Three-Layer Problem on Heat Exchange in a Medium with Counterflows

With the use of the asymptotic method, it is shown that the three-layer problem on the conjugate heat exchange in an anisotropic medium with counterflows of liquid, formulated in the zero approximation, is equivalent to the analogous problem formulated using the Newton law. It was established that i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of engineering physics and thermophysics Vol. 97; no. 3; pp. 535 - 544
Main Author: Filippov, A. I.
Format: Journal Article
Language:English
Published: New York Springer US 01.05.2024
Springer
Springer Nature B.V
Subjects:
ISSN:1062-0125, 1573-871X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the use of the asymptotic method, it is shown that the three-layer problem on the conjugate heat exchange in an anisotropic medium with counterflows of liquid, formulated in the zero approximation, is equivalent to the analogous problem formulated using the Newton law. It was established that in the case where the counterflows of liquid in such a medium have equal strengths, the summary convective heat transfer in the medium is suppressed, and the medium takes new properties consisting in the appearance of heat flow mixed in nature, whose value is determined by the relation similar to the Fourier heat conduction law. By this meant that in the case where a temperature gradient is superimposed on a three-layer system of equivalent counterflows of liquid, in it there arises a heat flow having a value proportional to the temperature gradient in the medium and propagating in the direction opposite to the direction of this gradient. The effective coefficient of heat conductivity of medium, generated in it by the counterflows of liquid, separated by an immovable layer, is proportional to the square of the velocity of these flows. An immovable layer in a medium, separating the counterflows of liquid, increases the generation of heat in the medium, and the heat flow generated exceeds substantially the molecular one even in the case where it has a low velocity. Such processes provide the mass exchange in living organisms and their heat exchange with the environment.
AbstractList With the use of the asymptotic method, it is shown that the three-layer problem on the conjugate heat exchange in an anisotropic medium with counterflows of liquid, formulated in the zero approximation, is equivalent to the analogous problem formulated using the Newton law. It was established that in the case where the counterflows of liquid in such a medium have equal strengths, the summary convective heat transfer in the medium is suppressed, and the medium takes new properties consisting in the appearance of heat flow mixed in nature, whose value is determined by the relation similar to the Fourier heat conduction law. By this meant that in the case where a temperature gradient is superimposed on a three-layer system of equivalent counterflows of liquid, in it there arises a heatflow having a value proportional to the temperature gradient in the medium and propagating in the direction opposite to the direction of this gradient. The effective coefficient of heat conductivity of medium, generated in it by the counterflows of liquid, separated by an immovable layer, is proportional to the square of the velocity of these flows. An immovable layer in a medium, separating the counterflows of liquid, increases the generation of heat in the medium, and the heat flow generated exceeds substantially the molecular one even in the case where it has a low velocity. Such processes provide the mass exchange in living organisms and their heat exchange with the environment. Keywords: heat exchange, counterflows, effective heat conductivity, temperature gradient.
With the use of the asymptotic method, it is shown that the three-layer problem on the conjugate heat exchange in an anisotropic medium with counterflows of liquid, formulated in the zero approximation, is equivalent to the analogous problem formulated using the Newton law. It was established that in the case where the counterflows of liquid in such a medium have equal strengths, the summary convective heat transfer in the medium is suppressed, and the medium takes new properties consisting in the appearance of heat flow mixed in nature, whose value is determined by the relation similar to the Fourier heat conduction law. By this meant that in the case where a temperature gradient is superimposed on a three-layer system of equivalent counterflows of liquid, in it there arises a heatflow having a value proportional to the temperature gradient in the medium and propagating in the direction opposite to the direction of this gradient. The effective coefficient of heat conductivity of medium, generated in it by the counterflows of liquid, separated by an immovable layer, is proportional to the square of the velocity of these flows. An immovable layer in a medium, separating the counterflows of liquid, increases the generation of heat in the medium, and the heat flow generated exceeds substantially the molecular one even in the case where it has a low velocity. Such processes provide the mass exchange in living organisms and their heat exchange with the environment.
With the use of the asymptotic method, it is shown that the three-layer problem on the conjugate heat exchange in an anisotropic medium with counterflows of liquid, formulated in the zero approximation, is equivalent to the analogous problem formulated using the Newton law. It was established that in the case where the counterflows of liquid in such a medium have equal strengths, the summary convective heat transfer in the medium is suppressed, and the medium takes new properties consisting in the appearance of heat flow mixed in nature, whose value is determined by the relation similar to the Fourier heat conduction law. By this meant that in the case where a temperature gradient is superimposed on a three-layer system of equivalent counterflows of liquid, in it there arises a heat flow having a value proportional to the temperature gradient in the medium and propagating in the direction opposite to the direction of this gradient. The effective coefficient of heat conductivity of medium, generated in it by the counterflows of liquid, separated by an immovable layer, is proportional to the square of the velocity of these flows. An immovable layer in a medium, separating the counterflows of liquid, increases the generation of heat in the medium, and the heat flow generated exceeds substantially the molecular one even in the case where it has a low velocity. Such processes provide the mass exchange in living organisms and their heat exchange with the environment.
Audience Academic
Author Filippov, A. I.
Author_xml – sequence: 1
  givenname: A. I.
  surname: Filippov
  fullname: Filippov, A. I.
  email: filippovai1949@mail.ru
  organization: Sterlitamak Branch of the Ufa University of Science and Technology
BookMark eNp9kU1LxDAQhoOs4Lr6BzwFPHnomo-2aY_roq6wovgB3sLYTnYrbaNJi-u_N2sF2YuEkEl43pnJvIdk1NoWCTnhbMoZU-eesyznERNx2LngkdgjY54oGWWKv4xCzFIRMS6SA3Lo_RtjLM9iOSYXT2uHGC3hCx29d_a1xobali4QOnq5KdbQrpBWLQV6i2XVN_Sz6tZ0bvu2Q2dq--mPyL6B2uPx7zkhz1eXT_NFtLy7vpnPllEhY9lFppRZhpikHEzBSlScl1CoLIZYAijIlUCANA-3V8lNaWKFAgQqkQFAmcsJOR3yvjv70aPv9JvtXRtKaimSWLE0fC9Q04FaQY26ao3tHBRhldhURZiaqcL7LGMy4SxJtmnPdgSB6XDTraD3Xt88PuyyYmALZ713aPS7qxpwX5ozvTVCD0boYIT-MUKLIJKDyAc4TNP99f2P6hvSqotp
Cites_doi 10.1016/j.ijheatmasstransfer.2021.122128
10.31857/S004036440003638-5
10.1016/j.ijheatmasstransfer.2021.122500
10.1007/BF02662149
10.1002/zamm.19260060404
10.1016/j.ijheatmasstransfer.2021.122260
10.1007/s11182-015-0526-5
10.1007/s11182-013-0011-y
10.1016/j.mvr.2021.104241
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2024 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2024.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2024 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2024.
DBID AAYXX
CITATION
ISR
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1007/s10891-024-02921-2
DatabaseName CrossRef
Gale In Context: Science
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Collection (ProQuest)
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList

Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1573-871X
EndPage 544
ExternalDocumentID A803510559
10_1007_s10891_024_02921_2
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
AXYYD
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBD
EBLON
EBS
EIOEI
EJD
EMK
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IGS
IHE
IJ-
IKXTQ
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9P
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
S0W
8FE
8FG
DWQXO
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c343t-fd388ee561afc0de711dac784a43aa7a972eaa6943ab31fdf47e2a2e728aaad93
IEDL.DBID M7S
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001281953500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1062-0125
IngestDate Sat Sep 27 04:20:42 EDT 2025
Sat Nov 29 10:31:09 EST 2025
Mon Nov 24 14:58:21 EST 2025
Sat Nov 29 04:08:33 EST 2025
Fri Feb 21 02:40:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords temperature gradient
counterflows
heat exchange
effective heat conductivity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-fd388ee561afc0de711dac784a43aa7a972eaa6943ab31fdf47e2a2e728aaad93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3254706125
PQPubID 1456344
PageCount 10
ParticipantIDs proquest_journals_3254706125
gale_infotracacademiconefile_A803510559
gale_incontextgauss_ISR_A803510559
crossref_primary_10_1007_s10891_024_02921_2
springer_journals_10_1007_s10891_024_02921_2
PublicationCentury 2000
PublicationDate 20240500
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 5
  year: 2024
  text: 20240500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Heidelberg
PublicationTitle Journal of engineering physics and thermophysics
PublicationTitleAbbrev J Eng Phys Thermophy
PublicationYear 2024
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References FilippovAIAkhmetovaOVKovalskiiAAMethod of coefficient-by-coefficient averaging in the problem on the laminar flow of a gas in a wellPrikl. Mekh. Tekh. Fiz.20185917182
Jayati Tripathi, B. Vasu, O. Anwar Bég, B. Reddy Mounika, and Rama Subba Reddy Gorla, Numerical simulation of the transport of nanoparticles as drug carriers in hydromagnetic blood flow through a diseased artery with vessel wall permeability and rheological effects, Microvascular Res., 139, 104–241 (2022).
KrasniqiDSelimajRKrasniqiMFilkoskiRVThermal dynamic analysis of parallel and counter flow heat exchangersInt. J. Mech. Eng. Technol.201896723729
Zhang Enwei, Wang Xiaoliang, and Liu Qingquan, Numerical investigation on the temporal and spatial statistical characteristics of turbulent mass transfer above a two-dimensional wavy wall, Int. J. Heat Mass Transf., 184, Article ID 122260 (2022).
A. I. Filippov, A. F. Sadriev, E. V. Mukhametzyanov, and A. I. Leontiev, Polyharmonic transcillator of a travelling wave, Izv. Vyssh. Uchebn. Zaved., Fiz., 56, No. 2, 39–44 (2013).
NigmatulinRIFilippovAIKhismatullinASTranscillator transfer of heat in a liquid with gas bubblesTeplofiz. Aéromekh.2012195595612
V. I. Baikov, N. V. Pavliukevich, A. K. Fedotov, and A. I. Shnip, Thermophysics, Vol. 2 [in Russian], Izd. A. V. Luikov ITMO, NAN Belarusi, Minsk (2014).
I. A. Charnyi, Heating of the near-bottom zone of a well in the process of pumping of hot water into it, Neft. Khoz., Nos. 2–3, 18–23 (1953).
FilippovAIShabarovABAkhmetovaOVTemperature field of a turbulent flow in a well with a dependence of the heat capacity on the temperatureTeplofiz. Vys. Temp.201856457858410.31857/S004036440003638-5
A. I. Filippov, A. R. Karimov, and A. K. Galimova, Transcillator effect in a medium with a two-dimensional stationary cellular flow, Izv. Vyssh. Uchebn. Zaved., Fiz., 58, No. 4, 58–64 (2015).
Yeo Ilhwan and Lee Seunghyun, 2D computational investigation into transport phenomena of subcooled and saturated flow boiling in large length to diameter ratio micro-channel heat sinks, Int. J. Heat Mass Transf., 183, Article ID 122128 (2022).
Li Yun and Wu Huiying, Experiment investigation on flow boiling heat transfer in a bidirectional counter-flow microchannel heat sink, Int. J. Heat Mass Transf., 187, Article ID 122500 (2022).
M. A. Pudovkin, V. A. Chugunov, and A. N. Salamatin, Problem on Heat Exchange as Applied to the Theory of Drilling of Wells [in Russian], Izd. Kazansk. Gos. Univ., Kazan’ (1977).
ChekaliukEBThermodynamics of an Oil Pool1965MoscowNedra[in Russian]
A. Anzelius, Über Erwärmung vermittels durchströmender Medien, Z. Angw. Math. Mech., August (1926).
ZeldovichYa. BExact solution of the problem on the diffusion in a periodic velocity field and turbulent diffusionDokl. Akad. Nauk SSSR19822664821826678165
FilippovAIKotelnikovVAMinlibaevMRThe phenomenon of vibration transfer in two-component oscillating interacting systemsJ. Eng. Phys. Thermophys.199770348749210.1007/BF02662149
DankoVPDiianovaSNAbazianAGInvestigation of the hydrodynamic regimes of operation of apparatus with a moving packingPrikl. Mekh. Tekh. Fiz.2018594110116
2921_CR6
EB Chekaliuk (2921_CR7) 1965
2921_CR4
2921_CR5
2921_CR3
AI Filippov (2921_CR16) 2018; 59
2921_CR1
VP Danko (2921_CR2) 2018; 59
D Krasniqi (2921_CR9) 2018; 9
AI Filippov (2921_CR15) 2018; 56
RI Nigmatulin (2921_CR17) 2012; 19
Ya. B Zeldovich (2921_CR11) 1982; 266
2921_CR10
AI Filippov (2921_CR12) 1997; 70
2921_CR13
2921_CR14
2921_CR8
2921_CR18
References_xml – reference: NigmatulinRIFilippovAIKhismatullinASTranscillator transfer of heat in a liquid with gas bubblesTeplofiz. Aéromekh.2012195595612
– reference: FilippovAIAkhmetovaOVKovalskiiAAMethod of coefficient-by-coefficient averaging in the problem on the laminar flow of a gas in a wellPrikl. Mekh. Tekh. Fiz.20185917182
– reference: Li Yun and Wu Huiying, Experiment investigation on flow boiling heat transfer in a bidirectional counter-flow microchannel heat sink, Int. J. Heat Mass Transf., 187, Article ID 122500 (2022).
– reference: ZeldovichYa. BExact solution of the problem on the diffusion in a periodic velocity field and turbulent diffusionDokl. Akad. Nauk SSSR19822664821826678165
– reference: ChekaliukEBThermodynamics of an Oil Pool1965MoscowNedra[in Russian]
– reference: A. Anzelius, Über Erwärmung vermittels durchströmender Medien, Z. Angw. Math. Mech., August (1926).
– reference: I. A. Charnyi, Heating of the near-bottom zone of a well in the process of pumping of hot water into it, Neft. Khoz., Nos. 2–3, 18–23 (1953).
– reference: KrasniqiDSelimajRKrasniqiMFilkoskiRVThermal dynamic analysis of parallel and counter flow heat exchangersInt. J. Mech. Eng. Technol.201896723729
– reference: DankoVPDiianovaSNAbazianAGInvestigation of the hydrodynamic regimes of operation of apparatus with a moving packingPrikl. Mekh. Tekh. Fiz.2018594110116
– reference: V. I. Baikov, N. V. Pavliukevich, A. K. Fedotov, and A. I. Shnip, Thermophysics, Vol. 2 [in Russian], Izd. A. V. Luikov ITMO, NAN Belarusi, Minsk (2014).
– reference: FilippovAIShabarovABAkhmetovaOVTemperature field of a turbulent flow in a well with a dependence of the heat capacity on the temperatureTeplofiz. Vys. Temp.201856457858410.31857/S004036440003638-5
– reference: Zhang Enwei, Wang Xiaoliang, and Liu Qingquan, Numerical investigation on the temporal and spatial statistical characteristics of turbulent mass transfer above a two-dimensional wavy wall, Int. J. Heat Mass Transf., 184, Article ID 122260 (2022).
– reference: M. A. Pudovkin, V. A. Chugunov, and A. N. Salamatin, Problem on Heat Exchange as Applied to the Theory of Drilling of Wells [in Russian], Izd. Kazansk. Gos. Univ., Kazan’ (1977).
– reference: A. I. Filippov, A. F. Sadriev, E. V. Mukhametzyanov, and A. I. Leontiev, Polyharmonic transcillator of a travelling wave, Izv. Vyssh. Uchebn. Zaved., Fiz., 56, No. 2, 39–44 (2013).
– reference: Jayati Tripathi, B. Vasu, O. Anwar Bég, B. Reddy Mounika, and Rama Subba Reddy Gorla, Numerical simulation of the transport of nanoparticles as drug carriers in hydromagnetic blood flow through a diseased artery with vessel wall permeability and rheological effects, Microvascular Res., 139, 104–241 (2022).
– reference: A. I. Filippov, A. R. Karimov, and A. K. Galimova, Transcillator effect in a medium with a two-dimensional stationary cellular flow, Izv. Vyssh. Uchebn. Zaved., Fiz., 58, No. 4, 58–64 (2015).
– reference: FilippovAIKotelnikovVAMinlibaevMRThe phenomenon of vibration transfer in two-component oscillating interacting systemsJ. Eng. Phys. Thermophys.199770348749210.1007/BF02662149
– reference: Yeo Ilhwan and Lee Seunghyun, 2D computational investigation into transport phenomena of subcooled and saturated flow boiling in large length to diameter ratio micro-channel heat sinks, Int. J. Heat Mass Transf., 183, Article ID 122128 (2022).
– volume: 266
  start-page: 821
  issue: 4
  year: 1982
  ident: 2921_CR11
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 59
  start-page: 71
  issue: 1
  year: 2018
  ident: 2921_CR16
  publication-title: Prikl. Mekh. Tekh. Fiz.
– volume: 59
  start-page: 110
  issue: 4
  year: 2018
  ident: 2921_CR2
  publication-title: Prikl. Mekh. Tekh. Fiz.
– volume-title: Thermodynamics of an Oil Pool
  year: 1965
  ident: 2921_CR7
– volume: 9
  start-page: 723
  issue: 6
  year: 2018
  ident: 2921_CR9
  publication-title: Int. J. Mech. Eng. Technol.
– ident: 2921_CR1
  doi: 10.1016/j.ijheatmasstransfer.2021.122128
– volume: 19
  start-page: 595
  issue: 5
  year: 2012
  ident: 2921_CR17
  publication-title: Teplofiz. Aéromekh.
– volume: 56
  start-page: 578
  issue: 4
  year: 2018
  ident: 2921_CR15
  publication-title: Teplofiz. Vys. Temp.
  doi: 10.31857/S004036440003638-5
– ident: 2921_CR3
  doi: 10.1016/j.ijheatmasstransfer.2021.122500
– volume: 70
  start-page: 487
  issue: 3
  year: 1997
  ident: 2921_CR12
  publication-title: J. Eng. Phys. Thermophys.
  doi: 10.1007/BF02662149
– ident: 2921_CR8
– ident: 2921_CR10
– ident: 2921_CR5
  doi: 10.1002/zamm.19260060404
– ident: 2921_CR6
– ident: 2921_CR4
  doi: 10.1016/j.ijheatmasstransfer.2021.122260
– ident: 2921_CR14
  doi: 10.1007/s11182-015-0526-5
– ident: 2921_CR13
  doi: 10.1007/s11182-013-0011-y
– ident: 2921_CR18
  doi: 10.1016/j.mvr.2021.104241
SSID ssj0009843
Score 2.2849863
Snippet With the use of the asymptotic method, it is shown that the three-layer problem on the conjugate heat exchange in an anisotropic medium with counterflows of...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 535
SubjectTerms Anisotropic media
Anisotropy
Asymptotic methods
Classical Mechanics
Complex Systems
Conduction heating
Conductive heat transfer
Convective heat transfer
Counterflow
Electric properties
Engineering
Engineering Thermodynamics
Equivalence
Heat and Mass Transfer
Heat Conduction and Heat Transfer in Technological Processes
Heat exchange
Heat transfer
Heat transmission
Industrial Chemistry/Chemical Engineering
Laws, regulations and rules
Newton Theory
Thermal conductivity
Thermodynamics
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_ED9AHv8XplCCCDxpYk7qkj1MUBRnDTfEtXNtEBO1k3dQ_30vXMj8f9LEkhHCX3F16v_sdwD651PiYHC1vpCh5KFzMIx0kXEn_3pCxiB0WzSZUu63v7qJOWRSWV2j3KiVZWOoPxW7ao3QErSsiEXAyvDPk7rRv2HDdvZ1Q7eoSVt_0oANxXJbK_LzGJ3f01Sh_y44WTud86X_bXYbFMshkrfGpWIEpm63CwgfqwVWYK6CfSb4GJz1Sp-VXSME364z7y7B-xi7ISrOzt3FlMHvIGDKf1Rk9Mf_vlvlidt_i-rH_mq_DzflZ7_SCl50VeCJDOeQulVpbS7ETuqSRWhUEKSZKhxhKRIWREhaxGdFXLAOXulBZgcIqoRExjeQGTGf9zG4Co_uvsRm4yDWsJ7JBCtlcHIYUmUmZRmENDisBm-cxgYaZUCV7GRmSkSlkZEQN9rwOjGemyDz05R5HeW4uu9empX3Ss0EvoBoclJNcfzjABMtKAtqQJ7P6NLNe6dKUdzM3kt7EqojsanBU6W4y_Pvmtv42fRvmRaF-j46sw_RwMLI7MJu8DB_ywW5xZt8B4O3ing
  priority: 102
  providerName: Springer Nature
Title Three-Layer Problem on Heat Exchange in a Medium with Counterflows
URI https://link.springer.com/article/10.1007/s10891-024-02921-2
https://www.proquest.com/docview/3254706125
Volume 97
WOSCitedRecordID wos001281953500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-871X
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009843
  issn: 1062-0125
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-871X
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009843
  issn: 1062-0125
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-871X
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009843
  issn: 1062-0125
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-871X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009843
  issn: 1062-0125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RaxQxEB60VdCHqlXxbC1BBB80eJvsXbJP0sqVCnIcd1WKL2F2NymFultv79Sf70wux1lFX3xZWDYsYb_szCTzzTcAL8illgNytLJfo5a5CqUsbFZJo3m_oUtVBozNJsx4bM_Oikk6cOsSrXJtE6OhrtuKz8jfaNrJmOiP3159ldw1irOrqYXGTdhmlYQsUvdmG9Fdmwj2Q6YfqEEqmkmlc5Y5P4pmqQqVSXXNMf1unv_Ik0b3c3zvfyd-H3ZS4CkOVyvlAdzwzS7c_UWOcBduRzpo1T2Eo1OC2MsPSAG5mKx6zoi2ESdkucXox6paWFw0AgVnepZfBJ_nCi5w57bXl-337hF8PB6dvjuRqduCrHSuFzLU2lrvKZ7CUPVrb7KsxsrYHHONaLAwyiMOC7ordRbqkBuvUHmjLCLWhX4MW03b-CcgyCZYHGahCH3P4jZIYVwo85yiNa3rIu_Bq_WndlcrUQ23kU9mYBwB4yIwTvXgOaPhWK2iYTrMOS67zr2fTd2h5URon3ZFPXiZBoV2MccKU3UBTYgFrq6N3F_j5NL_2rkNSD14vUZ68_jvk3v677ftwR0V1xgzJPdhazFf-mdwq_q2uOjmB7B9NBpPpgdx1dJ1MvhM1-ns00_RpvBS
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQQceJQithSwEIgDWN3Y6do5IFSg1a66rCq6SL2ZSWKjSpC0m10Kf4rfyEweWgqCWw8co1iRY3-eh-ebGYAnpFLTbVK0sp-jlrEKqUxslEmj2d_QqUoD1s0mzGRij46SgxX40eXCMK2yk4m1oM7LjO_ItzR5MqbWx69OTiV3jeLoatdCo4HFvv9-Ri5b9XL0lvb3qVJ7u9M3Q9l2FZCZjvVchlxb6z3ZDRiyfu5NFOWYGRtjrBENJkZ5xEFCT6mOQh5i4xUqb5RFxJyLL5HIv0RmhEpqquDhssivbQn9A6Y7qO02SadN1bPMMVK0KipRkVTnFOHv6uCPuGyt7vZu_m8LdQtutIa12GlOwm1Y8cUaXP-l3OIaXKnprll1B15PCcJejpEcDnHQ9NQRZSGGpJnE7rcmG1ocFwIFR7IWXwTfVwtO4Oe23p_Ls2odPlzI79yF1aIs_D0QJPMsDqKQhL7n4j1IZmpI45isUa3zJO7B825r3UlTNMQty0MzEBwBwdVAcKoHj3n3HVfjKJju8wkXVeVGh-_djuVAb5-8vh48aweFcj7DDNvsCZoQF_A6N3Kzw4Vr5VHllqDowYsOWcvXf5_cxr-_9giuDqfvxm48muzfh2uqxjezQTdhdT5b-AdwOfs6P65mD-uTIuDjRSPuJ8zgTSA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8hvgQPG-NDdGNgTUh7AKuNbWrnkW1UIFBVAUO8WZfEnpBGipp0258_X5KqhY0HxGMUK7HunPvI_e53APvBpSZHwdHyToaSK-ETHpso5VpSviETkXishk3oft_c3saDmS7-Cu0-KUnWPQ3E0pSX7YfMt2ca3wwhdkR4h4hFxIMRXlAEpKd8_epmSrtrGoh9lwAI4qhpm_n_Mx65pqcG-p9KaeWAem9fv_U1eNMEn-y4Pi3vYM7l67A6Q0m4DksVJDQtNuDLdVCz4xcYgnI2qOfOsGHOToP1Zid_6o5hdpczZFTtGd8z-qfLqMmdRl__HP4uNuF77-T66ylvJi7wVCpZcp9JY5wLMRX6tJM5HUUZptooVBJRY6yFQ-zG4SqRkc-80k6gcFoYRMxiuQXz-TB328CCXTDYjXzsO44IbjCEcj5RKkRsUmaxasHBRNj2oSbWsFMKZZKRDTKylYysaMEn0oclxoqcIDE_cFwU9uzq0h4bKoZ2QmbUgs_NIj8sR5hi02EQNkQkV49W7kz0aptvtrAy5Mq6ivhacDjR4_T285t7_7Lle7A8-NazF2f98w-wIqqTQADKHZgvR2P3ERbTX-VdMdqtjvJfvLjuZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-Layer+Problem+on+Heat+Exchange+in+a+Medium+with+Counterflows&rft.jtitle=Journal+of+engineering+physics+and+thermophysics&rft.au=Filippov%2C+A.+I.&rft.date=2024-05-01&rft.issn=1062-0125&rft.eissn=1573-871X&rft.volume=97&rft.issue=3&rft.spage=535&rft.epage=544&rft_id=info:doi/10.1007%2Fs10891-024-02921-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10891_024_02921_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-0125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-0125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-0125&client=summon