Sensitivity Analysis for Binary Outcome Misclassification in Randomization Tests via Integer Programming
Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome v...
Uložené v:
| Vydané v: | Journal of computational and graphical statistics Ročník 34; číslo 4; s. 1528 - 1541 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Taylor & Francis
02.10.2025
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 1061-8600, 1537-2715 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is "warning accuracy," defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large datasets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source
R
package for implementation of our approach. Supplementary materials for this article are available online. |
|---|---|
| AbstractList | Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is "warning accuracy," defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large datasets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source
R
package for implementation of our approach. Supplementary materials for this article are available online. Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is "warning accuracy," defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large data sets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source R package for implementation of our approach.Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is "warning accuracy," defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large data sets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source R package for implementation of our approach. Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is “warning accuracy,” defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large datasets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source R package for implementation of our approach. Supplementary materials for this article are available online. Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is "warning accuracy," defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large data sets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source R package for implementation of our approach. |
| Author | Heng, Siyu Shaw, Pamela A. |
| Author_xml | – sequence: 1 givenname: Siyu orcidid: 0000-0002-9313-3667 surname: Heng fullname: Heng, Siyu organization: Department of Biostatistics, New York University – sequence: 2 givenname: Pamela A. surname: Shaw fullname: Shaw, Pamela A. organization: Biostatistics Unit, Kaiser Permanente Washington Health Research Institute |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40881310$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctOxCAUhonReH8EDYkbNx25FEp3XuIt0Wi8rAmlMGJaUGg149PLZEYXLlxxQr5z8uf7t8CqD94AsIfRBCOBjjDiWHCEJgQRNiElx4SQFbCJGa0KUmG2mufMFHNoA2yl9IoQwryu1sFGiYTAFKNN8PJofHKD-3DDDJ541c2SS9CGCE-dV3EG78ZBh97AW5d0p1Jy1mk1uOCh8_BB-Tb07mvx8WTSkOCHU_DaD2ZqIryPYRpV3zs_3QFrVnXJ7C7fbfB8cf50dlXc3F1en53cFJqW5VDg2ogGMdJUpa3blmtrTY0JE1Y3WGtGLDGi1aLSjWK8RmVbaS0oNVYZjjWi2-BwcfcthvcxJ5J9Tm66TnkTxiRpVkWzLUYzevAHfQ1jzA7mVEU5r7OuTO0vqbHpTSvfouuzGPnjMANsAegYUorG_iIYyXlX8qcrOe9KLrvKe8eLPeez7159hti1clCzLkQbldcu5_j_xDcEgpto |
| Cites_doi | 10.1007/978-3-030-46405-9 10.1080/01621459.2017.1295865 10.3322/caac.21601 10.1177/0962280214523192 10.1080/01621459.2018.1429277 10.1016/bs.hefe.2016.10.003 10.5705/ss.2011.227 10.1001/archinte.168.22.2459 10.1016/0197-2456(94)00xxx-m 10.1198/016214504000000647 10.1056/NEJMoa030660 10.1201/9781420010138 10.1214/13-AOAS713 10.1111/rssb.12439 10.1198/016214508000000706 10.1002/sim.8073 10.1111/biom.13400 10.1007/978-1-4757-3692-2 10.1037/h0037350 10.1093/oxfordjournals.aje.a009251 10.1016/0735-6757(95)90196-5 10.1097/EDE.0000000000001193 10.1148/rg.245045008 10.1214/22-STS851 10.1080/00224498609551289 10.1007/978-3-540-68279-0_17 10.1158/1940-6207.CAPR-08-0092 10.1080/01621459.2016.1138865 10.1093/jnci/djm117 10.7326/M16-2607 10.1201/9781420066586 10.1080/01621459.2023.2199814 10.1111/rssb.12290 10.1136/bmj.39465.451748.AD 10.1016/0022-3956(94)90026-4 10.1001/jama.2016.17700 10.1080/01621459.2015.1112802 10.1017/CBO9781139025751 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). Published with license by Taylor & Francis Group, LLC. 2025 2025 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). Published with license by Taylor & Francis Group, LLC. 2025 – notice: 2025 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 0YH AAYXX CITATION NPM JQ2 7X8 |
| DOI | 10.1080/10618600.2025.2461222 |
| DatabaseName | Taylor & Francis Open Access CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Computer Science Collection PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1537-2715 |
| EndPage | 1541 |
| ExternalDocumentID | 40881310 10_1080_10618600_2025_2461222 2461222 |
| Genre | Research Article Journal Article |
| GrantInformation_xml | – fundername: NIH Grant grantid: R01AI131771 – fundername: New York University School of Global Public Health Research Support Grant – fundername: NIH Grants grantid: R01AI131771; R21DA060433 – fundername: New York University Research Catalyst Prize – fundername: NIAID NIH HHS grantid: R01 AI131771 – fundername: NIDA NIH HHS grantid: R21 DA060433 |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 0YH 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB AEGXH AELLO AENEX AEOZL AEPSL AEYOC AFRVT AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CS3 D0L DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P JAA KYCEM LJTGL M4Z MS~ NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ UT5 UU3 WZA XWC ZGOLN ~S~ AAYXX CITATION DGEBU NPM NY~ JQ2 7X8 |
| ID | FETCH-LOGICAL-c344t-19e8b052b74f9dd6cffe91258fcb1cc52f2e8dc87cba56904d7cc833efae61c03 |
| IEDL.DBID | 0YH |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001469065100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1061-8600 |
| IngestDate | Thu Sep 04 12:32:58 EDT 2025 Tue Dec 02 12:11:08 EST 2025 Thu Sep 04 05:04:05 EDT 2025 Thu Nov 27 01:03:34 EST 2025 Fri Nov 21 04:10:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | randomization inference Neyman’s weak null Fisher’s sharp null integer programming matched observational studies design-based causal inference |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c344t-19e8b052b74f9dd6cffe91258fcb1cc52f2e8dc87cba56904d7cc833efae61c03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9313-3667 |
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/10618600.2025.2461222 |
| PMID | 40881310 |
| PQID | 3273669169 |
| PQPubID | 29738 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1080_10618600_2025_2461222 proquest_miscellaneous_3246346153 informaworld_taylorfrancis_310_1080_10618600_2025_2461222 proquest_journals_3273669169 pubmed_primary_40881310 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-02 |
| PublicationDateYYYYMMDD | 2025-10-02 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Alexandria |
| PublicationTitle | Journal of computational and graphical statistics |
| PublicationTitleAlternate | J Comput Graph Stat |
| PublicationYear | 2025 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | Scott W. R. (e_1_3_3_36_1) 2012 Hernán M. A. (e_1_3_3_19_1) 2020 e_1_3_3_18_1 e_1_3_3_17_1 Mantel N. (e_1_3_3_27_1) 1959; 22 e_1_3_3_39_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_16_1 e_1_3_3_35_1 Fisher R. A. (e_1_3_3_12_1) 1935 e_1_3_3_15_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_34_1 e_1_3_3_31_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_40_1 e_1_3_3_41_1 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_8_1 Cox D. R. (e_1_3_3_9_1) 2018 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_24_1 e_1_3_3_46_1 e_1_3_3_26_1 e_1_3_3_47_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_2_1 e_1_3_3_20_1 NIH (e_1_3_3_30_1) 2013 e_1_3_3_45_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_43_1 |
| References_xml | – ident: e_1_3_3_34_1 doi: 10.1007/978-3-030-46405-9 – ident: e_1_3_3_23_1 doi: 10.1080/01621459.2017.1295865 – ident: e_1_3_3_39_1 doi: 10.3322/caac.21601 – ident: e_1_3_3_16_1 doi: 10.1177/0962280214523192 – ident: e_1_3_3_46_1 doi: 10.1080/01621459.2018.1429277 – ident: e_1_3_3_3_1 doi: 10.1016/bs.hefe.2016.10.003 – ident: e_1_3_3_11_1 doi: 10.5705/ss.2011.227 – ident: e_1_3_3_31_1 doi: 10.1001/archinte.168.22.2459 – ident: e_1_3_3_10_1 doi: 10.1016/0197-2456(94)00xxx-m – volume: 22 start-page: 719 year: 1959 ident: e_1_3_3_27_1 article-title: “Statistical Aspects of the Analysis of Data from Retrospective Studies of Disease,” publication-title: Journal of the National Cancer Institute – ident: e_1_3_3_18_1 doi: 10.1198/016214504000000647 – ident: e_1_3_3_40_1 doi: 10.1056/NEJMoa030660 – ident: e_1_3_3_6_1 doi: 10.1201/9781420010138 – ident: e_1_3_3_47_1 doi: 10.1214/13-AOAS713 – volume-title: Causal Inference: What If year: 2020 ident: e_1_3_3_19_1 – ident: e_1_3_3_8_1 doi: 10.1111/rssb.12439 – ident: e_1_3_3_37_1 doi: 10.1198/016214508000000706 – ident: e_1_3_3_38_1 doi: 10.1002/sim.8073 – ident: e_1_3_3_4_1 doi: 10.1111/biom.13400 – volume-title: Prostate Cancer Prevention Trial (PCPT): Questions and Answers year: 2013 ident: e_1_3_3_30_1 – volume-title: Analysis of Binary Data year: 2018 ident: e_1_3_3_9_1 – ident: e_1_3_3_33_1 doi: 10.1007/978-1-4757-3692-2 – ident: e_1_3_3_35_1 doi: 10.1037/h0037350 – volume-title: The Design of Experiments year: 1935 ident: e_1_3_3_12_1 – ident: e_1_3_3_26_1 doi: 10.1093/oxfordjournals.aje.a009251 – ident: e_1_3_3_29_1 – ident: e_1_3_3_42_1 doi: 10.1016/0735-6757(95)90196-5 – ident: e_1_3_3_20_1 doi: 10.1097/EDE.0000000000001193 – ident: e_1_3_3_43_1 doi: 10.1148/rg.245045008 – ident: e_1_3_3_24_1 doi: 10.1214/22-STS851 – ident: e_1_3_3_7_1 doi: 10.1080/00224498609551289 – ident: e_1_3_3_28_1 doi: 10.1007/978-3-540-68279-0_17 – ident: e_1_3_3_32_1 doi: 10.1158/1940-6207.CAPR-08-0092 – ident: e_1_3_3_15_1 doi: 10.1080/01621459.2016.1138865 – ident: e_1_3_3_25_1 doi: 10.1093/jnci/djm117 – ident: e_1_3_3_41_1 doi: 10.7326/M16-2607 – ident: e_1_3_3_5_1 doi: 10.1201/9781420066586 – ident: e_1_3_3_17_1 – volume-title: Group Theory year: 2012 ident: e_1_3_3_36_1 – ident: e_1_3_3_45_1 doi: 10.1080/01621459.2023.2199814 – ident: e_1_3_3_13_1 doi: 10.1111/rssb.12290 – ident: e_1_3_3_44_1 doi: 10.1136/bmj.39465.451748.AD – ident: e_1_3_3_22_1 doi: 10.1016/0022-3956(94)90026-4 – ident: e_1_3_3_2_1 doi: 10.1001/jama.2016.17700 – ident: e_1_3_3_14_1 doi: 10.1080/01621459.2015.1112802 – ident: e_1_3_3_21_1 doi: 10.1017/CBO9781139025751 |
| SSID | ssj0001697 |
| Score | 2.428559 |
| Snippet | Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is... |
| SourceID | proquest pubmed crossref informaworld |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1528 |
| SubjectTerms | Accuracy Design-based causal inference Fisher's sharp null Integer programming Matched observational studies Neyman's weak null Randomization Randomization inference Sensitivity analysis Warning |
| Title | Sensitivity Analysis for Binary Outcome Misclassification in Randomization Tests via Integer Programming |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10618600.2025.2461222 https://www.ncbi.nlm.nih.gov/pubmed/40881310 https://www.proquest.com/docview/3273669169 https://www.proquest.com/docview/3246346153 |
| Volume | 34 |
| WOSCitedRecordID | wos001469065100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1537-2715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001697 issn: 1061-8600 databaseCode: TFW dateStart: 19920301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwEB7xuAIK4Dgey0tGujaQOE5il4BY0fDQsej2qih2bNiCLNrs8vuZSZwVFOgKaCxFiZOxPfZ844y_AfgdaY2KUEaBRGMeCGNUUKAZCKxVsXbKpdK4JtlEdnMjh0N156MJax9WST60a4kimrWaJneh6y4i7pS8GImGGr07npwQIRoauUVY5uiaUFRX-O9qvhhHPr8KVgmoTneI57PXfDBPH8hLP4egjSnqr39DIzZgzeNQdtYqzk9YsNUmrF7PSVzrTVghINryOP-Cp3uKdG9TTbCOyYSh3Oy8OdHLbmdTFMCy61FtCJFTCFIz6mxUsT8o5vjZH_lkA2xczV5HBaP9yEc7YXdtlNgz2tEteOhfDi6uAp-lITCxENMgUlbqMOE6E06VZWqcswphk3RGR8Yk3HErSyMzo4sEfXFRZsbIOLausGlkwngblqpxZXeBlYiXSseJKSkTieCa0GRobarigmdh0oOTbnDyl5aMI488x2nXnzn1Z-77swfq_RDm02YXxLUpS_L4P3UPuvHO_bzGKoj20hQhterB8fw2zkj6zVJUdjyjZ0QaCwLSPdhp9WQurcBFPcLv7n1BsH1YocsmopAfwNJ0MrOH8MO8okpMjhr1xzIbSiwH_b9vpPcD0g |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZgIDEOvB-DAUHiWljbtE2OgJiG2AaCIbhVbZrADuvQXr8fu48JDogDnNO0zsPx59T-DHBmxzFuhMS2BBpziyslrQjNgKW1dGMjjS-UyYpNBN2ueH2VX3NhKKySfGiTE0VkZzUpN11GlyFxF-TGCLTU6N453jkxoqGVW4QlD20thfX1mi_z09guCqxgF4v6lFk8P73mm336xl76MwbNbFFz_T9GsQFrBRJll_nW2YQFnW7BamdO4zregipB0ZzJeRvenyjWPS82wUouE4aCs6ssp5fdTycogWad_lgRJqcgpGzdWT9ljyjncFAkfbIejm7MZv2I0Y3kmx6xhzxObICWdAeemze965ZV1GmwlMv5xLKlFnHDc-KAG5kkvjJGSwROwqjYVspzjKNFokSg4shDb5wngVLCdbWJtG-rhrsLlXSY6n1gCSKmxDjElRRwjzsx4cmG1r50IydoeDU4L1cn_MjpOEK7YDkt5zOk-QyL-ayB_LqG4SS7BzF50ZLQ_aVvvVzwsNBs7IJ4z_cRVMsanM6bUSfpR0uU6uGUnuG-ywlK12Av3yhzaTke6zZ-9-APgp3ASqvXaYft2-7dIVSpKYsvdOpQmYym-giW1Qy3x-g404VPUq4GAg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB5BWaHuAdjC7hbK4pW4puThJPaRVwVaWqrdInqLEseGHppWff1-Zhyn2h4qDnB2JhnbY883zvgbgLdBUaAhlIEn0Jl7XCnp5egGPK1lVBhpEqGMLTaRjkZiOpVjl024dmmVFEObmijC7tW0uJelaTLi3lEUI9BRY3QXxn0iREMn9xAeWXIsNOnJ4Od-Mw5cfRUU8UimucRz7DUH7umAvPQ4BLWuaPD0P3TiGTxxOJS9rw3nDB7oqgOnwz2J67oDbQKiNY_zc_h9R5nudakJ1jCZMNSbfbA3etn37QYV0Gw4WytC5JSCZGedzSp2i2ou5u7KJ5tg59ZsN8sZnUf-0is2rrPE5uhHX8CPwefJxy-eq9LgqYjzjRdILQo_DouUG1mWiTJGS4RNwqgiUCoOTahFqUSqijzGWJyXqVIiirTJdRIoPzqHVrWo9CWwEvFSaUJiSkp5zMOC0KSvdSKjPEz9uAv9ZnKyZU3GkQWO47QZz4zGM3Pj2QV5fwqzjT0FMXXJkiz6i2yvme_MrWsUQbSXJAipZReu9824Iuk3S17pxZae4UnECUh34aK2k722HDf1AL_78h8UewOPx58G2bevo5tX0KYWm1wY9qC1WW31azhRO7SO1ZVdCX8ACz0Epg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+Analysis+for+Binary+Outcome+Misclassification+in+Randomization+Tests+via+Integer+Programming&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Heng%2C+Siyu&rft.au=Shaw%2C+Pamela+A.&rft.date=2025-10-02&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=34&rft.issue=4&rft.spage=1528&rft.epage=1541&rft_id=info:doi/10.1080%2F10618600.2025.2461222&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10618600_2025_2461222 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |