Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing

Fault diagnosis of rolling bearings has attracted extensive attention in industrial fields, which plays a vital role in guaranteeing the reliability, safety, and economical efficiency of mechanical systems. Traditional data-driven fault diagnosis methods require obtaining a dataset of full failure m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reliability engineering & system safety Jg. 234; S. 109186
Hauptverfasser: Zhang, Yongchao, Ji, J.C., Ren, Zhaohui, Ni, Qing, Gu, Fengshou, Feng, Ke, Yu, Kun, Ge, Jian, Lei, Zihao, Liu, Zheng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.06.2023
Schlagworte:
ISSN:0951-8320, 1879-0836
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Fault diagnosis of rolling bearings has attracted extensive attention in industrial fields, which plays a vital role in guaranteeing the reliability, safety, and economical efficiency of mechanical systems. Traditional data-driven fault diagnosis methods require obtaining a dataset of full failure modes in advance as the training data. However, this kind of dataset is not always available in some critical industrial scenarios, which impairs the practicability of the data-driven fault diagnosis methods for various applications. A digital twin, which establishes a virtual representation of a physical entity to mirror its operating conditions, would make fault diagnosis of rolling bearings feasible when the fault data are insufficient. In this paper, we propose a novel digital twin-driven approach for implementing fault diagnosis of rolling bearings with insufficient training data. First, a dynamics-based virtual representation of rolling bearings is built to generate simulated data. Then, a Transformer-based network is developed to learn the knowledge of the simulated data for diagnostics. Meanwhile, a selective adversarial strategy is introduced to achieve cross-domain feature alignments in scenarios where the health conditions of the measured data are unknown. To this end, this study proposes a digital twin-driven fault diagnosis framework by using labeled simulated data and unlabeled measured data. The experimental results show that the proposed method can obtain high diagnostic performance when the real-world data is unlabeled and has unknown health conditions, proving that the proposed method has significant benefits for the health management of critical rolling bearings. •A digital twin-driven intelligent diagnosis method is developed.•A high-fidelity digital twin model is built for the rolling bearing.•A partial domain adaptation algorithm is introduced for bearing condition assessment.•One test is conducted to validate the effectiveness of the proposed methodology.
AbstractList Fault diagnosis of rolling bearings has attracted extensive attention in industrial fields, which plays a vital role in guaranteeing the reliability, safety, and economical efficiency of mechanical systems. Traditional data-driven fault diagnosis methods require obtaining a dataset of full failure modes in advance as the training data. However, this kind of dataset is not always available in some critical industrial scenarios, which impairs the practicability of the data-driven fault diagnosis methods for various applications. A digital twin, which establishes a virtual representation of a physical entity to mirror its operating conditions, would make fault diagnosis of rolling bearings feasible when the fault data are insufficient. In this paper, we propose a novel digital twin-driven approach for implementing fault diagnosis of rolling bearings with insufficient training data. First, a dynamics-based virtual representation of rolling bearings is built to generate simulated data. Then, a Transformer-based network is developed to learn the knowledge of the simulated data for diagnostics. Meanwhile, a selective adversarial strategy is introduced to achieve cross-domain feature alignments in scenarios where the health conditions of the measured data are unknown. To this end, this study proposes a digital twin-driven fault diagnosis framework by using labeled simulated data and unlabeled measured data. The experimental results show that the proposed method can obtain high diagnostic performance when the real-world data is unlabeled and has unknown health conditions, proving that the proposed method has significant benefits for the health management of critical rolling bearings. •A digital twin-driven intelligent diagnosis method is developed.•A high-fidelity digital twin model is built for the rolling bearing.•A partial domain adaptation algorithm is introduced for bearing condition assessment.•One test is conducted to validate the effectiveness of the proposed methodology.
ArticleNumber 109186
Author Gu, Fengshou
Zhang, Yongchao
Ni, Qing
Lei, Zihao
Yu, Kun
Feng, Ke
Ge, Jian
Ji, J.C.
Ren, Zhaohui
Liu, Zheng
Author_xml – sequence: 1
  givenname: Yongchao
  orcidid: 0000-0001-5892-3391
  surname: Zhang
  fullname: Zhang, Yongchao
  organization: School of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning 110819, China
– sequence: 2
  givenname: J.C.
  surname: Ji
  fullname: Ji, J.C.
  organization: School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
– sequence: 3
  givenname: Zhaohui
  surname: Ren
  fullname: Ren, Zhaohui
  email: renzhh_neu@126.com
  organization: School of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning 110819, China
– sequence: 4
  givenname: Qing
  surname: Ni
  fullname: Ni, Qing
  organization: School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
– sequence: 5
  givenname: Fengshou
  surname: Gu
  fullname: Gu, Fengshou
  organization: Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK
– sequence: 6
  givenname: Ke
  surname: Feng
  fullname: Feng, Ke
  email: ke.feng@outlook.com
  organization: School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
– sequence: 7
  givenname: Kun
  surname: Yu
  fullname: Yu, Kun
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
– sequence: 8
  givenname: Jian
  surname: Ge
  fullname: Ge, Jian
  organization: School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
– sequence: 9
  givenname: Zihao
  surname: Lei
  fullname: Lei, Zihao
  organization: School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
– sequence: 10
  givenname: Zheng
  surname: Liu
  fullname: Liu, Zheng
  organization: School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
BookMark eNp9kMtOwzAQRS1UJErhB1j5B1LsOEkdiQ0qT6kSG1hbE2cSpqR2ZZtW_D2pyopFV1e6ozOaOZds4rxDxm6kmEshq9v1PGCM81zkaixqqaszNpV6UWdCq2rCpqIuZaZVLi7YZYxrIURRl4sp-3ygnhIMPO3JZW2gHTq-hZBo7Fq_AXIcWtgmSOQdd5j2PnzxzgdOLuEwUI8u8Q6-h8Rbgt75SJH7jgc_Dl3PG4Qw5hU772CIeP2XM_bx9Pi-fMlWb8-vy_tVZlVRpCyXutHWqq6pBFaqsHmJUuadbGAhq7LOy6IGJWXTqFJWCI2Czqq6bqtWQ9kINWP6uNcGH2PAzlg6Hp8C0GCkMAdjZm0OxszBmDkaG9H8H7oNtIHwcxq6O0I4PrUjDCZaQmexpYA2mdbTKfwXzHSJwg
CitedBy_id crossref_primary_10_1177_10775463241276645
crossref_primary_10_1016_j_ress_2025_111731
crossref_primary_10_1109_ACCESS_2025_3586798
crossref_primary_10_1177_14759217241268792
crossref_primary_10_1088_1361_6501_ad8fc4
crossref_primary_10_1177_09544062231216877
crossref_primary_10_1016_j_aei_2024_103055
crossref_primary_10_1038_s41598_025_96641_z
crossref_primary_10_1016_j_aei_2024_102515
crossref_primary_10_1007_s44379_024_00011_x
crossref_primary_10_1109_JIOT_2024_3387741
crossref_primary_10_1016_j_ress_2023_109522
crossref_primary_10_1016_j_ress_2023_109404
crossref_primary_10_1016_j_ress_2023_109882
crossref_primary_10_1016_j_compind_2024_104194
crossref_primary_10_1016_j_ymssp_2025_112741
crossref_primary_10_1109_TIM_2025_3545721
crossref_primary_10_1016_j_engappai_2024_107848
crossref_primary_10_1016_j_renene_2025_123461
crossref_primary_10_1016_j_ymssp_2025_113053
crossref_primary_10_1109_TIM_2024_3376018
crossref_primary_10_1016_j_apacoust_2025_110877
crossref_primary_10_1016_j_inffus_2025_103277
crossref_primary_10_1016_j_ress_2024_110252
crossref_primary_10_1016_j_eswa_2024_125469
crossref_primary_10_1016_j_knosys_2024_111999
crossref_primary_10_1109_TIM_2024_3379402
crossref_primary_10_1016_j_ijpvp_2025_105451
crossref_primary_10_1007_s10489_024_06145_y
crossref_primary_10_3390_s24155002
crossref_primary_10_1016_j_eswa_2025_128592
crossref_primary_10_1109_TII_2025_3552655
crossref_primary_10_1088_1361_6501_ada465
crossref_primary_10_1016_j_engappai_2025_111964
crossref_primary_10_1016_j_eswa_2025_127267
crossref_primary_10_1016_j_simpat_2025_103160
crossref_primary_10_1109_TII_2024_3453370
crossref_primary_10_1177_10775463251353553
crossref_primary_10_1088_1742_6596_3024_1_012003
crossref_primary_10_1016_j_cie_2024_110292
crossref_primary_10_1109_TIM_2024_3417592
crossref_primary_10_1177_03019233251349862
crossref_primary_10_1109_TIM_2023_3346532
crossref_primary_10_3390_app131810359
crossref_primary_10_1088_1361_6501_ad7f76
crossref_primary_10_1177_10775463241256253
crossref_primary_10_1016_j_ress_2023_109740
crossref_primary_10_1038_s41598_024_63990_0
crossref_primary_10_1177_14759217241296804
crossref_primary_10_1016_j_engappai_2024_109261
crossref_primary_10_1002_we_2912
crossref_primary_10_1016_j_engappai_2023_107202
crossref_primary_10_3390_make6030069
crossref_primary_10_1088_1361_6501_adce20
crossref_primary_10_1177_1748006X231207169
crossref_primary_10_1016_j_engappai_2025_111070
crossref_primary_10_1155_vib_9982177
crossref_primary_10_1016_j_aei_2024_102620
crossref_primary_10_1016_j_eswa_2023_120854
crossref_primary_10_1016_j_ress_2023_109753
crossref_primary_10_1093_jcde_qwae105
crossref_primary_10_1016_j_knosys_2024_112952
crossref_primary_10_1088_1361_6501_ad8f52
crossref_primary_10_1016_j_oceaneng_2024_119309
crossref_primary_10_1016_j_engappai_2024_109371
crossref_primary_10_1016_j_ymssp_2025_112770
crossref_primary_10_1016_j_engappai_2024_108160
crossref_primary_10_1016_j_ress_2024_110040
crossref_primary_10_1016_j_compind_2024_104155
crossref_primary_10_1007_s10845_024_02401_7
crossref_primary_10_1016_j_inffus_2024_102271
crossref_primary_10_1016_j_jare_2025_02_029
crossref_primary_10_1177_10775463251351392
crossref_primary_10_3390_app15105725
crossref_primary_10_1016_j_measurement_2025_118753
crossref_primary_10_1109_ACCESS_2024_3490670
crossref_primary_10_1016_j_eswa_2025_127296
crossref_primary_10_1016_j_ymssp_2024_112266
crossref_primary_10_1088_1361_6501_ad0683
crossref_primary_10_1088_1361_6501_adcadc
crossref_primary_10_3390_s24227403
crossref_primary_10_1016_j_isatra_2023_12_031
crossref_primary_10_1177_09544062241274178
crossref_primary_10_1088_1361_6501_ad0f67
crossref_primary_10_1088_2631_8695_adb7b9
crossref_primary_10_3390_app15158525
crossref_primary_10_1016_j_jmsy_2024_02_006
crossref_primary_10_1016_j_asoc_2024_112528
crossref_primary_10_1109_TSMC_2024_3408058
crossref_primary_10_1016_j_ress_2024_110381
crossref_primary_10_1016_j_measurement_2025_116669
crossref_primary_10_1109_TIM_2023_3305665
crossref_primary_10_3390_app132312823
crossref_primary_10_1038_s41598_025_10124_9
crossref_primary_10_1016_j_measurement_2024_116148
crossref_primary_10_1016_j_measurement_2025_118843
crossref_primary_10_1109_TIM_2023_3301863
crossref_primary_10_3390_math12193124
crossref_primary_10_1109_TIM_2025_3573372
crossref_primary_10_1016_j_ress_2024_110708
crossref_primary_10_1016_j_energy_2025_138126
crossref_primary_10_1016_j_ress_2023_109667
crossref_primary_10_1016_j_ress_2023_109788
crossref_primary_10_1016_j_ress_2023_109543
crossref_primary_10_1016_j_knosys_2023_110960
crossref_primary_10_1016_j_ress_2024_110393
crossref_primary_10_1177_09544054241266000
crossref_primary_10_1109_JIOT_2024_3466916
crossref_primary_10_1016_j_eswa_2025_127528
crossref_primary_10_1016_j_measurement_2025_116797
crossref_primary_10_1016_j_measurement_2025_117401
crossref_primary_10_1177_09544054241290573
crossref_primary_10_1016_j_engappai_2024_108236
crossref_primary_10_1007_s11760_023_02922_3
crossref_primary_10_1007_s00170_025_16366_1
crossref_primary_10_3390_machines11060609
crossref_primary_10_3390_machines11080796
crossref_primary_10_1177_10775463251341378
crossref_primary_10_3390_electronics13193898
crossref_primary_10_1016_j_engappai_2025_111945
crossref_primary_10_1016_j_jii_2025_100822
crossref_primary_10_1016_j_ymssp_2025_112458
crossref_primary_10_1088_1361_6501_ad437e
crossref_primary_10_1016_j_ress_2023_109795
crossref_primary_10_1016_j_ymssp_2025_112693
crossref_primary_10_1016_j_eswa_2025_128970
crossref_primary_10_1088_2631_8695_ad4004
crossref_primary_10_1016_j_triboint_2024_109433
crossref_primary_10_1177_09544054241272917
crossref_primary_10_1016_j_ress_2025_111454
crossref_primary_10_1002_cem_3627
crossref_primary_10_1016_j_aei_2025_103615
crossref_primary_10_1016_j_neucom_2025_129914
crossref_primary_10_1177_14759217251362178
crossref_primary_10_1016_j_rineng_2025_105583
crossref_primary_10_1109_TIM_2024_3476708
crossref_primary_10_1109_TIM_2023_3330231
crossref_primary_10_1109_TIM_2025_3551574
crossref_primary_10_1109_TIM_2024_3385830
crossref_primary_10_1016_j_ijfatigue_2024_108631
crossref_primary_10_1109_JSEN_2024_3376403
crossref_primary_10_1109_TIM_2024_3396831
crossref_primary_10_1088_2631_8695_ae0249
crossref_primary_10_1016_j_measurement_2025_116869
crossref_primary_10_1016_j_ress_2023_109590
crossref_primary_10_3390_app13084776
crossref_primary_10_1007_s10489_025_06385_6
crossref_primary_10_1016_j_measurement_2024_115934
crossref_primary_10_1016_j_aei_2025_103833
crossref_primary_10_1016_j_aei_2025_103835
crossref_primary_10_1016_j_ress_2024_110749
crossref_primary_10_1109_TIM_2025_3527598
crossref_primary_10_3390_lubricants11120502
crossref_primary_10_1088_1361_6501_ad78f1
crossref_primary_10_1016_j_engappai_2023_107605
crossref_primary_10_1016_j_engappai_2023_107726
crossref_primary_10_3390_machines11121055
crossref_primary_10_1088_1361_6501_ad5f4c
crossref_primary_10_1016_j_future_2025_108127
crossref_primary_10_1109_TIM_2025_3595601
crossref_primary_10_1109_TIM_2025_3604989
crossref_primary_10_3390_e26121007
crossref_primary_10_1088_1361_6501_adc8c3
crossref_primary_10_1371_journal_pone_0324905
crossref_primary_10_1007_s10845_024_02471_7
crossref_primary_10_3390_act13100401
crossref_primary_10_1088_1361_6501_ad3bdf
crossref_primary_10_1016_j_ymssp_2024_111544
crossref_primary_10_1007_s10489_023_05010_8
crossref_primary_10_1016_j_ress_2024_110515
crossref_primary_10_1109_ACCESS_2024_3380438
crossref_primary_10_1109_JSEN_2024_3505792
crossref_primary_10_1016_j_ress_2025_111372
crossref_primary_10_1063_5_0191209
crossref_primary_10_1016_j_measurement_2023_113614
crossref_primary_10_1038_s41598_024_75088_8
crossref_primary_10_1088_1361_6501_adfaf8
crossref_primary_10_1177_14759217251368750
crossref_primary_10_1016_j_ress_2025_110842
crossref_primary_10_1016_j_jsv_2024_118573
crossref_primary_10_1016_j_ress_2024_110570
crossref_primary_10_1016_j_eswa_2024_124697
crossref_primary_10_1016_j_measurement_2024_116437
crossref_primary_10_1016_j_ress_2023_109618
crossref_primary_10_1109_TII_2024_3369240
crossref_primary_10_1016_j_aei_2024_102963
crossref_primary_10_1016_j_procs_2024_06_071
crossref_primary_10_1016_j_oceaneng_2025_122198
crossref_primary_10_3390_pr13092779
crossref_primary_10_1016_j_engappai_2023_107031
crossref_primary_10_1016_j_eswa_2025_126947
crossref_primary_10_1016_j_knosys_2024_111923
crossref_primary_10_1016_j_ress_2024_110660
crossref_primary_10_1007_s11071_025_11026_1
crossref_primary_10_1177_14759217241268813
crossref_primary_10_1021_acsomega_5c06190
crossref_primary_10_1038_s41598_025_02500_2
crossref_primary_10_1177_09544062251318929
crossref_primary_10_1016_j_measurement_2024_115219
crossref_primary_10_1088_1361_6501_addf69
crossref_primary_10_1016_j_engappai_2024_109186
crossref_primary_10_3390_pr12071415
crossref_primary_10_1016_j_ress_2024_110788
crossref_primary_10_1109_JSEN_2024_3391373
crossref_primary_10_1109_TIM_2025_3542138
crossref_primary_10_1177_14759217241291143
crossref_primary_10_1177_09544054241289981
crossref_primary_10_1016_j_aei_2024_102708
crossref_primary_10_1016_j_measurement_2024_115565
crossref_primary_10_1088_1361_6501_ad34ef
crossref_primary_10_1109_JSEN_2024_3483278
crossref_primary_10_1016_j_engappai_2024_108995
crossref_primary_10_1109_JSEN_2024_3400249
crossref_primary_10_1177_14759217251352083
crossref_primary_10_1109_JSEN_2024_3370564
crossref_primary_10_1016_j_ress_2025_110854
crossref_primary_10_1155_2024_5587168
crossref_primary_10_1063_5_0171091
crossref_primary_10_1002_adfm_202514190
Cites_doi 10.1016/j.compind.2019.02.001
10.1177/1475921720980718
10.1109/TMECH.2022.3179289
10.1016/j.ymssp.2020.107233
10.1016/j.ymssp.2018.07.048
10.1016/j.ymssp.2021.108319
10.1016/j.measurement.2019.107393
10.1016/j.neucom.2020.04.143
10.1016/j.ress.2022.108618
10.1016/j.knosys.2018.12.019
10.1109/TMECH.2022.3177174
10.1016/j.ymssp.2022.109896
10.1016/j.sigpro.2018.12.005
10.1109/TIE.2016.2627020
10.1016/j.ymssp.2019.106587
10.1109/CVPR.2018.00288
10.1016/j.ress.2021.107938
10.1109/TIM.2020.2988750
10.1016/j.ymssp.2018.03.011
10.1109/TIM.2020.2987413
10.1016/j.ymssp.2022.109605
10.1109/TII.2021.3089340
10.1016/j.ress.2022.108358
10.1016/j.engfailanal.2020.105066
10.1109/CVPR.2018.00392
10.1080/00207543.2018.1552032
10.1016/j.ress.2022.108405
10.1016/j.isatra.2018.04.005
10.1016/j.ress.2022.108599
10.1016/j.knosys.2021.106974
10.1016/j.neucom.2019.05.052
10.1016/j.ymssp.2011.02.017
10.1016/j.isatra.2021.05.042
10.1016/j.jmsy.2021.11.016
10.1016/j.isatra.2022.02.048
10.1016/j.ymssp.2021.108487
10.1016/j.aei.2022.101651
10.1016/j.ymssp.2016.09.010
10.1016/j.wear.2019.01.017
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ress.2023.109186
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2023_109186
S0951832023001011
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c344t-218b8cc3fb60e634c25e112f1ba716592549a311bb3516eab3afc399d6d8a5b03
ISICitedReferencesCount 248
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000954834300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Tue Nov 18 22:38:29 EST 2025
Sat Nov 29 07:07:08 EST 2025
Fri Feb 23 02:38:29 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Domain adaptation
Transformer
Digital twin
Rolling bearing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-218b8cc3fb60e634c25e112f1ba716592549a311bb3516eab3afc399d6d8a5b03
ORCID 0000-0001-5892-3391
OpenAccessLink https://pure.hud.ac.uk/en/publications/58b602c0-376f-4b17-865f-3f10292c56b0
ParticipantIDs crossref_citationtrail_10_1016_j_ress_2023_109186
crossref_primary_10_1016_j_ress_2023_109186
elsevier_sciencedirect_doi_10_1016_j_ress_2023_109186
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle Reliability engineering & system safety
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Yan, Yuan, Peng, Li (b4) 2011; 25
Liu, Ricardo Mauricio, Qi, Peng, Gryllias (b37) 2020
Wu, Jiang, Liu, Yang (b31) 2022; 53
Azar, Hajiakhondi-Meybodi, Naderkhani (b1) 2022; 222
Mao, Feng, Liu, Zhang, Liang (b11) 2021; 150
Zhao, Yao, Deng, Ding, Ding, Jia (b18) 2022
Feng, Ji, Ni, Beer (b34) 2023; 182
Zhang, Ren, Zhou, Feng, Yu, Liu (b27) 2022
Jiang, Wang, Liu, Liu, Cai, Li (b6) 2020; 70
Lu, Liang, Cheng, Meng, Yang, Zhang (b26) 2016; 64
Lei, Yang, Jiang, Jia, Li, Nandi (b5) 2020; 138
Han, Liu, Yang, Jiang (b29) 2019; 165
Ganin, Lempitsky (b48) 2015
Xiao, Shao, Han, Huo, Wan (b40) 2022
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner (b47) 2020
Xu, Yan, Sun, Liu (b19) 2022
Zheng, Pan, Cheng (b20) 2017; 85
Feng, Borghesani, Smith, Randall, Chin, Ren (b43) 2019; 426
Li, Huang, Li, Liao, Chen, He (b22) 2022; 167
Saito K, Watanabe K, Ushiku Y, Harada T. Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, p. 3723–32.
Zhao, Wang, Chu (b14) 2019; 107
Zhiyi, Haidong, Lin, Junsheng, Yu (b23) 2020; 152
Xia, Shao, Williams, Lu, Shu, de Silva (b36) 2021; 215
Wang, Ye, Gao, Li, Zhang (b41) 2019; 57
Feng, Smith, Peng (b44) 2021; 120
Yu, Fu, Ma, Lin, Li (b39) 2021; 20
Zhang, Feng, Ji, Yu, Ren, Liu (b42) 2022
Xu, Tang, Feng, Wang, Ashworth, Gu (b7) 2022; 1
Van der Maaten, Hinton (b52) 2008; 9
Zheng, Pan, Tong, Liu (b3) 2022; 123
Plakias, Boutalis (b17) 2020; 405
Li, Du, Wang, Si (b8) 2022
Huang, Li, Liao, Chen, Wang, Li (b30) 2020; 70
Zhao, Jia, Liu (b12) 2020; 70
Cao Z, Long M, Wang J, Jordan MI. Partial transfer learning with selective adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, p. 2724–32.
Grandvalet, Bengio (b50) 2004; 17
Huang, Cheng, Yang, Guo (b15) 2019; 359
Zhao, Shen (b21) 2022; 221
Feng, Smith, Randall, Wu, Peng (b45) 2022; 165
Qin, Wu, Luo (b38) 2021; 18
Ni, Ji, Feng (b2) 2022
Han, Liu, Wu, Sarkar, Jiang (b9) 2019; 117
Shao, Jiang, Zhao, Wei, Li (b10) 2018; 110
Zhuang, Jia, Zhao (b25) 2022
Li, Zhang, Ding, Sun (b28) 2019; 157
Wang, Liu, Peng, Yang, Qin (b16) 2021
Zhang, Ren, Zhou (b32) 2020; 2020
Liu, Zhou, Zheng, Jiang, Zhang (b13) 2018; 77
Feng, Ji, Zhang, Ni, Liu, Beer (b46) 2023; 186
Antoni, Heyns, Lin, Ouyang, Schmidt, Smith (b35) 2022
Zhao, Jiang, Wang, Pei (b33) 2021; 222
Cao, Shao, Zhong, Deng, Yang, Xuan (b24) 2022; 62
Han (10.1016/j.ress.2023.109186_b9) 2019; 117
Cao (10.1016/j.ress.2023.109186_b24) 2022; 62
Lu (10.1016/j.ress.2023.109186_b26) 2016; 64
Feng (10.1016/j.ress.2023.109186_b43) 2019; 426
Huang (10.1016/j.ress.2023.109186_b30) 2020; 70
Antoni (10.1016/j.ress.2023.109186_b35) 2022
Zhang (10.1016/j.ress.2023.109186_b32) 2020; 2020
Zhiyi (10.1016/j.ress.2023.109186_b23) 2020; 152
Mao (10.1016/j.ress.2023.109186_b11) 2021; 150
Zhao (10.1016/j.ress.2023.109186_b14) 2019; 107
Qin (10.1016/j.ress.2023.109186_b38) 2021; 18
Xiao (10.1016/j.ress.2023.109186_b40) 2022
Dosovitskiy (10.1016/j.ress.2023.109186_b47) 2020
Xia (10.1016/j.ress.2023.109186_b36) 2021; 215
Lei (10.1016/j.ress.2023.109186_b5) 2020; 138
Feng (10.1016/j.ress.2023.109186_b44) 2021; 120
Liu (10.1016/j.ress.2023.109186_b37) 2020
Ni (10.1016/j.ress.2023.109186_b2) 2022
Van der Maaten (10.1016/j.ress.2023.109186_b52) 2008; 9
Zhao (10.1016/j.ress.2023.109186_b21) 2022; 221
Feng (10.1016/j.ress.2023.109186_b45) 2022; 165
Zheng (10.1016/j.ress.2023.109186_b20) 2017; 85
Feng (10.1016/j.ress.2023.109186_b34) 2023; 182
Li (10.1016/j.ress.2023.109186_b8) 2022
Han (10.1016/j.ress.2023.109186_b29) 2019; 165
Zhang (10.1016/j.ress.2023.109186_b42) 2022
Wu (10.1016/j.ress.2023.109186_b31) 2022; 53
10.1016/j.ress.2023.109186_b49
Jiang (10.1016/j.ress.2023.109186_b6) 2020; 70
Zhao (10.1016/j.ress.2023.109186_b33) 2021; 222
Ganin (10.1016/j.ress.2023.109186_b48) 2015
10.1016/j.ress.2023.109186_b51
Plakias (10.1016/j.ress.2023.109186_b17) 2020; 405
Yu (10.1016/j.ress.2023.109186_b39) 2021; 20
Li (10.1016/j.ress.2023.109186_b22) 2022; 167
Xu (10.1016/j.ress.2023.109186_b19) 2022
Li (10.1016/j.ress.2023.109186_b4) 2011; 25
Azar (10.1016/j.ress.2023.109186_b1) 2022; 222
Grandvalet (10.1016/j.ress.2023.109186_b50) 2004; 17
Zhao (10.1016/j.ress.2023.109186_b12) 2020; 70
Zhao (10.1016/j.ress.2023.109186_b18) 2022
Feng (10.1016/j.ress.2023.109186_b46) 2023; 186
Zheng (10.1016/j.ress.2023.109186_b3) 2022; 123
Zhuang (10.1016/j.ress.2023.109186_b25) 2022
Wang (10.1016/j.ress.2023.109186_b41) 2019; 57
Zhang (10.1016/j.ress.2023.109186_b27) 2022
Li (10.1016/j.ress.2023.109186_b28) 2019; 157
Xu (10.1016/j.ress.2023.109186_b7) 2022; 1
Huang (10.1016/j.ress.2023.109186_b15) 2019; 359
Liu (10.1016/j.ress.2023.109186_b13) 2018; 77
Wang (10.1016/j.ress.2023.109186_b16) 2021
Shao (10.1016/j.ress.2023.109186_b10) 2018; 110
References_xml – volume: 123
  start-page: 136
  year: 2022
  end-page: 151
  ident: b3
  article-title: Generalized refined composite multiscale fuzzy entropy and multi-cluster feature selection based intelligent fault diagnosis of rolling bearing
  publication-title: ISA Trans
– volume: 64
  start-page: 2296
  year: 2016
  end-page: 2305
  ident: b26
  article-title: Deep model based domain adaptation for fault diagnosis
  publication-title: IEEE Trans Ind Electron
– volume: 110
  start-page: 193
  year: 2018
  end-page: 209
  ident: b10
  article-title: A novel tracking deep wavelet auto-encoder method for intelligent fault diagnosis of electric locomotive bearings
  publication-title: Mech Syst Signal Process
– year: 2022
  ident: b27
  article-title: Supervised contrastive learning-based domain adaptation network for intelligent unsupervised fault diagnosis of rolling bearing
  publication-title: IEEE/ASME Trans Mechatronics
– volume: 62
  start-page: 186
  year: 2022
  end-page: 198
  ident: b24
  article-title: Unsupervised domain-share CNN for machine fault transfer diagnosis from steady speeds to time-varying speeds
  publication-title: J Manuf Syst
– year: 2022
  ident: b40
  article-title: Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain
  publication-title: IEEE/ASME Trans Mechatronics
– volume: 222
  year: 2022
  ident: b1
  article-title: Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study
  publication-title: Reliab Eng Syst Saf
– volume: 120
  year: 2021
  ident: b44
  article-title: Use of an improved vibration-based updating methodology for gear wear prediction
  publication-title: Eng Fail Anal
– year: 2022
  ident: b25
  article-title: An adversarial transfer network with supervised metric for remaining useful life prediction of rolling bearing under multiple working conditions
  publication-title: Reliab Eng Syst Saf
– volume: 165
  start-page: 474
  year: 2019
  end-page: 487
  ident: b29
  article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults
  publication-title: Knowl-Based Syst
– year: 2020
  ident: b47
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– year: 2021
  ident: b16
  article-title: Feature-level attention-guided multitask CNN for fault diagnosis and working conditions identification of rolling bearing
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 57
  start-page: 3920
  year: 2019
  end-page: 3934
  ident: b41
  article-title: Digital twin for rotating machinery fault diagnosis in smart manufacturing
  publication-title: Int J Prod Res
– year: 2022
  ident: b2
  article-title: Data-driven prognostic scheme for bearings based on a novel health indicator and gated recurrent unit network
  publication-title: IEEE Trans Ind Inf
– volume: 25
  start-page: 2589
  year: 2011
  end-page: 2607
  ident: b4
  article-title: Virtual prototype and experimental research on gear multi-fault diagnosis using wavelet-autoregressive model and principal component analysis method
  publication-title: Mech Syst Signal Process
– volume: 405
  start-page: 208
  year: 2020
  end-page: 217
  ident: b17
  article-title: Fault detection and identification of rolling element bearings with attentive dense CNN
  publication-title: Neurocomputing
– volume: 17
  year: 2004
  ident: b50
  article-title: Semi-supervised learning by entropy minimization
  publication-title: Adv Neural Inf Process Syst
– volume: 157
  start-page: 180
  year: 2019
  end-page: 197
  ident: b28
  article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis
  publication-title: Signal Process
– volume: 117
  start-page: 170
  year: 2019
  end-page: 187
  ident: b9
  article-title: An adaptive spatiotemporal feature learning approach for fault diagnosis in complex systems
  publication-title: Mech Syst Signal Process
– volume: 182
  year: 2023
  ident: b34
  article-title: A review of vibration-based gear wear monitoring and prediction techniques
  publication-title: Mech Syst Signal Process
– volume: 165
  year: 2022
  ident: b45
  article-title: Vibration-based monitoring and prediction of surface profile change and pitting density in a spur gear wear process
  publication-title: Mech Syst Signal Process
– year: 2022
  ident: b19
  article-title: Global contextual residual convolutional neural networks for motor fault diagnosis under variable-speed conditions
  publication-title: Reliab Eng Syst Saf
– volume: 18
  start-page: 1530
  year: 2021
  end-page: 1540
  ident: b38
  article-title: Data-model combined driven digital twin of life-cycle rolling bearing
  publication-title: IEEE Trans Ind Inf
– volume: 70
  start-page: 1
  year: 2020
  end-page: 11
  ident: b30
  article-title: Deep adversarial capsule network for compound fault diagnosis of machinery toward multidomain generalization task
  publication-title: IEEE Trans Instrum Meas
– volume: 77
  start-page: 167
  year: 2018
  end-page: 178
  ident: b13
  article-title: Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders
  publication-title: ISA Trans
– volume: 2020
  year: 2020
  ident: b32
  article-title: A new deep convolutional domain adaptation network for bearing fault diagnosis under different working conditions
  publication-title: Shock Vib
– volume: 1
  start-page: 29
  year: 2022
  end-page: 36
  ident: b7
  article-title: Orthogonal on-rotor sensing vibrations for condition monitoring of rotating machines
  publication-title: J Dynam Monit Diagn
– volume: 167
  year: 2022
  ident: b22
  article-title: A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges
  publication-title: Mech Syst Signal Process
– volume: 152
  year: 2020
  ident: b23
  article-title: Transfer fault diagnosis of bearing installed in different machines using enhanced deep auto-encoder
  publication-title: Measurement
– start-page: 1180
  year: 2015
  end-page: 1189
  ident: b48
  article-title: Unsupervised domain adaptation by backpropagation
  publication-title: International conference on machine learning
– volume: 186
  year: 2023
  ident: b46
  article-title: Digital twin-driven intelligent assessment of gear surface degradation
  publication-title: Mech Syst Signal Process
– year: 2022
  ident: b42
  article-title: Dynamic model-assisted bearing remaining useful life prediction using the cross-domain transformer network
  publication-title: IEEE/ASME Trans Mechatronics
– volume: 150
  year: 2021
  ident: b11
  article-title: A new deep auto-encoder method with fusing discriminant information for bearing fault diagnosis
  publication-title: Mech Syst Signal Process
– volume: 359
  start-page: 77
  year: 2019
  end-page: 92
  ident: b15
  article-title: An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis
  publication-title: Neurocomputing
– volume: 20
  start-page: 2182
  year: 2021
  end-page: 2198
  ident: b39
  article-title: Simulation data driven weakly supervised adversarial domain adaptation approach for intelligent cross-machine fault diagnosis
  publication-title: Struct Health Monit
– year: 2022
  ident: b8
  article-title: Industrial gearbox fault diagnosis based on multi-scale convolutional neural networks and thermal imaging
  publication-title: ISA Trans
– volume: 426
  start-page: 1410
  year: 2019
  end-page: 1415
  ident: b43
  article-title: Vibration-based updating of wear prediction for spur gears
  publication-title: Wear
– volume: 70
  start-page: 1
  year: 2020
  end-page: 17
  ident: b6
  article-title: A novel method for mechanical fault diagnosis of underwater pump motors based on power flow theory
  publication-title: IEEE Trans Instrum Meas
– reference: Saito K, Watanabe K, Ushiku Y, Harada T. Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, p. 3723–32.
– year: 2022
  ident: b35
  article-title: Keynote summaries of the first international symposium on dynamics, monitoring and diagnostics
  publication-title: J Dynam Monit Diagnostics
– year: 2022
  ident: b18
  article-title: Intelligent fault diagnosis of gearbox under variable working conditions with adaptive intraclass and interclass convolutional neural network
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 215
  year: 2021
  ident: b36
  article-title: Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning
  publication-title: Reliab Eng Syst Saf
– volume: 9
  year: 2008
  ident: b52
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– volume: 222
  year: 2021
  ident: b33
  article-title: Joint distribution adaptation network with adversarial learning for rolling bearing fault diagnosis
  publication-title: Knowl-Based Syst
– volume: 221
  year: 2022
  ident: b21
  article-title: Dual adversarial network for cross-domain open set fault diagnosis
  publication-title: Reliab Eng Syst Saf
– volume: 70
  start-page: 1
  year: 2020
  end-page: 13
  ident: b12
  article-title: Semisupervised deep sparse auto-encoder with local and nonlocal information for intelligent fault diagnosis of rotating machinery
  publication-title: IEEE Trans Instrum Meas
– volume: 85
  start-page: 746
  year: 2017
  end-page: 759
  ident: b20
  article-title: Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines
  publication-title: Mech Syst Signal Process
– volume: 53
  year: 2022
  ident: b31
  article-title: A Gaussian-guided adversarial adaptation transfer network for rolling bearing fault diagnosis
  publication-title: Adv Eng Inform
– volume: 138
  year: 2020
  ident: b5
  article-title: Applications of machine learning to machine fault diagnosis: A review and roadmap
  publication-title: Mech Syst Signal Process
– reference: Cao Z, Long M, Wang J, Jordan MI. Partial transfer learning with selective adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, p. 2724–32.
– volume: 107
  start-page: 59
  year: 2019
  end-page: 66
  ident: b14
  article-title: Deep convolutional neural network based planet bearing fault classification
  publication-title: Comput Ind
– start-page: 1
  year: 2020
  end-page: 10
  ident: b37
  article-title: Domain adaptation digital twin for rolling element bearing prognostics
  publication-title: Online proceedings of PHM2020
– volume: 107
  start-page: 59
  year: 2019
  ident: 10.1016/j.ress.2023.109186_b14
  article-title: Deep convolutional neural network based planet bearing fault classification
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2019.02.001
– volume: 2020
  year: 2020
  ident: 10.1016/j.ress.2023.109186_b32
  article-title: A new deep convolutional domain adaptation network for bearing fault diagnosis under different working conditions
  publication-title: Shock Vib
– volume: 20
  start-page: 2182
  issue: 4
  year: 2021
  ident: 10.1016/j.ress.2023.109186_b39
  article-title: Simulation data driven weakly supervised adversarial domain adaptation approach for intelligent cross-machine fault diagnosis
  publication-title: Struct Health Monit
  doi: 10.1177/1475921720980718
– year: 2022
  ident: 10.1016/j.ress.2023.109186_b27
  article-title: Supervised contrastive learning-based domain adaptation network for intelligent unsupervised fault diagnosis of rolling bearing
  publication-title: IEEE/ASME Trans Mechatronics
  doi: 10.1109/TMECH.2022.3179289
– volume: 150
  year: 2021
  ident: 10.1016/j.ress.2023.109186_b11
  article-title: A new deep auto-encoder method with fusing discriminant information for bearing fault diagnosis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.107233
– volume: 117
  start-page: 170
  year: 2019
  ident: 10.1016/j.ress.2023.109186_b9
  article-title: An adaptive spatiotemporal feature learning approach for fault diagnosis in complex systems
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.07.048
– volume: 165
  year: 2022
  ident: 10.1016/j.ress.2023.109186_b45
  article-title: Vibration-based monitoring and prediction of surface profile change and pitting density in a spur gear wear process
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.108319
– volume: 9
  issue: 11
  year: 2008
  ident: 10.1016/j.ress.2023.109186_b52
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– volume: 152
  year: 2020
  ident: 10.1016/j.ress.2023.109186_b23
  article-title: Transfer fault diagnosis of bearing installed in different machines using enhanced deep auto-encoder
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107393
– volume: 405
  start-page: 208
  year: 2020
  ident: 10.1016/j.ress.2023.109186_b17
  article-title: Fault detection and identification of rolling element bearings with attentive dense CNN
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.143
– year: 2020
  ident: 10.1016/j.ress.2023.109186_b47
– year: 2022
  ident: 10.1016/j.ress.2023.109186_b19
  article-title: Global contextual residual convolutional neural networks for motor fault diagnosis under variable-speed conditions
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108618
– start-page: 1
  year: 2020
  ident: 10.1016/j.ress.2023.109186_b37
  article-title: Domain adaptation digital twin for rolling element bearing prognostics
– volume: 165
  start-page: 474
  year: 2019
  ident: 10.1016/j.ress.2023.109186_b29
  article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.12.019
– year: 2022
  ident: 10.1016/j.ress.2023.109186_b40
  article-title: Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain
  publication-title: IEEE/ASME Trans Mechatronics
  doi: 10.1109/TMECH.2022.3177174
– year: 2022
  ident: 10.1016/j.ress.2023.109186_b18
  article-title: Intelligent fault diagnosis of gearbox under variable working conditions with adaptive intraclass and interclass convolutional neural network
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 186
  year: 2023
  ident: 10.1016/j.ress.2023.109186_b46
  article-title: Digital twin-driven intelligent assessment of gear surface degradation
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.109896
– volume: 157
  start-page: 180
  year: 2019
  ident: 10.1016/j.ress.2023.109186_b28
  article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2018.12.005
– volume: 64
  start-page: 2296
  issue: 3
  year: 2016
  ident: 10.1016/j.ress.2023.109186_b26
  article-title: Deep model based domain adaptation for fault diagnosis
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2016.2627020
– volume: 138
  year: 2020
  ident: 10.1016/j.ress.2023.109186_b5
  article-title: Applications of machine learning to machine fault diagnosis: A review and roadmap
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2019.106587
– ident: 10.1016/j.ress.2023.109186_b49
  doi: 10.1109/CVPR.2018.00288
– volume: 215
  year: 2021
  ident: 10.1016/j.ress.2023.109186_b36
  article-title: Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107938
– volume: 70
  start-page: 1
  year: 2020
  ident: 10.1016/j.ress.2023.109186_b6
  article-title: A novel method for mechanical fault diagnosis of underwater pump motors based on power flow theory
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2020.2988750
– volume: 110
  start-page: 193
  year: 2018
  ident: 10.1016/j.ress.2023.109186_b10
  article-title: A novel tracking deep wavelet auto-encoder method for intelligent fault diagnosis of electric locomotive bearings
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.03.011
– start-page: 1180
  year: 2015
  ident: 10.1016/j.ress.2023.109186_b48
  article-title: Unsupervised domain adaptation by backpropagation
– year: 2022
  ident: 10.1016/j.ress.2023.109186_b42
  article-title: Dynamic model-assisted bearing remaining useful life prediction using the cross-domain transformer network
  publication-title: IEEE/ASME Trans Mechatronics
– volume: 70
  start-page: 1
  year: 2020
  ident: 10.1016/j.ress.2023.109186_b30
  article-title: Deep adversarial capsule network for compound fault diagnosis of machinery toward multidomain generalization task
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2020.2987413
– volume: 182
  year: 2023
  ident: 10.1016/j.ress.2023.109186_b34
  article-title: A review of vibration-based gear wear monitoring and prediction techniques
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.109605
– year: 2022
  ident: 10.1016/j.ress.2023.109186_b35
  article-title: Keynote summaries of the first international symposium on dynamics, monitoring and diagnostics
  publication-title: J Dynam Monit Diagnostics
– volume: 18
  start-page: 1530
  issue: 3
  year: 2021
  ident: 10.1016/j.ress.2023.109186_b38
  article-title: Data-model combined driven digital twin of life-cycle rolling bearing
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2021.3089340
– volume: 221
  year: 2022
  ident: 10.1016/j.ress.2023.109186_b21
  article-title: Dual adversarial network for cross-domain open set fault diagnosis
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108358
– volume: 120
  year: 2021
  ident: 10.1016/j.ress.2023.109186_b44
  article-title: Use of an improved vibration-based updating methodology for gear wear prediction
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2020.105066
– ident: 10.1016/j.ress.2023.109186_b51
  doi: 10.1109/CVPR.2018.00392
– volume: 57
  start-page: 3920
  issue: 12
  year: 2019
  ident: 10.1016/j.ress.2023.109186_b41
  article-title: Digital twin for rotating machinery fault diagnosis in smart manufacturing
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2018.1552032
– volume: 222
  year: 2022
  ident: 10.1016/j.ress.2023.109186_b1
  article-title: Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108405
– volume: 77
  start-page: 167
  year: 2018
  ident: 10.1016/j.ress.2023.109186_b13
  article-title: Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2018.04.005
– year: 2022
  ident: 10.1016/j.ress.2023.109186_b25
  article-title: An adversarial transfer network with supervised metric for remaining useful life prediction of rolling bearing under multiple working conditions
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108599
– volume: 222
  year: 2021
  ident: 10.1016/j.ress.2023.109186_b33
  article-title: Joint distribution adaptation network with adversarial learning for rolling bearing fault diagnosis
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.106974
– volume: 359
  start-page: 77
  year: 2019
  ident: 10.1016/j.ress.2023.109186_b15
  article-title: An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.05.052
– volume: 25
  start-page: 2589
  issue: 7
  year: 2011
  ident: 10.1016/j.ress.2023.109186_b4
  article-title: Virtual prototype and experimental research on gear multi-fault diagnosis using wavelet-autoregressive model and principal component analysis method
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2011.02.017
– volume: 123
  start-page: 136
  year: 2022
  ident: 10.1016/j.ress.2023.109186_b3
  article-title: Generalized refined composite multiscale fuzzy entropy and multi-cluster feature selection based intelligent fault diagnosis of rolling bearing
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2021.05.042
– volume: 70
  start-page: 1
  year: 2020
  ident: 10.1016/j.ress.2023.109186_b12
  article-title: Semisupervised deep sparse auto-encoder with local and nonlocal information for intelligent fault diagnosis of rotating machinery
  publication-title: IEEE Trans Instrum Meas
– volume: 62
  start-page: 186
  year: 2022
  ident: 10.1016/j.ress.2023.109186_b24
  article-title: Unsupervised domain-share CNN for machine fault transfer diagnosis from steady speeds to time-varying speeds
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.11.016
– year: 2022
  ident: 10.1016/j.ress.2023.109186_b8
  article-title: Industrial gearbox fault diagnosis based on multi-scale convolutional neural networks and thermal imaging
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2022.02.048
– year: 2022
  ident: 10.1016/j.ress.2023.109186_b2
  article-title: Data-driven prognostic scheme for bearings based on a novel health indicator and gated recurrent unit network
  publication-title: IEEE Trans Ind Inf
– volume: 17
  year: 2004
  ident: 10.1016/j.ress.2023.109186_b50
  article-title: Semi-supervised learning by entropy minimization
  publication-title: Adv Neural Inf Process Syst
– year: 2021
  ident: 10.1016/j.ress.2023.109186_b16
  article-title: Feature-level attention-guided multitask CNN for fault diagnosis and working conditions identification of rolling bearing
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 167
  year: 2022
  ident: 10.1016/j.ress.2023.109186_b22
  article-title: A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.108487
– volume: 53
  year: 2022
  ident: 10.1016/j.ress.2023.109186_b31
  article-title: A Gaussian-guided adversarial adaptation transfer network for rolling bearing fault diagnosis
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2022.101651
– volume: 1
  start-page: 29
  issue: 1
  year: 2022
  ident: 10.1016/j.ress.2023.109186_b7
  article-title: Orthogonal on-rotor sensing vibrations for condition monitoring of rotating machines
  publication-title: J Dynam Monit Diagn
– volume: 85
  start-page: 746
  year: 2017
  ident: 10.1016/j.ress.2023.109186_b20
  article-title: Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.09.010
– volume: 426
  start-page: 1410
  year: 2019
  ident: 10.1016/j.ress.2023.109186_b43
  article-title: Vibration-based updating of wear prediction for spur gears
  publication-title: Wear
  doi: 10.1016/j.wear.2019.01.017
SSID ssj0004957
Score 2.7106655
Snippet Fault diagnosis of rolling bearings has attracted extensive attention in industrial fields, which plays a vital role in guaranteeing the reliability, safety,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109186
SubjectTerms Digital twin
Domain adaptation
Fault diagnosis
Rolling bearing
Transformer
Title Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing
URI https://dx.doi.org/10.1016/j.ress.2023.109186
Volume 234
WOSCitedRecordID wos000954834300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWLQc4oJaHKJTKB25RVps4zuNYlSKoUAWiSMspsh27m2rrrLbZUu78cMaxnYSCKkDiEq2seB3NfBqPxzPfIPSKMgGil3ko0ggOKLAhhzxPVSgSLk1rByaqjmf2fXZ6ms_nxYfJ5LuvhbleZlrnNzfF6r-qGsZA2aZ09i_U3f8pDMBvUDo8Qe3w_CPFv67PTSOQoP1a67BaG2sWrMx75jqmuWS1DljFVi7LUNs08C7bsO7pOdtAsc2yNZFZk4hnOUvWjr-bg8T8huepveWytoTf3wI5MBx2uLJc0cEVU45y5Kc49ZdGn4sFa_pMni674GR6NO2vgqxhhBnNYlMP9yhm8KP_Dhe3iMmQX2WDab6gZsheslHJKAQjY69qpLXJeVZ0JNpjox3bEOgvG4CNRVxMTaxiapY1fFnRbbbtbv_-ZBbLu_7xHdMenKG344wWYBu3D98dz0-G-trCMsb6j3PFVzZP8PZKv3dwRk7L2Q566E4b-NCiZBdNpH6EHow4KB-jhcMLHuEFO7xgixc84AU7vGDACx7hBXd4wT1ecKOwwwt2eHmCPr85Pjt6G7r2G6EgSdKG4PzxXAiieDqTKUlETCV45yriDA7ZtDChBUaiiHNCo1QyTpgS4O9WaZUzymfkKdrSjZbPEGaCqWwmZ0rkaVJRxcE8CEpEBg5yTBnfQ5GXWSkcN71pkbIsfRLiRWnkXBo5l1bOeyjo56wsM8udb1OvitL5ltZnLAE5d8x7_o_zXqD7A-j30Va73siX6J64buur9YED2A9NiaIl
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+twin-driven+partial+domain+adaptation+network+for+intelligent+fault+diagnosis+of+rolling+bearing&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Zhang%2C+Yongchao&rft.au=Ji%2C+J.C.&rft.au=Ren%2C+Zhaohui&rft.au=Ni%2C+Qing&rft.date=2023-06-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=234&rft_id=info:doi/10.1016%2Fj.ress.2023.109186&rft.externalDocID=S0951832023001011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon