wolpaw (10.1016/j.bspc.2023.105626_b0010) 2002; 113
10.1016/j.bspc.2023.105626_b0150
Li (10.1016/j.bspc.2023.105626_b0065) 2016
Setiono (10.1016/j.bspc.2023.105626_b0090) 1997; 8
Meijia (10.1016/j.bspc.2023.105626_b0140) 2020; 21
Junhua (10.1016/j.bspc.2023.105626_b0030) 2013; 23
Wang (10.1016/j.bspc.2023.105626_b0075) 2020; 8
Pfurtscheller (10.1016/j.bspc.2023.105626_b0025) 1992; 83
Marinazzo (10.1016/j.bspc.2023.105626_b0130) 2006; 73
Udhaya Kumar (10.1016/j.bspc.2023.105626_b0115) 2017; 28
Xinxin (10.1016/j.bspc.2023.105626_b0135) 2015; 28
Schalk (10.1016/j.bspc.2023.105626_b0185) 2004; 51
Shuang (10.1016/j.bspc.2023.105626_b0060) 2022; 2022
Xiaoqing (10.1016/j.bspc.2023.105626_b0005) 2016; 42
Aiming (10.1016/j.bspc.2023.105626_b0110) 2017; 17
Heming (10.1016/j.bspc.2023.105626_b0175) 2022; 37
Chakladar (10.1016/j.bspc.2023.105626_b0100) 2020; 60
Lai (10.1016/j.bspc.2023.105626_b0035) 2019
Kim (10.1016/j.bspc.2023.105626_b0050) 2016; 2016
Mirvaziri (10.1016/j.bspc.2023.105626_b0105) 2017; 32
Zhao (10.1016/j.bspc.2023.105626_b0040) 2013
Granger (10.1016/j.bspc.2023.105626_b0125) 1969
10.1016/j.bspc.2023.105626_b0080
Jianjun (10.1016/j.bspc.2023.105626_b0015) 2020; 10
Ocak (10.1016/j.bspc.2023.105626_b0095) 2008; 88
Vikas (10.1016/j.bspc.2023.105626_b0085) 2004; 15
Hongtao (10.1016/j.bspc.2023.105626_b0020) 2019; 1
10.1016/j.bspc.2023.105626_b0165
Yue (10.1016/j.bspc.2023.105626_b0155) 2014
Pengfei (10.1016/j.bspc.2023.105626_b0045) 2022; 371
Minmin (10.1016/j.bspc.2023.105626_b0120) 2018; 30
Dupanloup (10.1016/j.bspc.2023.105626_b0160) 2002; 11
Azarmi (10.1016/j.bspc.2023.105626_b0070) 2019; 115
Mirjalili (10.1016/j.bspc.2023.105626_b0145) 2017; 114
Trad (10.1016/j.bspc.2023.105626_b0055) 2016; 7
References_xml – volume: 8
  year: 1997
  ident: b0090
  article-title: Neural-network feature selector[J]
  publication-title: IEEE Trans. Neural Netw.
– year: 2019, 2019.
  ident: b0035
  article-title: Arrangements of Resting State Electroencephalography as the Input to Convolutional Neural Network for Biometric Identification[J]
  publication-title: Comput. Intell. Neurosci.
– volume: 15
  year: 2004
  ident: b0085
  article-title: Feature selection in MLPs and SVMs based on maximum output information[J]
  publication-title: IEEE Trans. Neural Netw.
– volume: 73
  year: 2006
  ident: b0130
  article-title: Nonlinear parametric model for granger causality of time series[J]
  publication-title: Physics Review E
– volume: 2016
  year: 2016
  ident: b0050
  article-title: Motor imagery classification using mu and beta rhythms of EEG with strong uncorrelating transform based complex common spatial patterns[J]
  publication-title: Comput. Intell. Neurosci.
– volume: 51
  start-page: 1034
  year: 2004
  end-page: 1043
  ident: b0185
  article-title: BCI2000: A General-Purpose Brain-Computer Interface (BCI) System
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 10
  year: 2020
  ident: b0015
  article-title: Author Correction: Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks.[J]
  publication-title: Sci. Rep.
– start-page: 424
  year: 1969:
  end-page: 438
  ident: b0125
  article-title: Investigating causal relations by econometric models and cross-spectral methods[J]
  publication-title: Econometrica
– volume: 60
  year: 2020
  ident: b0100
  article-title: EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm[J]
  publication-title: Biomed. Signal Process. Control
– volume: 32
  start-page: 1284
  year: 2019
  end-page: 1289
  ident: b0180
  article-title: Common spatial patterns feature extraction and support vector machine classification for motor imagery with the secondbrain[J]
  publication-title: Int. J. Eng.
– volume: 7
  start-page: 5
  year: 2016
  end-page: 16
  ident: b0055
  article-title: Motor imagery signal classification for BCI system using empirical mode decomposition and bandpower feature extraction[J]
  publication-title: BRAIN. Broad Research in Artificial Intelligence and Neuroscience
– volume: 2022
  year: 2022
  ident: b0060
  article-title: A Feature Extraction Algorithm of Brain Network of Motor Imagination Based on a Directed Transfer Function[J]
  publication-title: Comput. Intell. Neurosci.
– volume: 28
  start-page: 3239
  year: 2017
  end-page: 3258
  ident: b0115
  article-title: PSO-based feature selection and neighborhood rough set-based classification for BCI multiclass motor imagery task[J]
  publication-title: Neural Comput. & Applic.
– volume: 83
  start-page: 62
  year: 1992
  end-page: 69
  ident: b0025
  article-title: Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest[J]
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 8
  start-page: 155590
  year: 2020
  end-page: 155601
  ident: b0075
  article-title: Diverse feature blend based on filter-bank common spatial pattern and brain functional connectivity for multiple motor imagery detection
  publication-title: IEEE Access
– volume: 28
  start-page: 178
  year: 2015
  end-page: 181
  ident: b0135
  article-title: Development and Limitations of Granger Causality in Neuroscience[J]
  publication-title: Electronic Sci. & Tech.
– volume: 88
  start-page: 1858
  year: 2008
  end-page: 1867
  ident: b0095
  article-title: Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm[J]
  publication-title: Signal Process.
– volume: 17
  year: 2017
  ident: b0110
  article-title: Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata[J]
  publication-title: Sensors
– year: 2014
  ident: b0155
  article-title: Chaotic Time Series Prediction for Tent Mapping Based on BP Neural Network Optimized Glowworm Swarm Optimization[J]
  publication-title: Appl. Mech. Mater.
– volume: 42
  year: 2016
  ident: b0005
  article-title: Autoregressive Model Electroencephalogram Signal Identification Based on Feature Selection of Genetic Algorithm[J]
  publication-title: Comput. Eng.
– reference: Brunato M, Battiti R. X-mifs: Exact mutual information for feature selection[C]. //2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 2016: 3469-3476.
– volume: 7
  start-page: 71943
  year: 2019
  end-page: 71962
  ident: b0170
  article-title: Spotted hyena optimization algorithm with simulated annealing for feature selection[J]
  publication-title: Ieeeaccess
– volume: 11
  start-page: 2571
  year: 2002
  end-page: 2581
  ident: b0160
  article-title: A simulated annealing approach to define the genetic structure of populations[J]
  publication-title: Mol. Ecol.
– year: 2016, 2016.
  ident: b0065
  article-title: Conditional Granger Causality Analysis of Effective Connectivity during Motor Imagery and Motor Execution in Stroke Patients[J]
  publication-title: Biomed Res. Int.
– volume: 32
  start-page: 69
  year: 2017
  end-page: 75
  ident: b0105
  article-title: Improvement of EEG-based motor imagery classification using ring topology-based particle swarm optimization[J]
  publication-title: Biomed. Signal Process. Control
– reference: Li Zhanshan, Yang Xinkai, Hu Biao, et al. Differential Evolutionsalp Salp Swarm Feature Selection Algorithm[J]. Journal of Jilin University (Information Science Edition), 2021, 39(01):1-7.
– volume: 113
  start-page: 767
  year: 2002
  end-page: 791
  ident: b0010
  article-title: Brain–computer interfaces for communication and control[J]
  publication-title: Clin. Neurophysiol.
– volume: 115
  year: 2019
  ident: b0070
  article-title: Granger causality analysis in combination with directed network measures for classification of MS patients and healthy controls using task-related fMRI[J]
  publication-title: Comput. Biol. Med.
– volume: 30
  year: 2018
  ident: b0120
  article-title: Application of artificial bee colony algorithm in feature optimization for motor imagery EEG classification[J]
  publication-title: Neural Comput. & Applic.
– volume: 23
  start-page: 1350013
  year: 2013
  ident: b0030
  article-title: Design of assistive wheelchair system directly steered by human thoughts[J]
  publication-title: Int. J. Neural Syst.
– year: 2013
  ident: b0040
  article-title: The Power Spectrum Estimation of the AR Model Based on Motor Imagery EEG[J]
  publication-title: Adv. Mat. Res.
– volume: 21
  year: 2020
  ident: b0140
  article-title: Identifying the pulsed neuron networks' structures by a nonlinear Granger causality method[J]
  publication-title: BMC Neurosci.
– volume: 37
  start-page: 445
  year: 2022
  end-page: 454
  ident: b0175
  article-title: Simultaneous feature selection optimization based on improved bald eagle search algorithm [J]
  publication-title: Control and Decision
– volume: 371
  year: 2022
  ident: b0045
  article-title: A classification algorithm of an SSVEP brain-Computer interface based on CCA fusion wavelet coefficients[J]
  publication-title: J. Neurosci. Methods
– reference: Zhou peng, Dong Chaoyi, Chen Xiaoyan, et al. A Salp Swarm Algorithm Based on Stepped Tent Chaos and Simulated Annealing[J]. Acta Electronica Sinica, 2021, 49(09): 1724-1735.
– volume: 1
  start-page: 299
  year: 2019
  end-page: 309
  ident: b0020
  article-title: The control of a virtual automatic car based on multiple patterns of motor imagery BCI
  publication-title: Med. Biol. Eng. Compu.
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b0145
  article-title: Salp swarm algorithm: A bio⁃inspired optimizer for engineering design problems[J]
  publication-title: Adv. Eng. Softw.
– volume: 371
  year: 2022
  ident: 10.1016/j.bspc.2023.105626_b0045
  article-title: A classification algorithm of an SSVEP brain-Computer interface based on CCA fusion wavelet coefficients[J]
  publication-title: J. Neurosci. Methods
– start-page: 424
  year: 1969
  ident: 10.1016/j.bspc.2023.105626_b0125
  article-title: Investigating causal relations by econometric models and cross-spectral methods[J]
  publication-title: Econometrica
  doi: 10.2307/1912791
– volume: 23
  start-page: 1350013
  issue: 03
  year: 2013
  ident: 10.1016/j.bspc.2023.105626_b0030
  article-title: Design of assistive wheelchair system directly steered by human thoughts[J]
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065713500135
– volume: 7
  start-page: 71943
  year: 2019
  ident: 10.1016/j.bspc.2023.105626_b0170
  article-title: Spotted hyena optimization algorithm with simulated annealing for feature selection[J]
  publication-title: Ieeeaccess
– ident: 10.1016/j.bspc.2023.105626_b0080
  doi: 10.1109/IJCNN.2016.7727644
– volume: 8
  start-page: 155590
  year: 2020
  ident: 10.1016/j.bspc.2023.105626_b0075
  article-title: Diverse feature blend based on filter-bank common spatial pattern and brain functional connectivity for multiple motor imagery detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3018962
– volume: 32
  start-page: 69
  year: 2017
  ident: 10.1016/j.bspc.2023.105626_b0105
  article-title: Improvement of EEG-based motor imagery classification using ring topology-based particle swarm optimization[J]
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.10.015
– ident: 10.1016/j.bspc.2023.105626_b0150
– volume: 37
  start-page: 445
  issue: 02
  year: 2022
  ident: 10.1016/j.bspc.2023.105626_b0175
  article-title: Simultaneous feature selection optimization based on improved bald eagle search algorithm [J]
  publication-title: Control and Decision
– volume: 1
  start-page: 299
  year: 2019
  ident: 10.1016/j.bspc.2023.105626_b0020
  article-title: The control of a virtual automatic car based on multiple patterns of motor imagery BCI
  publication-title: Med. Biol. Eng. Compu.
– volume: 113
  start-page: 767
  issue: 6
  year: 2002
  ident: 10.1016/j.bspc.2023.105626_b0010
  article-title: Brain–computer interfaces for communication and control[J]
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 15
  issue: 4
  year: 2004
  ident: 10.1016/j.bspc.2023.105626_b0085
  article-title: Feature selection in MLPs and SVMs based on maximum output information[J]
  publication-title: IEEE Trans. Neural Netw.
– volume: 32
  start-page: 1284
  issue: 9
  year: 2019
  ident: 10.1016/j.bspc.2023.105626_b0180
  article-title: Common spatial patterns feature extraction and support vector machine classification for motor imagery with the secondbrain[J]
  publication-title: Int. J. Eng.
– year: 2013
  ident: 10.1016/j.bspc.2023.105626_b0040
  article-title: The Power Spectrum Estimation of the AR Model Based on Motor Imagery EEG[J]
  publication-title: Adv. Mat. Res.
– volume: 51
  start-page: 1034
  issue: 6
  year: 2004
  ident: 10.1016/j.bspc.2023.105626_b0185
  article-title: BCI2000: A General-Purpose Brain-Computer Interface (BCI) System
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827072
– volume: 60
  year: 2020
  ident: 10.1016/j.bspc.2023.105626_b0100
  article-title: EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm[J]
  publication-title: Biomed. Signal Process. Control
– volume: 17
  issue: 11
  year: 2017
  ident: 10.1016/j.bspc.2023.105626_b0110
  article-title: Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata[J]
  publication-title: Sensors
– volume: 42
  issue: 03
  year: 2016
  ident: 10.1016/j.bspc.2023.105626_b0005
  article-title: Autoregressive Model Electroencephalogram Signal Identification Based on Feature Selection of Genetic Algorithm[J]
  publication-title: Comput. Eng.
– volume: 115
  year: 2019
  ident: 10.1016/j.bspc.2023.105626_b0070
  article-title: Granger causality analysis in combination with directed network measures for classification of MS patients and healthy controls using task-related fMRI[J]
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103495
– year: 2014
  ident: 10.1016/j.bspc.2023.105626_b0155
  article-title: Chaotic Time Series Prediction for Tent Mapping Based on BP Neural Network Optimized Glowworm Swarm Optimization[J]
  publication-title: Appl. Mech. Mater.
– volume: 73
  year: 2006
  ident: 10.1016/j.bspc.2023.105626_b0130
  article-title: Nonlinear parametric model for granger causality of time series[J]
  publication-title: Physics Review E
  doi: 10.1103/PhysRevE.73.066216
– volume: 21
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2023.105626_b0140
  article-title: Identifying the pulsed neuron networks' structures by a nonlinear Granger causality method[J]
  publication-title: BMC Neurosci.
– volume: 83
  start-page: 62
  issue: 1
  year: 1992
  ident: 10.1016/j.bspc.2023.105626_b0025
  article-title: Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest[J]
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(92)90133-3
– volume: 30
  issue: 12
  year: 2018
  ident: 10.1016/j.bspc.2023.105626_b0120
  article-title: Application of artificial bee colony algorithm in feature optimization for motor imagery EEG classification[J]
  publication-title: Neural Comput. & Applic.
– volume: 88
  start-page: 1858
  issue: 7
  year: 2008
  ident: 10.1016/j.bspc.2023.105626_b0095
  article-title: Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm[J]
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2008.01.026
– volume: 8
  issue: 3
  year: 1997
  ident: 10.1016/j.bspc.2023.105626_b0090
  article-title: Neural-network feature selector[J]
  publication-title: IEEE Trans. Neural Netw.
– volume: 11
  start-page: 2571
  issue: 12
  year: 2002
  ident: 10.1016/j.bspc.2023.105626_b0160
  article-title: A simulated annealing approach to define the genetic structure of populations[J]
  publication-title: Mol. Ecol.
  doi: 10.1046/j.1365-294X.2002.01650.x
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2023.105626_b0015
  article-title: Author Correction: Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks.[J]
  publication-title: Sci. Rep.
– volume: 114
  start-page: 163
  issue: 6
  year: 2017
  ident: 10.1016/j.bspc.2023.105626_b0145
  article-title: Salp swarm algorithm: A bio⁃inspired optimizer for engineering design problems[J]
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 28
  start-page: 3239
  issue: 11
  year: 2017
  ident: 10.1016/j.bspc.2023.105626_b0115
  article-title: PSO-based feature selection and neighborhood rough set-based classification for BCI multiclass motor imagery task[J]
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-016-2236-5
– ident: 10.1016/j.bspc.2023.105626_b0165
– year: 2019
  ident: 10.1016/j.bspc.2023.105626_b0035
  article-title: Arrangements of Resting State Electroencephalography as the Input to Convolutional Neural Network for Biometric Identification[J]
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2019/7895924
– volume: 2022
  year: 2022
  ident: 10.1016/j.bspc.2023.105626_b0060
  article-title: A Feature Extraction Algorithm of Brain Network of Motor Imagination Based on a Directed Transfer Function[J]
  publication-title: Comput. Intell. Neurosci.
– volume: 28
  start-page: 178
  issue: 08
  year: 2015
  ident: 10.1016/j.bspc.2023.105626_b0135
  article-title: Development and Limitations of Granger Causality in Neuroscience[J]
  publication-title: Electronic Sci. & Tech.
– volume: 2016
  year: 2016
  ident: 10.1016/j.bspc.2023.105626_b0050
  article-title: Motor imagery classification using mu and beta rhythms of EEG with strong uncorrelating transform based complex common spatial patterns[J]
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2016/1489692
– volume: 7
  start-page: 5
  issue: 2
  year: 2016
  ident: 10.1016/j.bspc.2023.105626_b0055
  article-title: Motor imagery signal classification for BCI system using empirical mode decomposition and bandpower feature extraction[J]
  publication-title: BRAIN. Broad Research in Artificial Intelligence and Neuroscience
– year: 2016
  ident: 10.1016/j.bspc.2023.105626_b0065
  article-title: Conditional Granger Causality Analysis of Effective Connectivity during Motor Imagery and Motor Execution in Stroke Patients[J]
  publication-title: Biomed Res. Int.
SSID ssj0048714
Score 2.3957682
Snippet •Brain network features were extracted by a Granger causal analysis.•Brain functional connectivity contributes to improving MI task classification.•An...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105626
SubjectTerms Feature selection
Granger Causality analysis
Motor imagery
Salp Swarm algorithm
Smart swarm optimization
Title Motor imagery EEG task recognition using a nonlinear Granger causality feature extraction and an improved Salp swarm feature selection
URI https://dx.doi.org/10.1016/j.bspc.2023.105626
Volume 88
WOSCitedRecordID wos001093208300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWGKQtYIJ6ivOQFuyhVHs7EWVbVUEC0QlCk2UVOYkOG6cwoj6H9AT6EL-X6maigCpBYJIosO4lyzvhee-49F6GXmYhZAmbJT2H540uL4bOSV34A3muSQiMVqmrJu_T0lC4W2fvJ5IfNhdmt0vWaXlxk2_8KNbQB2DJ19i_gdjeFBrgG0OEMsMP5j4A_2XQyxvxcilNcevP5sdex9qvnIoUA7l5tEDBvrXUyWOMdNzr_t2R9qz1zwZXkpweTd2PriStdV5lY2Wx20lFlq63XfmPNuevdqrI6Fmv7Z7FK8df5l_Vn6f5udXqCTZA08fIuOEjrGnzo66U1rNLVNsHDR1_Y5rIeNrw3vY4zHnqeMNsieD3e1oiIjYS2e20232YIbpLTc0qkfLIui3zAR21hQMdzui4V-It50DsVy4Oi3Ur5yiiWZY5n0RUtbmXdP8r7ykfBGk36oMkNtBelSUanaO_wzXzx1tp7WPEpBXn3biY1S0cRXn3S792fkUtzdhfdMWsRfKg5dA9N-Po-uj1SqHyAvis2YcMmDGzCkk14xCas2IQZdmzChk3YsQkbfuCBTRiAhwNbNmHJJqzY5Ho7Nj1En17Nz45e-6Z0h1_GhHR-VKSkiEScUc7IjJOU8LAQ4CoGRRWUFa2CAtbhIQuzMGEEPh2lpeDZjFciYBEP4kdoCm_NHyMs4pgUMUk4TwiJgoqVIk4pK6qICzYrkn0U2i-al0bXXpZXWeU2gHGZSxRyiUKuUdhHnhuz1aou1_ZOLFC58Uu1v5kDr64Z9-Qfxz1Ft4ZfxDM07ZqeP0c3y11Xt80LQ7-fWcm4IQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motor+imagery+EEG+task+recognition+using+a+nonlinear+Granger+causality+feature+extraction+and+an+improved+Salp+swarm+feature+selection&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Lin%2C+Ruijing&rft.au=Dong%2C+Chaoyi&rft.au=Zhou%2C+Peng&rft.au=Ma%2C+Pengfei&rft.date=2024-02-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=88&rft_id=info:doi/10.1016%2Fj.bspc.2023.105626&rft.externalDocID=S1746809423010595
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon