Three-Layer Problem on Heat Exchange in a Medium with Counterflows
With the use of the asymptotic method, it is shown that the three-layer problem on the conjugate heat exchange in an anisotropic medium with counterflows of liquid, formulated in the zero approximation, is equivalent to the analogous problem formulated using the Newton law. It was established that i...
Uloženo v:
| Vydáno v: | Journal of engineering physics and thermophysics Ročník 97; číslo 3; s. 535 - 544 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.05.2024
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 1062-0125, 1573-871X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the use of the asymptotic method, it is shown that the three-layer problem on the conjugate heat exchange in an anisotropic medium with counterflows of liquid, formulated in the zero approximation, is equivalent to the analogous problem formulated using the Newton law. It was established that in the case where the counterflows of liquid in such a medium have equal strengths, the summary convective heat transfer in the medium is suppressed, and the medium takes new properties consisting in the appearance of heat flow mixed in nature, whose value is determined by the relation similar to the Fourier heat conduction law. By this meant that in the case where a temperature gradient is superimposed on a three-layer system of equivalent counterflows of liquid, in it there arises a heat flow having a value proportional to the temperature gradient in the medium and propagating in the direction opposite to the direction of this gradient. The effective coefficient of heat conductivity of medium, generated in it by the counterflows of liquid, separated by an immovable layer, is proportional to the square of the velocity of these flows. An immovable layer in a medium, separating the counterflows of liquid, increases the generation of heat in the medium, and the heat flow generated exceeds substantially the molecular one even in the case where it has a low velocity. Such processes provide the mass exchange in living organisms and their heat exchange with the environment. |
|---|---|
| AbstractList | With the use of the asymptotic method, it is shown that the three-layer problem on the conjugate heat exchange in an anisotropic medium with counterflows of liquid, formulated in the zero approximation, is equivalent to the analogous problem formulated using the Newton law. It was established that in the case where the counterflows of liquid in such a medium have equal strengths, the summary convective heat transfer in the medium is suppressed, and the medium takes new properties consisting in the appearance of heat flow mixed in nature, whose value is determined by the relation similar to the Fourier heat conduction law. By this meant that in the case where a temperature gradient is superimposed on a three-layer system of equivalent counterflows of liquid, in it there arises a heatflow having a value proportional to the temperature gradient in the medium and propagating in the direction opposite to the direction of this gradient. The effective coefficient of heat conductivity of medium, generated in it by the counterflows of liquid, separated by an immovable layer, is proportional to the square of the velocity of these flows. An immovable layer in a medium, separating the counterflows of liquid, increases the generation of heat in the medium, and the heat flow generated exceeds substantially the molecular one even in the case where it has a low velocity. Such processes provide the mass exchange in living organisms and their heat exchange with the environment. Keywords: heat exchange, counterflows, effective heat conductivity, temperature gradient. With the use of the asymptotic method, it is shown that the three-layer problem on the conjugate heat exchange in an anisotropic medium with counterflows of liquid, formulated in the zero approximation, is equivalent to the analogous problem formulated using the Newton law. It was established that in the case where the counterflows of liquid in such a medium have equal strengths, the summary convective heat transfer in the medium is suppressed, and the medium takes new properties consisting in the appearance of heat flow mixed in nature, whose value is determined by the relation similar to the Fourier heat conduction law. By this meant that in the case where a temperature gradient is superimposed on a three-layer system of equivalent counterflows of liquid, in it there arises a heatflow having a value proportional to the temperature gradient in the medium and propagating in the direction opposite to the direction of this gradient. The effective coefficient of heat conductivity of medium, generated in it by the counterflows of liquid, separated by an immovable layer, is proportional to the square of the velocity of these flows. An immovable layer in a medium, separating the counterflows of liquid, increases the generation of heat in the medium, and the heat flow generated exceeds substantially the molecular one even in the case where it has a low velocity. Such processes provide the mass exchange in living organisms and their heat exchange with the environment. With the use of the asymptotic method, it is shown that the three-layer problem on the conjugate heat exchange in an anisotropic medium with counterflows of liquid, formulated in the zero approximation, is equivalent to the analogous problem formulated using the Newton law. It was established that in the case where the counterflows of liquid in such a medium have equal strengths, the summary convective heat transfer in the medium is suppressed, and the medium takes new properties consisting in the appearance of heat flow mixed in nature, whose value is determined by the relation similar to the Fourier heat conduction law. By this meant that in the case where a temperature gradient is superimposed on a three-layer system of equivalent counterflows of liquid, in it there arises a heat flow having a value proportional to the temperature gradient in the medium and propagating in the direction opposite to the direction of this gradient. The effective coefficient of heat conductivity of medium, generated in it by the counterflows of liquid, separated by an immovable layer, is proportional to the square of the velocity of these flows. An immovable layer in a medium, separating the counterflows of liquid, increases the generation of heat in the medium, and the heat flow generated exceeds substantially the molecular one even in the case where it has a low velocity. Such processes provide the mass exchange in living organisms and their heat exchange with the environment. |
| Audience | Academic |
| Author | Filippov, A. I. |
| Author_xml | – sequence: 1 givenname: A. I. surname: Filippov fullname: Filippov, A. I. email: filippovai1949@mail.ru organization: Sterlitamak Branch of the Ufa University of Science and Technology |
| BookMark | eNp9kU1LxDAQhoOs4Lr6BzwFPHnomo-2aY_roq6wovgB3sLYTnYrbaNJi-u_N2sF2YuEkEl43pnJvIdk1NoWCTnhbMoZU-eesyznERNx2LngkdgjY54oGWWKv4xCzFIRMS6SA3Lo_RtjLM9iOSYXT2uHGC3hCx29d_a1xobali4QOnq5KdbQrpBWLQV6i2XVN_Sz6tZ0bvu2Q2dq--mPyL6B2uPx7zkhz1eXT_NFtLy7vpnPllEhY9lFppRZhpikHEzBSlScl1CoLIZYAijIlUCANA-3V8lNaWKFAgQqkQFAmcsJOR3yvjv70aPv9JvtXRtKaimSWLE0fC9Q04FaQY26ao3tHBRhldhURZiaqcL7LGMy4SxJtmnPdgSB6XDTraD3Xt88PuyyYmALZ713aPS7qxpwX5ozvTVCD0boYIT-MUKLIJKDyAc4TNP99f2P6hvSqotp |
| Cites_doi | 10.1016/j.ijheatmasstransfer.2021.122128 10.31857/S004036440003638-5 10.1016/j.ijheatmasstransfer.2021.122500 10.1007/BF02662149 10.1002/zamm.19260060404 10.1016/j.ijheatmasstransfer.2021.122260 10.1007/s11182-015-0526-5 10.1007/s11182-013-0011-y 10.1016/j.mvr.2021.104241 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2024 Springer Springer Science+Business Media, LLC, part of Springer Nature 2024. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2024 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2024. |
| DBID | AAYXX CITATION ISR 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS S0W |
| DOI | 10.1007/s10891-024-02921-2 |
| DatabaseName | CrossRef Gale In Context: Science ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DELNET Engineering & Technology Collection |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1573-871X |
| EndPage | 544 |
| ExternalDocumentID | A803510559 10_1007_s10891_024_02921_2 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ AXYYD AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBD EBLON EBS EIOEI EJD EMK ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IGS IHE IJ- IKXTQ ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9P PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR _50 ~8M ~A9 ~EX AAPKM AAYXX ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PQGLB PTHSS S0W 8FE 8FG DWQXO L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c343t-fd388ee561afc0de711dac784a43aa7a972eaa6943ab31fdf47e2a2e728aaad93 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001281953500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1062-0125 |
| IngestDate | Sat Sep 27 04:20:42 EDT 2025 Sat Nov 29 10:31:09 EST 2025 Mon Nov 24 14:58:21 EST 2025 Sat Nov 29 04:08:33 EST 2025 Fri Feb 21 02:40:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | temperature gradient counterflows heat exchange effective heat conductivity |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c343t-fd388ee561afc0de711dac784a43aa7a972eaa6943ab31fdf47e2a2e728aaad93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3254706125 |
| PQPubID | 1456344 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_3254706125 gale_infotracacademiconefile_A803510559 gale_incontextgauss_ISR_A803510559 crossref_primary_10_1007_s10891_024_02921_2 springer_journals_10_1007_s10891_024_02921_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20240500 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 5 year: 2024 text: 20240500 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Heidelberg |
| PublicationTitle | Journal of engineering physics and thermophysics |
| PublicationTitleAbbrev | J Eng Phys Thermophy |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | FilippovAIAkhmetovaOVKovalskiiAAMethod of coefficient-by-coefficient averaging in the problem on the laminar flow of a gas in a wellPrikl. Mekh. Tekh. Fiz.20185917182 Jayati Tripathi, B. Vasu, O. Anwar Bég, B. Reddy Mounika, and Rama Subba Reddy Gorla, Numerical simulation of the transport of nanoparticles as drug carriers in hydromagnetic blood flow through a diseased artery with vessel wall permeability and rheological effects, Microvascular Res., 139, 104–241 (2022). KrasniqiDSelimajRKrasniqiMFilkoskiRVThermal dynamic analysis of parallel and counter flow heat exchangersInt. J. Mech. Eng. Technol.201896723729 Zhang Enwei, Wang Xiaoliang, and Liu Qingquan, Numerical investigation on the temporal and spatial statistical characteristics of turbulent mass transfer above a two-dimensional wavy wall, Int. J. Heat Mass Transf., 184, Article ID 122260 (2022). A. I. Filippov, A. F. Sadriev, E. V. Mukhametzyanov, and A. I. Leontiev, Polyharmonic transcillator of a travelling wave, Izv. Vyssh. Uchebn. Zaved., Fiz., 56, No. 2, 39–44 (2013). NigmatulinRIFilippovAIKhismatullinASTranscillator transfer of heat in a liquid with gas bubblesTeplofiz. Aéromekh.2012195595612 V. I. Baikov, N. V. Pavliukevich, A. K. Fedotov, and A. I. Shnip, Thermophysics, Vol. 2 [in Russian], Izd. A. V. Luikov ITMO, NAN Belarusi, Minsk (2014). I. A. Charnyi, Heating of the near-bottom zone of a well in the process of pumping of hot water into it, Neft. Khoz., Nos. 2–3, 18–23 (1953). FilippovAIShabarovABAkhmetovaOVTemperature field of a turbulent flow in a well with a dependence of the heat capacity on the temperatureTeplofiz. Vys. Temp.201856457858410.31857/S004036440003638-5 A. I. Filippov, A. R. Karimov, and A. K. Galimova, Transcillator effect in a medium with a two-dimensional stationary cellular flow, Izv. Vyssh. Uchebn. Zaved., Fiz., 58, No. 4, 58–64 (2015). Yeo Ilhwan and Lee Seunghyun, 2D computational investigation into transport phenomena of subcooled and saturated flow boiling in large length to diameter ratio micro-channel heat sinks, Int. J. Heat Mass Transf., 183, Article ID 122128 (2022). Li Yun and Wu Huiying, Experiment investigation on flow boiling heat transfer in a bidirectional counter-flow microchannel heat sink, Int. J. Heat Mass Transf., 187, Article ID 122500 (2022). M. A. Pudovkin, V. A. Chugunov, and A. N. Salamatin, Problem on Heat Exchange as Applied to the Theory of Drilling of Wells [in Russian], Izd. Kazansk. Gos. Univ., Kazan’ (1977). ChekaliukEBThermodynamics of an Oil Pool1965MoscowNedra[in Russian] A. Anzelius, Über Erwärmung vermittels durchströmender Medien, Z. Angw. Math. Mech., August (1926). ZeldovichYa. BExact solution of the problem on the diffusion in a periodic velocity field and turbulent diffusionDokl. Akad. Nauk SSSR19822664821826678165 FilippovAIKotelnikovVAMinlibaevMRThe phenomenon of vibration transfer in two-component oscillating interacting systemsJ. Eng. Phys. Thermophys.199770348749210.1007/BF02662149 DankoVPDiianovaSNAbazianAGInvestigation of the hydrodynamic regimes of operation of apparatus with a moving packingPrikl. Mekh. Tekh. Fiz.2018594110116 2921_CR6 EB Chekaliuk (2921_CR7) 1965 2921_CR4 2921_CR5 2921_CR3 AI Filippov (2921_CR16) 2018; 59 2921_CR1 VP Danko (2921_CR2) 2018; 59 D Krasniqi (2921_CR9) 2018; 9 AI Filippov (2921_CR15) 2018; 56 RI Nigmatulin (2921_CR17) 2012; 19 Ya. B Zeldovich (2921_CR11) 1982; 266 2921_CR10 AI Filippov (2921_CR12) 1997; 70 2921_CR13 2921_CR14 2921_CR8 2921_CR18 |
| References_xml | – reference: NigmatulinRIFilippovAIKhismatullinASTranscillator transfer of heat in a liquid with gas bubblesTeplofiz. Aéromekh.2012195595612 – reference: FilippovAIAkhmetovaOVKovalskiiAAMethod of coefficient-by-coefficient averaging in the problem on the laminar flow of a gas in a wellPrikl. Mekh. Tekh. Fiz.20185917182 – reference: Li Yun and Wu Huiying, Experiment investigation on flow boiling heat transfer in a bidirectional counter-flow microchannel heat sink, Int. J. Heat Mass Transf., 187, Article ID 122500 (2022). – reference: ZeldovichYa. BExact solution of the problem on the diffusion in a periodic velocity field and turbulent diffusionDokl. Akad. Nauk SSSR19822664821826678165 – reference: ChekaliukEBThermodynamics of an Oil Pool1965MoscowNedra[in Russian] – reference: A. Anzelius, Über Erwärmung vermittels durchströmender Medien, Z. Angw. Math. Mech., August (1926). – reference: I. A. Charnyi, Heating of the near-bottom zone of a well in the process of pumping of hot water into it, Neft. Khoz., Nos. 2–3, 18–23 (1953). – reference: KrasniqiDSelimajRKrasniqiMFilkoskiRVThermal dynamic analysis of parallel and counter flow heat exchangersInt. J. Mech. Eng. Technol.201896723729 – reference: DankoVPDiianovaSNAbazianAGInvestigation of the hydrodynamic regimes of operation of apparatus with a moving packingPrikl. Mekh. Tekh. Fiz.2018594110116 – reference: V. I. Baikov, N. V. Pavliukevich, A. K. Fedotov, and A. I. Shnip, Thermophysics, Vol. 2 [in Russian], Izd. A. V. Luikov ITMO, NAN Belarusi, Minsk (2014). – reference: FilippovAIShabarovABAkhmetovaOVTemperature field of a turbulent flow in a well with a dependence of the heat capacity on the temperatureTeplofiz. Vys. Temp.201856457858410.31857/S004036440003638-5 – reference: Zhang Enwei, Wang Xiaoliang, and Liu Qingquan, Numerical investigation on the temporal and spatial statistical characteristics of turbulent mass transfer above a two-dimensional wavy wall, Int. J. Heat Mass Transf., 184, Article ID 122260 (2022). – reference: M. A. Pudovkin, V. A. Chugunov, and A. N. Salamatin, Problem on Heat Exchange as Applied to the Theory of Drilling of Wells [in Russian], Izd. Kazansk. Gos. Univ., Kazan’ (1977). – reference: A. I. Filippov, A. F. Sadriev, E. V. Mukhametzyanov, and A. I. Leontiev, Polyharmonic transcillator of a travelling wave, Izv. Vyssh. Uchebn. Zaved., Fiz., 56, No. 2, 39–44 (2013). – reference: Jayati Tripathi, B. Vasu, O. Anwar Bég, B. Reddy Mounika, and Rama Subba Reddy Gorla, Numerical simulation of the transport of nanoparticles as drug carriers in hydromagnetic blood flow through a diseased artery with vessel wall permeability and rheological effects, Microvascular Res., 139, 104–241 (2022). – reference: A. I. Filippov, A. R. Karimov, and A. K. Galimova, Transcillator effect in a medium with a two-dimensional stationary cellular flow, Izv. Vyssh. Uchebn. Zaved., Fiz., 58, No. 4, 58–64 (2015). – reference: FilippovAIKotelnikovVAMinlibaevMRThe phenomenon of vibration transfer in two-component oscillating interacting systemsJ. Eng. Phys. Thermophys.199770348749210.1007/BF02662149 – reference: Yeo Ilhwan and Lee Seunghyun, 2D computational investigation into transport phenomena of subcooled and saturated flow boiling in large length to diameter ratio micro-channel heat sinks, Int. J. Heat Mass Transf., 183, Article ID 122128 (2022). – volume: 266 start-page: 821 issue: 4 year: 1982 ident: 2921_CR11 publication-title: Dokl. Akad. Nauk SSSR – volume: 59 start-page: 71 issue: 1 year: 2018 ident: 2921_CR16 publication-title: Prikl. Mekh. Tekh. Fiz. – volume: 59 start-page: 110 issue: 4 year: 2018 ident: 2921_CR2 publication-title: Prikl. Mekh. Tekh. Fiz. – volume-title: Thermodynamics of an Oil Pool year: 1965 ident: 2921_CR7 – volume: 9 start-page: 723 issue: 6 year: 2018 ident: 2921_CR9 publication-title: Int. J. Mech. Eng. Technol. – ident: 2921_CR1 doi: 10.1016/j.ijheatmasstransfer.2021.122128 – volume: 19 start-page: 595 issue: 5 year: 2012 ident: 2921_CR17 publication-title: Teplofiz. Aéromekh. – volume: 56 start-page: 578 issue: 4 year: 2018 ident: 2921_CR15 publication-title: Teplofiz. Vys. Temp. doi: 10.31857/S004036440003638-5 – ident: 2921_CR3 doi: 10.1016/j.ijheatmasstransfer.2021.122500 – volume: 70 start-page: 487 issue: 3 year: 1997 ident: 2921_CR12 publication-title: J. Eng. Phys. Thermophys. doi: 10.1007/BF02662149 – ident: 2921_CR8 – ident: 2921_CR10 – ident: 2921_CR5 doi: 10.1002/zamm.19260060404 – ident: 2921_CR6 – ident: 2921_CR4 doi: 10.1016/j.ijheatmasstransfer.2021.122260 – ident: 2921_CR14 doi: 10.1007/s11182-015-0526-5 – ident: 2921_CR13 doi: 10.1007/s11182-013-0011-y – ident: 2921_CR18 doi: 10.1016/j.mvr.2021.104241 |
| SSID | ssj0009843 |
| Score | 2.2849863 |
| Snippet | With the use of the asymptotic method, it is shown that the three-layer problem on the conjugate heat exchange in an anisotropic medium with counterflows of... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 535 |
| SubjectTerms | Anisotropic media Anisotropy Asymptotic methods Classical Mechanics Complex Systems Conduction heating Conductive heat transfer Convective heat transfer Counterflow Electric properties Engineering Engineering Thermodynamics Equivalence Heat and Mass Transfer Heat Conduction and Heat Transfer in Technological Processes Heat exchange Heat transfer Heat transmission Industrial Chemistry/Chemical Engineering Laws, regulations and rules Newton Theory Thermal conductivity Thermodynamics |
| SummonAdditionalLinks | – databaseName: Springer Nature - Connect here FIRST to enable access dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_ED9AHP6bi_CKI4IMWbNI26eOUiYLI2Kb4Fm5pKgPtZN3UP99L1zI_H_Sh0NJQwl1690vu7ncAh-RzpZ_a0BOql3iBMIEXY0h3cdwzMiCHUBTS3l3Lmxt1fx-3yqKwvMp2r0KShaX-UOymXJYOD-iKue-R4Z0jd6dcw4Z2525KtavKtPrIJR3wsCyV-fkbn9zRV6P8LTpaOJ2Llf9NdxWWS5DJGpNVsQYzNqvB0gfqwRosFKmfJl-Hsy6p03rXSOCbtSb9ZdggY5dkpVnzbVIZzPoZQ-aiOuMn5s5umStmdy2uHwev-QbcXjS755de2VnBMyIQIy9NhFLWEnbC1JwmVvp-gkaqAAOBKDGW3CJGMT31hJ8maSAtR24lV4iYxGITZrNBZreAWQyjHoGSBCND4CZVSKY3UaEjmiPoEtXhuBKwfp4QaOgpVbKTkSYZ6UJGmtfhwOlAO2aKzKW-POA4z_VVp60bygU9T2kHVIejclA6GA3RYFlJQBNyZFafRu5WutTlv5lrQXtiWSC7OpxUupu-_n1y238bvgOLvFC_y47chdnRcGz3YN68jPr5cL9Ys-8NKuLJ priority: 102 providerName: Springer Nature |
| Title | Three-Layer Problem on Heat Exchange in a Medium with Counterflows |
| URI | https://link.springer.com/article/10.1007/s10891-024-02921-2 https://www.proquest.com/docview/3254706125 |
| Volume | 97 |
| WOSCitedRecordID | wos001281953500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-871X dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009843 issn: 1062-0125 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-871X dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009843 issn: 1062-0125 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-871X dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009843 issn: 1062-0125 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1573-871X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009843 issn: 1062-0125 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9QwEB70TkEf_HEqrp5HEMEHLV6Ttkmf5E72OOFYlt3zOHwJs0kqB9qe2131z3cmm2U9RV98aGhpKaFfOjNJvvkG4AX5XJ03ocyUmfmsUK7IaizprK5nThfkEGIi7dmJHo3M-Xk9TgtufaJVrm1iNNS-c7xG_kbRTEZHf_z28mvGVaN4dzWV0LgO26ySkEfq3nQjumsSwb5i-oEsU9JMSp0zzPmRBR21zDN5xTH9bp7_2CeN7ufo7v92_B7cSYGnOFiNlPtwLbQ7cPsXOcIduBnpoK5_AIenBHHITpACcjFe1ZwRXSuOyXKL4Y9VtrC4aAUK3ulZfhG8nis4wZ3LXn_uvvcP4cPR8PTdcZaqLWROFWqRNV4ZEwLFU9i4fR90nnt02hRYKESNtZYBsarpaqbyxjeFDhJl0NIgoq_VI9hquzY8BhGwrGYUqHisHAU8jUEyx96ULD5H4Uw1gFfrT20vV6IadiOfzMBYAsZGYKwcwHNGw7JaRct0mE-47Hv7fjqxB4Y3QvdpVjSAl-mhplvM0WHKLqAOscDVlSd31zjZ9L_2dgPSAF6vkd7c_nvnnvz7bU_hloxjjBmSu7C1mC_DM7jhvi0u-vkebB8OR-PJXhy11I7Lj9ROpmc_Af2Q8H0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBUQ5FChUbClgIRAHiGich50DQgVa7arLqqJL1ZuZtR1UCZJ2s0vLn-I3MpOHloLg1gOHSIliRUn8eR6eb2YAnpDOVWHukyDSExfEkY2DDBM6y7KJVTEphDqR9nCoRiN9dJTtL8GPLheGaZWdTKwFtSst75G_jMiTUbU-fn1yGnDXKI6udi00Gljs-e9n5LJVrwbvaH6fSrm7M37bD9quAoGN4mgW5C7S2nuyGzC3W86rMHRolY4xjhAVZkp6xDSjq0kU5i6PlZcovZIaER0XXyKRf4XMCJnVVMGDRZFf3RL6U6Y7yKRN0mlT9TRzjGRMRybDQF5QhL-rgz_isrW62735v_2oW7DaGtZiu1kJt2HJF2tw45dyi2twraa72uoOvBkThH0wRHI4xH7TU0eUheiTZhI75002tDguBAqOZM2_Ct6vFpzAz229v5Rn1V34eCmfsw7LRVn4eyA8JumEDDGHqSWDLtdI6sbphIvrkbmW9uB5N7XmpCkaYhbloRkIhoBgaiAY2YPHPPuGq3EUTPf5jPOqMoODD2Zbc6B3i7y-HjxrB-XlbIoW2-wJeiEu4HVh5GaHC9PKo8osQNGDFx2yFrf__nIb_37aI7jeH78fmuFgtHcfVmSNb2aDbsLybDr3D-Cq_TY7rqYP65Ui4NNlI-4n_ZNNSw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6h8UPwMGAwUTbAQkg8QLTFdmLnccCqTVRVxca0N-tqO2jSSKcmBf587pJU7fjxgHiolCpWZN05d-fc930GeEU516RlzBJlpyHRyuukwIyuimLqjaaE0BJpz0ZmPLbn58VkjcXfot2XLcmO08AqTVWzdxXKvTXim2XEjtT0K2SaUBC-qRlIz_v1k7OV7K7tIfY5AxBk1tNm_vyMa6np1wD9W6e0TUDD-_8_9Qew2Ref4qBbLQ_hRqy24N6aJOEW3G4hob5-BO9Oyc0xGSEV5WLSnTsjZpU4ougtDn90jGFxUQkU3O1ZfBX8TVcwyZ2Pvr6cfa8fw-fh4en7o6Q_cSHxSqsmKYOyNkaqqbD0-yGaNA3ojdWoFaLBwsiImBf0b6rSMpTaRIkyGmkRMRRqGzaqWRWfgIiY5VMqVgLmnoqe0iKF5GAzFqCjkiYfwJulsd1VJ6zhVhLKbCNHNnKtjZwcwEv2h2PFioohMV9wUdfu-OSTO7DcDN2nndEAXveDylkzR489w4AmxCJX10buLv3q-ne2dor2yqat-AbwdunH1e2_T-7pvw1_AXcmH4ZudDz-uAN3ZbsSGEC5CxvNfBGfwS3_rbmo58_bpfwT6Z_ukQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-Layer+Problem+on+Heat+Exchange+in+a+Medium+with+Counterflows&rft.jtitle=Journal+of+engineering+physics+and+thermophysics&rft.au=Filippov%2C+A.+I&rft.date=2024-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1062-0125&rft.eissn=1573-871X&rft.volume=97&rft.issue=3&rft.spage=535&rft.epage=544&rft_id=info:doi/10.1007%2Fs10891-024-02921-2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-0125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-0125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-0125&client=summon |