Sensitivity Analysis for Binary Outcome Misclassification in Randomization Tests via Integer Programming

Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome v...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational and graphical statistics Ročník 34; číslo 4; s. 1528 - 1541
Hlavní autori: Heng, Siyu, Shaw, Pamela A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Taylor & Francis 02.10.2025
Taylor & Francis Ltd
Predmet:
ISSN:1061-8600, 1537-2715
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is "warning accuracy," defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large datasets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source R package for implementation of our approach. Supplementary materials for this article are available online.
AbstractList Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is "warning accuracy," defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large datasets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source R package for implementation of our approach. Supplementary materials for this article are available online.
Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is "warning accuracy," defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large data sets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source R package for implementation of our approach.Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is "warning accuracy," defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large data sets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source R package for implementation of our approach.
Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is “warning accuracy,” defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large datasets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source R package for implementation of our approach. Supplementary materials for this article are available online.
Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is "warning accuracy," defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large data sets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source R package for implementation of our approach.
Author Heng, Siyu
Shaw, Pamela A.
Author_xml – sequence: 1
  givenname: Siyu
  orcidid: 0000-0002-9313-3667
  surname: Heng
  fullname: Heng, Siyu
  organization: Department of Biostatistics, New York University
– sequence: 2
  givenname: Pamela A.
  surname: Shaw
  fullname: Shaw, Pamela A.
  organization: Biostatistics Unit, Kaiser Permanente Washington Health Research Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40881310$$D View this record in MEDLINE/PubMed
BookMark eNp9kctOxCAUhonReH8EDYkbNx25FEp3XuIt0Wi8rAmlMGJaUGg149PLZEYXLlxxQr5z8uf7t8CqD94AsIfRBCOBjjDiWHCEJgQRNiElx4SQFbCJGa0KUmG2mufMFHNoA2yl9IoQwryu1sFGiYTAFKNN8PJofHKD-3DDDJ541c2SS9CGCE-dV3EG78ZBh97AW5d0p1Jy1mk1uOCh8_BB-Tb07mvx8WTSkOCHU_DaD2ZqIryPYRpV3zs_3QFrVnXJ7C7fbfB8cf50dlXc3F1en53cFJqW5VDg2ogGMdJUpa3blmtrTY0JE1Y3WGtGLDGi1aLSjWK8RmVbaS0oNVYZjjWi2-BwcfcthvcxJ5J9Tm66TnkTxiRpVkWzLUYzevAHfQ1jzA7mVEU5r7OuTO0vqbHpTSvfouuzGPnjMANsAegYUorG_iIYyXlX8qcrOe9KLrvKe8eLPeez7159hti1clCzLkQbldcu5_j_xDcEgpto
Cites_doi 10.1007/978-3-030-46405-9
10.1080/01621459.2017.1295865
10.3322/caac.21601
10.1177/0962280214523192
10.1080/01621459.2018.1429277
10.1016/bs.hefe.2016.10.003
10.5705/ss.2011.227
10.1001/archinte.168.22.2459
10.1016/0197-2456(94)00xxx-m
10.1198/016214504000000647
10.1056/NEJMoa030660
10.1201/9781420010138
10.1214/13-AOAS713
10.1111/rssb.12439
10.1198/016214508000000706
10.1002/sim.8073
10.1111/biom.13400
10.1007/978-1-4757-3692-2
10.1037/h0037350
10.1093/oxfordjournals.aje.a009251
10.1016/0735-6757(95)90196-5
10.1097/EDE.0000000000001193
10.1148/rg.245045008
10.1214/22-STS851
10.1080/00224498609551289
10.1007/978-3-540-68279-0_17
10.1158/1940-6207.CAPR-08-0092
10.1080/01621459.2016.1138865
10.1093/jnci/djm117
10.7326/M16-2607
10.1201/9781420066586
10.1080/01621459.2023.2199814
10.1111/rssb.12290
10.1136/bmj.39465.451748.AD
10.1016/0022-3956(94)90026-4
10.1001/jama.2016.17700
10.1080/01621459.2015.1112802
10.1017/CBO9781139025751
ContentType Journal Article
Copyright 2025 The Author(s). Published with license by Taylor & Francis Group, LLC. 2025
2025 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Published with license by Taylor & Francis Group, LLC. 2025
– notice: 2025 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
NPM
JQ2
7X8
DOI 10.1080/10618600.2025.2461222
DatabaseName Taylor & Francis Open Access
CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Computer Science Collection
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 1541
ExternalDocumentID 40881310
10_1080_10618600_2025_2461222
2461222
Genre Research Article
Journal Article
GrantInformation_xml – fundername: NIH Grant
  grantid: R01AI131771
– fundername: New York University School of Global Public Health Research Support Grant
– fundername: NIH Grants
  grantid: R01AI131771; R21DA060433
– fundername: New York University Research Catalyst Prize
– fundername: NIAID NIH HHS
  grantid: R01 AI131771
– fundername: NIDA NIH HHS
  grantid: R21 DA060433
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
0YH
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
JAA
KYCEM
LJTGL
M4Z
MS~
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
UT5
UU3
WZA
XWC
ZGOLN
~S~
AAYXX
CITATION
DGEBU
NPM
NY~
JQ2
7X8
ID FETCH-LOGICAL-c344t-19e8b052b74f9dd6cffe91258fcb1cc52f2e8dc87cba56904d7cc833efae61c03
IEDL.DBID 0YH
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001469065100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1061-8600
IngestDate Thu Sep 04 12:32:58 EDT 2025
Tue Dec 02 12:11:08 EST 2025
Thu Sep 04 05:04:05 EDT 2025
Thu Nov 27 01:03:34 EST 2025
Fri Nov 21 04:10:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords randomization inference
Neyman’s weak null
Fisher’s sharp null
integer programming
matched observational studies
design-based causal inference
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-19e8b052b74f9dd6cffe91258fcb1cc52f2e8dc87cba56904d7cc833efae61c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9313-3667
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/10618600.2025.2461222
PMID 40881310
PQID 3273669169
PQPubID 29738
PageCount 14
ParticipantIDs crossref_primary_10_1080_10618600_2025_2461222
proquest_miscellaneous_3246346153
informaworld_taylorfrancis_310_1080_10618600_2025_2461222
proquest_journals_3273669169
pubmed_primary_40881310
PublicationCentury 2000
PublicationDate 2025-10-02
PublicationDateYYYYMMDD 2025-10-02
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationTitleAlternate J Comput Graph Stat
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Scott W. R. (e_1_3_3_36_1) 2012
Hernán M. A. (e_1_3_3_19_1) 2020
e_1_3_3_18_1
e_1_3_3_17_1
Mantel N. (e_1_3_3_27_1) 1959; 22
e_1_3_3_39_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_16_1
e_1_3_3_35_1
Fisher R. A. (e_1_3_3_12_1) 1935
e_1_3_3_15_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_34_1
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_40_1
e_1_3_3_41_1
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_8_1
Cox D. R. (e_1_3_3_9_1) 2018
e_1_3_3_29_1
e_1_3_3_28_1
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_46_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_2_1
e_1_3_3_20_1
NIH (e_1_3_3_30_1) 2013
e_1_3_3_45_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_34_1
  doi: 10.1007/978-3-030-46405-9
– ident: e_1_3_3_23_1
  doi: 10.1080/01621459.2017.1295865
– ident: e_1_3_3_39_1
  doi: 10.3322/caac.21601
– ident: e_1_3_3_16_1
  doi: 10.1177/0962280214523192
– ident: e_1_3_3_46_1
  doi: 10.1080/01621459.2018.1429277
– ident: e_1_3_3_3_1
  doi: 10.1016/bs.hefe.2016.10.003
– ident: e_1_3_3_11_1
  doi: 10.5705/ss.2011.227
– ident: e_1_3_3_31_1
  doi: 10.1001/archinte.168.22.2459
– ident: e_1_3_3_10_1
  doi: 10.1016/0197-2456(94)00xxx-m
– volume: 22
  start-page: 719
  year: 1959
  ident: e_1_3_3_27_1
  article-title: “Statistical Aspects of the Analysis of Data from Retrospective Studies of Disease,”
  publication-title: Journal of the National Cancer Institute
– ident: e_1_3_3_18_1
  doi: 10.1198/016214504000000647
– ident: e_1_3_3_40_1
  doi: 10.1056/NEJMoa030660
– ident: e_1_3_3_6_1
  doi: 10.1201/9781420010138
– ident: e_1_3_3_47_1
  doi: 10.1214/13-AOAS713
– volume-title: Causal Inference: What If
  year: 2020
  ident: e_1_3_3_19_1
– ident: e_1_3_3_8_1
  doi: 10.1111/rssb.12439
– ident: e_1_3_3_37_1
  doi: 10.1198/016214508000000706
– ident: e_1_3_3_38_1
  doi: 10.1002/sim.8073
– ident: e_1_3_3_4_1
  doi: 10.1111/biom.13400
– volume-title: Prostate Cancer Prevention Trial (PCPT): Questions and Answers
  year: 2013
  ident: e_1_3_3_30_1
– volume-title: Analysis of Binary Data
  year: 2018
  ident: e_1_3_3_9_1
– ident: e_1_3_3_33_1
  doi: 10.1007/978-1-4757-3692-2
– ident: e_1_3_3_35_1
  doi: 10.1037/h0037350
– volume-title: The Design of Experiments
  year: 1935
  ident: e_1_3_3_12_1
– ident: e_1_3_3_26_1
  doi: 10.1093/oxfordjournals.aje.a009251
– ident: e_1_3_3_29_1
– ident: e_1_3_3_42_1
  doi: 10.1016/0735-6757(95)90196-5
– ident: e_1_3_3_20_1
  doi: 10.1097/EDE.0000000000001193
– ident: e_1_3_3_43_1
  doi: 10.1148/rg.245045008
– ident: e_1_3_3_24_1
  doi: 10.1214/22-STS851
– ident: e_1_3_3_7_1
  doi: 10.1080/00224498609551289
– ident: e_1_3_3_28_1
  doi: 10.1007/978-3-540-68279-0_17
– ident: e_1_3_3_32_1
  doi: 10.1158/1940-6207.CAPR-08-0092
– ident: e_1_3_3_15_1
  doi: 10.1080/01621459.2016.1138865
– ident: e_1_3_3_25_1
  doi: 10.1093/jnci/djm117
– ident: e_1_3_3_41_1
  doi: 10.7326/M16-2607
– ident: e_1_3_3_5_1
  doi: 10.1201/9781420066586
– ident: e_1_3_3_17_1
– volume-title: Group Theory
  year: 2012
  ident: e_1_3_3_36_1
– ident: e_1_3_3_45_1
  doi: 10.1080/01621459.2023.2199814
– ident: e_1_3_3_13_1
  doi: 10.1111/rssb.12290
– ident: e_1_3_3_44_1
  doi: 10.1136/bmj.39465.451748.AD
– ident: e_1_3_3_22_1
  doi: 10.1016/0022-3956(94)90026-4
– ident: e_1_3_3_2_1
  doi: 10.1001/jama.2016.17700
– ident: e_1_3_3_14_1
  doi: 10.1080/01621459.2015.1112802
– ident: e_1_3_3_21_1
  doi: 10.1017/CBO9781139025751
SSID ssj0001697
Score 2.428559
Snippet Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 1528
SubjectTerms Accuracy
Design-based causal inference
Fisher's sharp null
Integer programming
Matched observational studies
Neyman's weak null
Randomization
Randomization inference
Sensitivity analysis
Warning
Title Sensitivity Analysis for Binary Outcome Misclassification in Randomization Tests via Integer Programming
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2025.2461222
https://www.ncbi.nlm.nih.gov/pubmed/40881310
https://www.proquest.com/docview/3273669169
https://www.proquest.com/docview/3246346153
Volume 34
WOSCitedRecordID wos001469065100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1537-2715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: TFW
  dateStart: 19920301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwEB7xuAIK4Dgey0tGujaQOE5il4BY0fDQsej2qih2bNiCLNrs8vuZSZwVFOgKaCxFiZOxPfZ844y_AfgdaY2KUEaBRGMeCGNUUKAZCKxVsXbKpdK4JtlEdnMjh0N156MJax9WST60a4kimrWaJneh6y4i7pS8GImGGr07npwQIRoauUVY5uiaUFRX-O9qvhhHPr8KVgmoTneI57PXfDBPH8hLP4egjSnqr39DIzZgzeNQdtYqzk9YsNUmrF7PSVzrTVghINryOP-Cp3uKdG9TTbCOyYSh3Oy8OdHLbmdTFMCy61FtCJFTCFIz6mxUsT8o5vjZH_lkA2xczV5HBaP9yEc7YXdtlNgz2tEteOhfDi6uAp-lITCxENMgUlbqMOE6E06VZWqcswphk3RGR8Yk3HErSyMzo4sEfXFRZsbIOLausGlkwngblqpxZXeBlYiXSseJKSkTieCa0GRobarigmdh0oOTbnDyl5aMI488x2nXnzn1Z-77swfq_RDm02YXxLUpS_L4P3UPuvHO_bzGKoj20hQhterB8fw2zkj6zVJUdjyjZ0QaCwLSPdhp9WQurcBFPcLv7n1BsH1YocsmopAfwNJ0MrOH8MO8okpMjhr1xzIbSiwH_b9vpPcD0g
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZgIDEOvB-DAUHiWljbtE2OgJiG2AaCIbhVbZrADuvQXr8fu48JDogDnNO0zsPx59T-DHBmxzFuhMS2BBpziyslrQjNgKW1dGMjjS-UyYpNBN2ueH2VX3NhKKySfGiTE0VkZzUpN11GlyFxF-TGCLTU6N453jkxoqGVW4QlD20thfX1mi_z09guCqxgF4v6lFk8P73mm336xl76MwbNbFFz_T9GsQFrBRJll_nW2YQFnW7BamdO4zregipB0ZzJeRvenyjWPS82wUouE4aCs6ssp5fdTycogWad_lgRJqcgpGzdWT9ljyjncFAkfbIejm7MZv2I0Y3kmx6xhzxObICWdAeemze965ZV1GmwlMv5xLKlFnHDc-KAG5kkvjJGSwROwqjYVspzjKNFokSg4shDb5wngVLCdbWJtG-rhrsLlXSY6n1gCSKmxDjElRRwjzsx4cmG1r50IydoeDU4L1cn_MjpOEK7YDkt5zOk-QyL-ayB_LqG4SS7BzF50ZLQ_aVvvVzwsNBs7IJ4z_cRVMsanM6bUSfpR0uU6uGUnuG-ywlK12Av3yhzaTke6zZ-9-APgp3ASqvXaYft2-7dIVSpKYsvdOpQmYym-giW1Qy3x-g404VPUq4GAg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB5BWaHuAdjC7hbK4pW4puThJPaRVwVaWqrdInqLEseGHppWff1-Zhyn2h4qDnB2JhnbY883zvgbgLdBUaAhlIEn0Jl7XCnp5egGPK1lVBhpEqGMLTaRjkZiOpVjl024dmmVFEObmijC7tW0uJelaTLi3lEUI9BRY3QXxn0iREMn9xAeWXIsNOnJ4Od-Mw5cfRUU8UimucRz7DUH7umAvPQ4BLWuaPD0P3TiGTxxOJS9rw3nDB7oqgOnwz2J67oDbQKiNY_zc_h9R5nudakJ1jCZMNSbfbA3etn37QYV0Gw4WytC5JSCZGedzSp2i2ou5u7KJ5tg59ZsN8sZnUf-0is2rrPE5uhHX8CPwefJxy-eq9LgqYjzjRdILQo_DouUG1mWiTJGS4RNwqgiUCoOTahFqUSqijzGWJyXqVIiirTJdRIoPzqHVrWo9CWwEvFSaUJiSkp5zMOC0KSvdSKjPEz9uAv9ZnKyZU3GkQWO47QZz4zGM3Pj2QV5fwqzjT0FMXXJkiz6i2yvme_MrWsUQbSXJAipZReu9824Iuk3S17pxZae4UnECUh34aK2k722HDf1AL_78h8UewOPx58G2bevo5tX0KYWm1wY9qC1WW31azhRO7SO1ZVdCX8ACz0Epg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+Analysis+for+Binary+Outcome+Misclassification+in+Randomization+Tests+via+Integer+Programming&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Heng%2C+Siyu&rft.au=Shaw%2C+Pamela+A.&rft.date=2025-10-02&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=34&rft.issue=4&rft.spage=1528&rft.epage=1541&rft_id=info:doi/10.1080%2F10618600.2025.2461222&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10618600_2025_2461222
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon