Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management
•Two data-driven approached are proposed to enhance decision making better in supply chain.•A multivariate time series forecasting is performed with a Long Short Term Memory (LSTM) network based method.•A LSTM Autoencoder network-based method combined with a one-class support vector machine.•The pro...
Saved in:
| Published in: | International journal of information management Vol. 57; p. 102282 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Kidlington
Elsevier Ltd
01.04.2021
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0268-4012, 1873-4707 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Two data-driven approached are proposed to enhance decision making better in supply chain.•A multivariate time series forecasting is performed with a Long Short Term Memory (LSTM) network based method.•A LSTM Autoencoder network-based method combined with a one-class support vector machine.•The proposed approach is implemented to both benchmarking and real datasets.
Making appropriate decisions is indeed a key factor to help companies facing challenges from supply chains nowadays. In this paper, we propose two data-driven approaches that allow making better decisions in supply chain management. In particular, we suggest a Long Short Term Memory (LSTM) network-based method for forecasting multivariate time series data and an LSTM Autoencoder network-based method combined with a one-class support vector machine algorithm for detecting anomalies in sales. Unlike other approaches, we recommend combining external and internal company data sources for the purpose of enhancing the performance of forecasting algorithms using multivariate LSTM with the optimal hyperparameters. In addition, we also propose a method to optimize hyperparameters for hybrid algorithms for detecting anomalies in time series data. The proposed approaches will be applied to both benchmarking datasets and real data in fashion retail. The obtained results show that the LSTM Autoencoder based method leads to better performance for anomaly detection compared to the LSTM based method suggested in a previous study. The proposed forecasting method for multivariate time series data also performs better than some other methods based on a dataset provided by NASA. |
|---|---|
| AbstractList | •Two data-driven approached are proposed to enhance decision making better in supply chain.•A multivariate time series forecasting is performed with a Long Short Term Memory (LSTM) network based method.•A LSTM Autoencoder network-based method combined with a one-class support vector machine.•The proposed approach is implemented to both benchmarking and real datasets.
Making appropriate decisions is indeed a key factor to help companies facing challenges from supply chains nowadays. In this paper, we propose two data-driven approaches that allow making better decisions in supply chain management. In particular, we suggest a Long Short Term Memory (LSTM) network-based method for forecasting multivariate time series data and an LSTM Autoencoder network-based method combined with a one-class support vector machine algorithm for detecting anomalies in sales. Unlike other approaches, we recommend combining external and internal company data sources for the purpose of enhancing the performance of forecasting algorithms using multivariate LSTM with the optimal hyperparameters. In addition, we also propose a method to optimize hyperparameters for hybrid algorithms for detecting anomalies in time series data. The proposed approaches will be applied to both benchmarking datasets and real data in fashion retail. The obtained results show that the LSTM Autoencoder based method leads to better performance for anomaly detection compared to the LSTM based method suggested in a previous study. The proposed forecasting method for multivariate time series data also performs better than some other methods based on a dataset provided by NASA. Making appropriate decisions is indeed a key factor to help companies facing challenges from supply chains nowadays. In this paper, we propose two data-driven approaches that allow making better decisions in supply chain management. In particular, we suggest a Long Short Term Memory (LSTM) network-based method for forecasting multivariate time series data and an LSTM Autoencoder network-based method combined with a one-class support vector machine algorithm for detecting anomalies in sales. Unlike other approaches, we recommend combining external and internal company data sources for the purpose of enhancing the performance of forecasting algorithms using multivariate LSTM with the optimal hyperparameters. In addition, we also propose a method to optimize hyperparameters for hybrid algorithms for detecting anomalies in time series data. The proposed approaches will be applied to both benchmarking datasets and real data in fashion retail. The obtained results show that the LSTM Autoencoder based method leads to better performance for anomaly detection compared to the LSTM based method suggested in a previous study. The proposed forecasting method for multivariate time series data also performs better than some other methods based on a dataset provided by NASA. |
| ArticleNumber | 102282 |
| Author | Hamad, M. Nguyen, H.D. Thomassey, S. Tran, K.P. |
| Author_xml | – sequence: 1 givenname: H.D. surname: Nguyen fullname: Nguyen, H.D. organization: Institute of Artificial Intelligence and Data Science, Dong A University, Da Nang, Viet Nam – sequence: 2 givenname: K.P. surname: Tran fullname: Tran, K.P. email: kim-phuc.tran@ensait.fr organization: ENSAIT, GEMTEX - Laboratoire de Génie et Matériaux Textiles, Lille, F-59000, France – sequence: 3 givenname: S. surname: Thomassey fullname: Thomassey, S. organization: ENSAIT, GEMTEX - Laboratoire de Génie et Matériaux Textiles, Lille, F-59000, France – sequence: 4 givenname: M. surname: Hamad fullname: Hamad, M. organization: CEO Driven, 54 Rue Norbert Segard, Hem, 59510, France |
| BookMark | eNqNkUFv2yAUx1HVSUu7fYYh7ewMsGPwYYeoa7tKmXpod0YYnmOsGDLAq_IN-rGHk6qHXdoT8PT_PXg_LtC58w4Q-kLJkhJafxuWdrCu8-M2LRlhc5Uxwc7QggpeFhUn_BwtCKtFURHKPqKLGAdCKCcrtkDPNz6AVjFZt8XKGbx2flS7A_4BCXSy3mG13wevdA8RT3GObR4efx2zx816Sh6c9gYCzkjv7J8pR59s6nHqYcZ3Vqu5VcTW4TjlwgHrXuXDqJzawggufUIfOrWL8PllvUS_b64fr34Wm_vbu6v1ptBlVaaiE23TErFqSdUKVgqhGqFZbQwVxjRaAK80MaXipuMtZ4yAKXldKd2YRoialpfo66lvHmp-aJKDn4LLV0q2ImW1qnI-p76fUjr4GAN0Utt0nCEFZXeSEjnLl4N8lS9n-fIkP_P8P34f7KjC4R3k-kRClvDXQpBR2-wXjM0flaTx9s0e_wAh_qid |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2021_107763 crossref_primary_10_1016_j_sna_2023_114982 crossref_primary_10_1177_14759217231183143 crossref_primary_10_3390_s21030972 crossref_primary_10_3390_su16093581 crossref_primary_10_1016_j_eswa_2022_117056 crossref_primary_10_1016_j_procir_2025_02_214 crossref_primary_10_3390_bioengineering10040405 crossref_primary_10_3390_jrfm18050277 crossref_primary_10_1007_s42835_023_01630_9 crossref_primary_10_3390_app112110126 crossref_primary_10_1002_for_3073 crossref_primary_10_1016_j_cie_2025_111518 crossref_primary_10_1007_s10489_021_02736_1 crossref_primary_10_1016_j_ijggc_2024_104188 crossref_primary_10_3233_MGS_221511 crossref_primary_10_1016_j_nanoen_2024_110186 crossref_primary_10_3390_s23136078 crossref_primary_10_1109_TVT_2025_3537578 crossref_primary_10_3390_s23167239 crossref_primary_10_1016_j_apenergy_2023_122438 crossref_primary_10_1016_j_apenergy_2023_120932 crossref_primary_10_1007_s10479_025_06618_4 crossref_primary_10_1016_j_pnucene_2024_105114 crossref_primary_10_59717_j_xinn_energy_2025_100081 crossref_primary_10_1016_j_seppur_2022_121651 crossref_primary_10_1016_j_procs_2022_12_386 crossref_primary_10_1177_13506501211073242 crossref_primary_10_1177_1548512921999108 crossref_primary_10_1080_08982112_2023_2179404 crossref_primary_10_3390_app11135869 crossref_primary_10_1016_j_oceaneng_2024_117700 crossref_primary_10_1007_s12351_024_00831_y crossref_primary_10_3390_s24092833 crossref_primary_10_3390_diagnostics13020254 crossref_primary_10_1016_j_eswa_2022_118006 crossref_primary_10_1103_PhysRevAccelBeams_26_024801 crossref_primary_10_1109_ACCESS_2024_3405628 crossref_primary_10_4018_IJeC_315789 crossref_primary_10_4018_JOEUC_335591 crossref_primary_10_1007_s10489_025_06749_y crossref_primary_10_1016_j_procs_2022_01_242 crossref_primary_10_1016_j_asoc_2022_108768 crossref_primary_10_1016_j_procs_2025_04_514 crossref_primary_10_1108_JBIM_02_2023_0122 crossref_primary_10_1007_s42979_024_03483_z crossref_primary_10_1093_jigpal_jzae023 crossref_primary_10_5585_2023_24056 crossref_primary_10_32604_cmc_2022_021113 crossref_primary_10_3390_s24051495 crossref_primary_10_1109_JSEN_2024_3480133 crossref_primary_10_1155_2021_5543204 crossref_primary_10_1007_s11042_023_15638_w crossref_primary_10_1016_j_cie_2023_109768 crossref_primary_10_1016_j_ifacol_2023_10_974 crossref_primary_10_1016_j_jfoodeng_2023_111914 crossref_primary_10_1016_j_engappai_2024_108469 crossref_primary_10_1016_j_ocemod_2024_102463 crossref_primary_10_1007_s41060_024_00692_w crossref_primary_10_1016_j_apenergy_2024_124520 crossref_primary_10_1016_j_asoc_2024_111686 crossref_primary_10_1016_j_neucom_2022_06_042 crossref_primary_10_1080_00207543_2024_2342019 crossref_primary_10_1109_JSEN_2024_3404558 crossref_primary_10_3389_fcomp_2024_1424935 crossref_primary_10_1109_JSEN_2022_3230361 crossref_primary_10_1080_00207543_2022_2029611 crossref_primary_10_1007_s00521_024_09901_w crossref_primary_10_1093_ijlct_ctae028 crossref_primary_10_1049_2024_8425877 crossref_primary_10_1109_ACCESS_2024_3425582 crossref_primary_10_1155_2023_1594622 crossref_primary_10_1007_s11276_021_02755_3 crossref_primary_10_1016_j_ijdrr_2024_105055 crossref_primary_10_1016_j_ymssp_2023_110819 crossref_primary_10_1080_00207543_2023_2179859 crossref_primary_10_1016_j_compind_2021_103509 crossref_primary_10_1016_j_dsp_2022_103704 crossref_primary_10_1080_03772063_2024_2448588 crossref_primary_10_3390_app12168239 crossref_primary_10_1016_j_icte_2024_07_007 crossref_primary_10_3390_electronics13112021 crossref_primary_10_1016_j_jii_2023_100443 crossref_primary_10_3390_ai5030060 crossref_primary_10_1007_s12652_022_04493_6 crossref_primary_10_1109_MM_2021_3112476 crossref_primary_10_1109_ACCESS_2024_3524942 crossref_primary_10_1109_ACCESS_2024_3364395 crossref_primary_10_1155_2022_7898888 crossref_primary_10_1016_j_cosrev_2024_100665 crossref_primary_10_1016_j_idm_2025_08_006 crossref_primary_10_1007_s00521_023_08222_8 crossref_primary_10_1016_j_eswa_2022_118604 crossref_primary_10_1515_ijcre_2022_0116 crossref_primary_10_1109_JBHI_2023_3323014 crossref_primary_10_1002_spe_3407 crossref_primary_10_1007_s00521_024_09962_x crossref_primary_10_19113_sdufenbed_1655066 crossref_primary_10_1016_j_geoen_2024_213279 crossref_primary_10_1007_s12065_021_00694_8 crossref_primary_10_1016_j_ipm_2023_103383 crossref_primary_10_1016_j_prime_2025_100911 crossref_primary_10_1109_ACCESS_2023_3308698 crossref_primary_10_1155_2022_6469054 crossref_primary_10_3390_s22239428 crossref_primary_10_1109_JIOT_2023_3323620 crossref_primary_10_1016_j_eswa_2021_115153 crossref_primary_10_3390_en15134877 crossref_primary_10_1007_s11063_022_11037_8 crossref_primary_10_1016_j_neucom_2022_06_014 crossref_primary_10_1016_j_knosys_2023_111002 crossref_primary_10_3390_en17081947 crossref_primary_10_1155_2022_3058947 crossref_primary_10_1016_j_egyr_2023_04_236 crossref_primary_10_1007_s00500_023_09121_9 crossref_primary_10_1287_ijoc_2022_0155 crossref_primary_10_3390_en17102340 crossref_primary_10_3390_s24072125 crossref_primary_10_1007_s10462_023_10662_6 crossref_primary_10_1080_00223131_2025_2464742 crossref_primary_10_1587_nolta_15_183 crossref_primary_10_3389_fgene_2025_1637427 crossref_primary_10_1016_j_cie_2021_107770 crossref_primary_10_1108_JSIT_03_2025_0139 crossref_primary_10_1016_j_petrol_2022_110983 crossref_primary_10_3390_pr13020594 crossref_primary_10_1155_2022_7266037 crossref_primary_10_1016_j_compchemeng_2023_108560 crossref_primary_10_3390_en15186659 crossref_primary_10_1016_j_jss_2024_111989 crossref_primary_10_1007_s10479_023_05760_1 crossref_primary_10_1016_j_eswa_2023_122895 crossref_primary_10_3390_s22165945 crossref_primary_10_1007_s12530_023_09513_0 crossref_primary_10_3389_fceng_2022_899941 crossref_primary_10_4018_JGIM_361589 crossref_primary_10_3390_electronics11203315 crossref_primary_10_1007_s10489_025_06461_x crossref_primary_10_2166_hydro_2024_061 crossref_primary_10_1016_j_conengprac_2023_105531 crossref_primary_10_1016_j_trf_2024_12_031 crossref_primary_10_3390_math10203796 crossref_primary_10_1002_stc_2993 crossref_primary_10_1080_00207543_2024_2390968 crossref_primary_10_3390_app132111636 crossref_primary_10_1109_ACCESS_2022_3167640 crossref_primary_10_1109_ACCESS_2023_3306409 crossref_primary_10_1016_j_ifacol_2022_09_573 crossref_primary_10_4018_JOEUC_342841 crossref_primary_10_7736_JKSPE_024_129 crossref_primary_10_1016_j_eswa_2024_123226 crossref_primary_10_1016_j_jclepro_2023_140116 crossref_primary_10_1109_ACCESS_2023_3325896 crossref_primary_10_3390_en17071665 crossref_primary_10_3390_app122211650 crossref_primary_10_1016_j_ssci_2022_105766 crossref_primary_10_1080_00207543_2021_1901153 crossref_primary_10_3390_bioengineering10060683 crossref_primary_10_1016_j_aei_2023_102041 crossref_primary_10_1177_03611981241287193 crossref_primary_10_1155_2022_4241016 crossref_primary_10_3390_app15073507 crossref_primary_10_1016_j_jksuci_2022_10_021 crossref_primary_10_1155_2022_5386341 crossref_primary_10_3390_s23218688 crossref_primary_10_1007_s10489_021_02662_2 crossref_primary_10_1016_j_procs_2024_09_153 crossref_primary_10_3390_electronics10091007 crossref_primary_10_3390_a16010052 crossref_primary_10_1109_ACCESS_2024_3500793 crossref_primary_10_1016_j_ress_2022_108353 crossref_primary_10_4018_JOEUC_378673 crossref_primary_10_1109_TITS_2025_3580960 crossref_primary_10_1016_j_ifacol_2022_09_550 crossref_primary_10_3390_info13010002 crossref_primary_10_3390_su152416759 crossref_primary_10_3390_jrfm17110485 crossref_primary_10_3390_s25051610 crossref_primary_10_1016_j_energy_2024_132823 crossref_primary_10_1007_s00500_021_06110_8 crossref_primary_10_1007_s10479_022_05070_y crossref_primary_10_1186_s40537_023_00746_z crossref_primary_10_1016_j_ipm_2023_103569 crossref_primary_10_3390_app121910078 crossref_primary_10_1109_TCSVT_2022_3178430 crossref_primary_10_1007_s00521_022_07375_2 crossref_primary_10_1080_09720510_2022_2130572 crossref_primary_10_1016_j_websem_2024_100821 crossref_primary_10_1002_widm_70016 crossref_primary_10_14267_VEZTUD_2024_07_08_08 crossref_primary_10_1007_s10846_021_01496_x crossref_primary_10_1016_j_eswa_2023_121698 crossref_primary_10_1155_2023_9523230 crossref_primary_10_1016_j_inffus_2022_10_008 crossref_primary_10_1109_ACCESS_2023_3266275 crossref_primary_10_1007_s00422_022_00937_6 crossref_primary_10_3390_s23167182 crossref_primary_10_1007_s10661_024_12848_z crossref_primary_10_3390_forecast6020014 crossref_primary_10_1016_j_ifacol_2022_09_659 crossref_primary_10_1007_s10586_024_04365_y crossref_primary_10_3390_app14146188 crossref_primary_10_1016_j_apor_2021_103030 crossref_primary_10_1063_5_0221722 crossref_primary_10_1016_j_chroma_2022_463486 crossref_primary_10_1016_j_frl_2023_104304 |
| Cites_doi | 10.1080/00207543.2019.1627439 10.1109/ICMLA.2018.00227 10.1016/j.compind.2019.103182 10.1016/j.ijinfomgt.2019.07.011 10.1016/j.ijpe.2010.07.018 10.1016/j.ress.2018.11.027 10.1109/ICMLA.2018.00207 10.1109/JAS.2019.1911393 10.1016/S0925-2312(01)00702-0 10.1016/j.ijinfomgt.2019.06.002 10.3844/jmssp.2018.253.260 10.1093/sjaf/34.3.131 10.1016/j.ejor.2006.12.004 10.1016/j.ijinfomgt.2019.05.027 10.1016/j.ifacol.2019.11.567 10.1016/j.tre.2019.03.001 10.1080/00207543.2018.1488086 10.1016/j.asoc.2020.106344 10.1080/10962247.2018.1459956 10.1109/TNNLS.2016.2582924 10.3390/su9112073 10.1016/j.ijinfomgt.2018.08.006 10.1162/089976601750264965 10.1007/978-3-319-48057-2_9 10.1016/j.ijinfomgt.2018.06.008 10.5755/j01.eee.19.3.3699 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier Science Ltd. Apr 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Apr 2021 |
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ijinfomgt.2020.102282 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Social Sciences (General) |
| EISSN | 1873-4707 |
| ExternalDocumentID | 10_1016_j_ijinfomgt_2020_102282 S026840122031481X |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77K 8P~ 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFRF ABIVO ABJNI ABKBG ABMAC ABMMH ABMVD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACHQT ACHRH ACNTT ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AFFNX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC BNSAS C2- CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLX HMY HVGLF HZ~ IHE J1W KOM LG8 LY1 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ RXW SBM SCC SDF SDG SDS SES SEW SPCBC SSB SSL SSO SSS SSZ T5K TAE TAF TN5 U5U UHS UNMZH WUQ XPP YK3 ZMT ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c343t-f8b9b085b04b82388a98c26dd18dd9c8e74c0d3a7df7b7220ed3764ac9d988613 |
| ISICitedReferencesCount | 294 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000618806300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0268-4012 |
| IngestDate | Fri Nov 14 18:40:57 EST 2025 Sat Nov 29 07:17:43 EST 2025 Tue Nov 18 21:04:25 EST 2025 Fri Feb 23 02:46:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | One-class SVM Long short term memory networks Autoencoder Forecasting Anomaly detection |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c343t-f8b9b085b04b82388a98c26dd18dd9c8e74c0d3a7df7b7220ed3764ac9d988613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2503454376 |
| PQPubID | 32309 |
| ParticipantIDs | proquest_journals_2503454376 crossref_citationtrail_10_1016_j_ijinfomgt_2020_102282 crossref_primary_10_1016_j_ijinfomgt_2020_102282 elsevier_sciencedirect_doi_10_1016_j_ijinfomgt_2020_102282 |
| PublicationCentury | 2000 |
| PublicationDate | April 2021 2021-04-00 20210401 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | International journal of information management |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Roesch, Van Deusen (bib0125) 2010; 34 Sirovich, Craparotta, Marocco (bib0150) 2018 Thomassey (bib0155) 2010; 128 Greff, Srivastava, Koutník, Steunebrink, Schmidhuber (bib0055) 2016; 28 Huang, Wang (bib0070) 2014 Ellefsen, Bjørlykhaug, Æsøy, Ushakov, Zhang (bib0045) 2019; 183 Bontemps, McDermott, Le-Khac (bib0015) 2016 Malhotra, Vig, Shroff, Agarwal (bib0100) 2015 Schölkopf, Platt, Shawe-Taylor, Smola, Williamson (bib0135) 2001; 13 Zhang (bib0185) 2003; 50 Provotar, Linder, Veres (bib0120) 2019 Principi, Rossetti, Squartini, Piazza (bib0115) 2019; 6 Yang, Yu, Zhao, Yu, Xu, Wu, Liu (bib0180) 2020; 50 Sharma, Singh (bib0140) 2013; 65 Freeman, Taylor, Gharabaghi, Thé (bib0050) 2018; 68 Xia, Song, Zheng, Pan, Xi (bib0175) 2020; 115 Ivanov, Dolgui, Sokolov (bib0080) 2019; 57 Lim, Zohren (bib0090) 2020 Tran, Du Nguyen, Thomassey (bib0165) 2019; 52 Ivanov, Dolgui (bib0075) 2020 Carbonneau, Laframboise, Vahidov (bib0020) 2008; 184 Saxena, Goebel (bib0130) 2008 Thomassey (bib0160) 2014 Chalapathy, Chawla (bib0025) 2019 Siami-Namini, Tavakoli, Namin (bib0145) 2018 Maqsood, Mehmood, Maqsood, Yasir, Afzal, Aadil, Selim, Muhammad (bib0105) 2020; 50 Dolgui, Ivanov, Potryasaev, Sokolov, Ivanova, Werner (bib0040) 2020; 58 Zhao, Dai, Zhou (bib0190) 2013; 19 Alfian, Syafrudin, Rhee (bib0010) 2017; 9 Habeeb, Nasaruddin, Gani, Hashem, Ahmed, Imran (bib0060) 2019; 45 Acharya, Singh, Pereira, Singh (bib0005) 2018; 42 Kingma, Welling (bib0085) 2019 Hosseini, Ivanov, Dolgui (bib0065) 2019; 125 Chen, Das, Ivanov (bib0030) 2019; 49 Malhotra, Ramakrishnan, Anand, Vig, Agarwal, Shroff (bib0095) 2016 Pereira, Silveira (bib0110) 2018 Wang (bib0170) 2018 Deng, Zhang, Cheng, Zheng, Jiang, Liu, Peng (bib0035) 2020 Sirovich (10.1016/j.ijinfomgt.2020.102282_bib0150) 2018 Chalapathy (10.1016/j.ijinfomgt.2020.102282_bib0025) 2019 Alfian (10.1016/j.ijinfomgt.2020.102282_bib0010) 2017; 9 Chen (10.1016/j.ijinfomgt.2020.102282_bib0030) 2019; 49 Freeman (10.1016/j.ijinfomgt.2020.102282_bib0050) 2018; 68 Kingma (10.1016/j.ijinfomgt.2020.102282_bib0085) 2019 Malhotra (10.1016/j.ijinfomgt.2020.102282_bib0095) 2016 Ellefsen (10.1016/j.ijinfomgt.2020.102282_bib0045) 2019; 183 Saxena (10.1016/j.ijinfomgt.2020.102282_bib0130) 2008 Huang (10.1016/j.ijinfomgt.2020.102282_bib0070) 2014 Xia (10.1016/j.ijinfomgt.2020.102282_bib0175) 2020; 115 Ivanov (10.1016/j.ijinfomgt.2020.102282_bib0075) 2020 Maqsood (10.1016/j.ijinfomgt.2020.102282_bib0105) 2020; 50 Malhotra (10.1016/j.ijinfomgt.2020.102282_bib0100) 2015 Ivanov (10.1016/j.ijinfomgt.2020.102282_bib0080) 2019; 57 Sharma (10.1016/j.ijinfomgt.2020.102282_bib0140) 2013; 65 Acharya (10.1016/j.ijinfomgt.2020.102282_bib0005) 2018; 42 Deng (10.1016/j.ijinfomgt.2020.102282_bib0035) 2020 Thomassey (10.1016/j.ijinfomgt.2020.102282_bib0155) 2010; 128 Habeeb (10.1016/j.ijinfomgt.2020.102282_bib0060) 2019; 45 Hosseini (10.1016/j.ijinfomgt.2020.102282_bib0065) 2019; 125 Carbonneau (10.1016/j.ijinfomgt.2020.102282_bib0020) 2008; 184 Lim (10.1016/j.ijinfomgt.2020.102282_bib0090) 2020 Bontemps (10.1016/j.ijinfomgt.2020.102282_bib0015) 2016 Schölkopf (10.1016/j.ijinfomgt.2020.102282_bib0135) 2001; 13 Dolgui (10.1016/j.ijinfomgt.2020.102282_bib0040) 2020; 58 Zhang (10.1016/j.ijinfomgt.2020.102282_bib0185) 2003; 50 Yang (10.1016/j.ijinfomgt.2020.102282_bib0180) 2020; 50 Greff (10.1016/j.ijinfomgt.2020.102282_bib0055) 2016; 28 Zhao (10.1016/j.ijinfomgt.2020.102282_bib0190) 2013; 19 Principi (10.1016/j.ijinfomgt.2020.102282_bib0115) 2019; 6 Tran (10.1016/j.ijinfomgt.2020.102282_bib0165) 2019; 52 Provotar (10.1016/j.ijinfomgt.2020.102282_bib0120) 2019 Wang (10.1016/j.ijinfomgt.2020.102282_bib0170) 2018 Roesch (10.1016/j.ijinfomgt.2020.102282_bib0125) 2010; 34 Thomassey (10.1016/j.ijinfomgt.2020.102282_bib0160) 2014 Pereira (10.1016/j.ijinfomgt.2020.102282_bib0110) 2018 Siami-Namini (10.1016/j.ijinfomgt.2020.102282_bib0145) 2018 |
| References_xml | – volume: 9 start-page: 2073 year: 2017 ident: bib0010 article-title: Real-time monitoring system using smartphone-based sensors and nosql database for perishable supply chain publication-title: Sustainability – volume: 183 start-page: 240 year: 2019 end-page: 251 ident: bib0045 article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture publication-title: Reliability Engineering & System Safety – volume: 50 start-page: 452 year: 2020 end-page: 462 ident: bib0180 article-title: Big data analytics for financial market volatility forecast based on support vector machine publication-title: International Journal of Information Management – volume: 42 start-page: 90 year: 2018 end-page: 101 ident: bib0005 article-title: Big data, knowledge co-creation and decision making in fashion industry publication-title: International Journal of Information Management – volume: 28 start-page: 2222 year: 2016 end-page: 2232 ident: bib0055 article-title: LSTM: A search space odyssey publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 115 start-page: 103182 year: 2020 ident: bib0175 article-title: An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation publication-title: Computers in Industry – start-page: 9 year: 2014 end-page: 27 ident: bib0160 article-title: Sales forecasting in apparel and fashion industry: A review publication-title: Intelligent fashion forecasting systems: Models and applications – start-page: 106344 year: 2020 ident: bib0035 article-title: A remaining useful life prediction method with long-short term feature processing for aircraft engines publication-title: Applied Soft Computing – start-page: 1394 year: 2018 end-page: 1401 ident: bib0145 article-title: A comparison of arima and LSTM in forecasting time series publication-title: 2018 17th IEEE international conference on machine learning and applications (ICMLA) – start-page: 173 year: 2018 end-page: 195 ident: bib0150 article-title: An intelligent fashion replenishment system based on data analytics and expert judgment publication-title: In artificial intelligence for fashion industry in the big data era – volume: 184 start-page: 1140 year: 2008 end-page: 1154 ident: bib0020 article-title: Application of machine learning techniques for supply chain demand forecasting publication-title: European Journal of Operational Research – volume: 65 year: 2013 ident: bib0140 article-title: Outlier detection in RFID datasets in supply chain process: A review publication-title: International Journal of Computer Applications – start-page: 1 year: 2020 end-page: 14 ident: bib0075 article-title: A digital supply chain twin for managing the disruption risks and resilience in the era of industry 4.0 publication-title: Production Planning & Control – year: 2019 ident: bib0085 article-title: An introduction to variational autoencoders – start-page: 1275 year: 2018 end-page: 1282 ident: bib0110 article-title: Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders with attention publication-title: 2018 17th IEEE international conference on machine learning and applications (ICMLA) – year: 2020 ident: bib0090 article-title: Time series forecasting with deep learning: A survey – volume: 45 start-page: 289 year: 2019 end-page: 307 ident: bib0060 article-title: Real-time big data processing for anomaly detection: A survey publication-title: International Journal of Information Management – volume: 58 start-page: 2184 year: 2020 end-page: 2199 ident: bib0040 article-title: Blockchain-oriented dynamic modelling of smart contract design and execution in the supply chain publication-title: International Journal of Production Research – year: 2019 ident: bib0025 article-title: Deep learning for anomaly detection: A survey – volume: 57 start-page: 829 year: 2019 end-page: 846 ident: bib0080 article-title: The impact of digital technology and industry 4.0 on the ripple effect and supply chain risk analytics publication-title: International Journal of Production Research – year: 2016 ident: bib0095 article-title: LSTM-based encoder-decoder for multi-sensor anomaly detection – volume: 13 start-page: 1443 year: 2001 end-page: 1471 ident: bib0135 article-title: Estimating the support of a high-dimensional distribution publication-title: Neural Computation – year: 2008 ident: bib0130 article-title: C-MAPSS data set publication-title: NASA Ames prognostics data repository – start-page: 253 year: 2018 end-page: 260 ident: bib0170 article-title: Advanced multivariate time series forecasting models publication-title: Journal of Mathematics and Statistics – volume: 34 start-page: 131 year: 2010 end-page: 137 ident: bib0125 article-title: Anomaly detection for analysis of annual inventory data: A quality control approach publication-title: Southern Journal of Applied Forestry – start-page: 141 year: 2016 end-page: 152 ident: bib0015 article-title: Collective anomaly detection based on long short-term memory recurrent neural networks publication-title: International conference on future data and security engineering, Springer – volume: 50 start-page: 432 year: 2020 end-page: 451 ident: bib0105 article-title: A local and global event sentiment based efficient stock exchange forecasting using deep learning publication-title: International Journal of Information Management – start-page: 513 year: 2019 end-page: 517 ident: bib0120 article-title: Unsupervised anomaly detection in time series using LSTM-based autoencoders publication-title: IEEE international conference on advanced trends in information theory (ATIT) – volume: 52 start-page: 2408 year: 2019 end-page: 2412 ident: bib0165 article-title: Anomaly detection using long short term memory networks and its applications in supply chain management publication-title: IFAC-PapersOnLine – volume: 128 start-page: 470 year: 2010 end-page: 483 ident: bib0155 article-title: Sales forecasts in clothing industry: The key success factor of the supply chain management publication-title: International Journal of Production Economics – start-page: 89 year: 2015 end-page: 94 ident: bib0100 article-title: Long short term memory networks for anomaly detection in time series publication-title: Proceedings, Vol. 89 – volume: 50 start-page: 159 year: 2003 end-page: 175 ident: bib0185 article-title: Time series forecasting using a hybrid arima and neural network model publication-title: Neurocomputing – volume: 6 start-page: 441 year: 2019 end-page: 451 ident: bib0115 article-title: Unsupervised electric motor fault detection by using deep autoencoders publication-title: IEEE/CAA Journal of Automatica Sinica – volume: 125 start-page: 285 year: 2019 end-page: 307 ident: bib0065 article-title: Review of quantitative methods for supply chain resilience analysis publication-title: Transportation Research Part E: Logistics and Transportation Review – volume: 68 start-page: 866 year: 2018 end-page: 886 ident: bib0050 article-title: Forecasting air quality time series using deep learning publication-title: Journal of the Air & Waste Management Association – volume: 49 start-page: 330 year: 2019 end-page: 342 ident: bib0030 article-title: Building resilience and managing post-disruption supply chain recovery: Lessons from the information and communication technology industry publication-title: International Journal of Information Management – volume: 19 start-page: 65 year: 2013 end-page: 68 ident: bib0190 article-title: Outlier detection in cold-chain logistics temperature monitoring publication-title: Elektronika ir Elektrotechnika – start-page: 3309 year: 2014 end-page: 3312 ident: bib0070 article-title: Research on supply chain abnormal event detection based on the RFID technology publication-title: Applied Mechanics and Materials, Vol. 513 – volume: 58 start-page: 2184 issue: 7 year: 2020 ident: 10.1016/j.ijinfomgt.2020.102282_bib0040 article-title: Blockchain-oriented dynamic modelling of smart contract design and execution in the supply chain publication-title: International Journal of Production Research doi: 10.1080/00207543.2019.1627439 – start-page: 1394 year: 2018 ident: 10.1016/j.ijinfomgt.2020.102282_bib0145 article-title: A comparison of arima and LSTM in forecasting time series publication-title: 2018 17th IEEE international conference on machine learning and applications (ICMLA) doi: 10.1109/ICMLA.2018.00227 – volume: 115 start-page: 103182 year: 2020 ident: 10.1016/j.ijinfomgt.2020.102282_bib0175 article-title: An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation publication-title: Computers in Industry doi: 10.1016/j.compind.2019.103182 – start-page: 9 year: 2014 ident: 10.1016/j.ijinfomgt.2020.102282_bib0160 article-title: Sales forecasting in apparel and fashion industry: A review – volume: 50 start-page: 432 year: 2020 ident: 10.1016/j.ijinfomgt.2020.102282_bib0105 article-title: A local and global event sentiment based efficient stock exchange forecasting using deep learning publication-title: International Journal of Information Management doi: 10.1016/j.ijinfomgt.2019.07.011 – year: 2019 ident: 10.1016/j.ijinfomgt.2020.102282_bib0085 – volume: 65 issue: 25 year: 2013 ident: 10.1016/j.ijinfomgt.2020.102282_bib0140 article-title: Outlier detection in RFID datasets in supply chain process: A review publication-title: International Journal of Computer Applications – volume: 128 start-page: 470 issue: 2 year: 2010 ident: 10.1016/j.ijinfomgt.2020.102282_bib0155 article-title: Sales forecasts in clothing industry: The key success factor of the supply chain management publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2010.07.018 – volume: 183 start-page: 240 year: 2019 ident: 10.1016/j.ijinfomgt.2020.102282_bib0045 article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2018.11.027 – start-page: 1275 year: 2018 ident: 10.1016/j.ijinfomgt.2020.102282_bib0110 article-title: Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders with attention publication-title: 2018 17th IEEE international conference on machine learning and applications (ICMLA) doi: 10.1109/ICMLA.2018.00207 – volume: 6 start-page: 441 issue: 2 year: 2019 ident: 10.1016/j.ijinfomgt.2020.102282_bib0115 article-title: Unsupervised electric motor fault detection by using deep autoencoders publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2019.1911393 – volume: 50 start-page: 159 year: 2003 ident: 10.1016/j.ijinfomgt.2020.102282_bib0185 article-title: Time series forecasting using a hybrid arima and neural network model publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00702-0 – volume: 49 start-page: 330 year: 2019 ident: 10.1016/j.ijinfomgt.2020.102282_bib0030 article-title: Building resilience and managing post-disruption supply chain recovery: Lessons from the information and communication technology industry publication-title: International Journal of Information Management doi: 10.1016/j.ijinfomgt.2019.06.002 – start-page: 513 year: 2019 ident: 10.1016/j.ijinfomgt.2020.102282_bib0120 article-title: Unsupervised anomaly detection in time series using LSTM-based autoencoders publication-title: IEEE international conference on advanced trends in information theory (ATIT) – start-page: 253 issue: 14 year: 2018 ident: 10.1016/j.ijinfomgt.2020.102282_bib0170 article-title: Advanced multivariate time series forecasting models publication-title: Journal of Mathematics and Statistics doi: 10.3844/jmssp.2018.253.260 – volume: 34 start-page: 131 issue: 3 year: 2010 ident: 10.1016/j.ijinfomgt.2020.102282_bib0125 article-title: Anomaly detection for analysis of annual inventory data: A quality control approach publication-title: Southern Journal of Applied Forestry doi: 10.1093/sjaf/34.3.131 – start-page: 1 year: 2020 ident: 10.1016/j.ijinfomgt.2020.102282_bib0075 article-title: A digital supply chain twin for managing the disruption risks and resilience in the era of industry 4.0 publication-title: Production Planning & Control – volume: 184 start-page: 1140 issue: 3 year: 2008 ident: 10.1016/j.ijinfomgt.2020.102282_bib0020 article-title: Application of machine learning techniques for supply chain demand forecasting publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.12.004 – volume: 50 start-page: 452 year: 2020 ident: 10.1016/j.ijinfomgt.2020.102282_bib0180 article-title: Big data analytics for financial market volatility forecast based on support vector machine publication-title: International Journal of Information Management doi: 10.1016/j.ijinfomgt.2019.05.027 – volume: 52 start-page: 2408 issue: 13 year: 2019 ident: 10.1016/j.ijinfomgt.2020.102282_bib0165 article-title: Anomaly detection using long short term memory networks and its applications in supply chain management publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2019.11.567 – start-page: 3309 year: 2014 ident: 10.1016/j.ijinfomgt.2020.102282_bib0070 article-title: Research on supply chain abnormal event detection based on the RFID technology – start-page: 89 year: 2015 ident: 10.1016/j.ijinfomgt.2020.102282_bib0100 article-title: Long short term memory networks for anomaly detection in time series publication-title: Proceedings, Vol. 89 – year: 2008 ident: 10.1016/j.ijinfomgt.2020.102282_bib0130 article-title: C-MAPSS data set – start-page: 173 year: 2018 ident: 10.1016/j.ijinfomgt.2020.102282_bib0150 article-title: An intelligent fashion replenishment system based on data analytics and expert judgment – volume: 125 start-page: 285 year: 2019 ident: 10.1016/j.ijinfomgt.2020.102282_bib0065 article-title: Review of quantitative methods for supply chain resilience analysis publication-title: Transportation Research Part E: Logistics and Transportation Review doi: 10.1016/j.tre.2019.03.001 – volume: 57 start-page: 829 issue: 3 year: 2019 ident: 10.1016/j.ijinfomgt.2020.102282_bib0080 article-title: The impact of digital technology and industry 4.0 on the ripple effect and supply chain risk analytics publication-title: International Journal of Production Research doi: 10.1080/00207543.2018.1488086 – year: 2020 ident: 10.1016/j.ijinfomgt.2020.102282_bib0090 – year: 2016 ident: 10.1016/j.ijinfomgt.2020.102282_bib0095 – start-page: 106344 year: 2020 ident: 10.1016/j.ijinfomgt.2020.102282_bib0035 article-title: A remaining useful life prediction method with long-short term feature processing for aircraft engines publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106344 – volume: 68 start-page: 866 issue: 8 year: 2018 ident: 10.1016/j.ijinfomgt.2020.102282_bib0050 article-title: Forecasting air quality time series using deep learning publication-title: Journal of the Air & Waste Management Association doi: 10.1080/10962247.2018.1459956 – volume: 28 start-page: 2222 issue: 10 year: 2016 ident: 10.1016/j.ijinfomgt.2020.102282_bib0055 article-title: LSTM: A search space odyssey publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2582924 – volume: 9 start-page: 2073 issue: 11 year: 2017 ident: 10.1016/j.ijinfomgt.2020.102282_bib0010 article-title: Real-time monitoring system using smartphone-based sensors and nosql database for perishable supply chain publication-title: Sustainability doi: 10.3390/su9112073 – volume: 45 start-page: 289 year: 2019 ident: 10.1016/j.ijinfomgt.2020.102282_bib0060 article-title: Real-time big data processing for anomaly detection: A survey publication-title: International Journal of Information Management doi: 10.1016/j.ijinfomgt.2018.08.006 – volume: 13 start-page: 1443 issue: 7 year: 2001 ident: 10.1016/j.ijinfomgt.2020.102282_bib0135 article-title: Estimating the support of a high-dimensional distribution publication-title: Neural Computation doi: 10.1162/089976601750264965 – start-page: 141 year: 2016 ident: 10.1016/j.ijinfomgt.2020.102282_bib0015 article-title: Collective anomaly detection based on long short-term memory recurrent neural networks publication-title: International conference on future data and security engineering, Springer doi: 10.1007/978-3-319-48057-2_9 – year: 2019 ident: 10.1016/j.ijinfomgt.2020.102282_bib0025 – volume: 42 start-page: 90 year: 2018 ident: 10.1016/j.ijinfomgt.2020.102282_bib0005 article-title: Big data, knowledge co-creation and decision making in fashion industry publication-title: International Journal of Information Management doi: 10.1016/j.ijinfomgt.2018.06.008 – volume: 19 start-page: 65 issue: 3 year: 2013 ident: 10.1016/j.ijinfomgt.2020.102282_bib0190 article-title: Outlier detection in cold-chain logistics temperature monitoring publication-title: Elektronika ir Elektrotechnika doi: 10.5755/j01.eee.19.3.3699 |
| SSID | ssj0017052 |
| Score | 2.6948183 |
| Snippet | •Two data-driven approached are proposed to enhance decision making better in supply chain.•A multivariate time series forecasting is performed with a Long... Making appropriate decisions is indeed a key factor to help companies facing challenges from supply chains nowadays. In this paper, we propose two data-driven... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 102282 |
| SubjectTerms | Algorithms Anomalies Anomaly detection Autoencoder Companies Data Datasets Decision making Decisions Forecasting Long short term memory networks Multivariate analysis One-class SVM Optimization Sales Short term memory Social networks Space technology Supply Supply chain management Supply chains Support vector machines Time series |
| Title | Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management |
| URI | https://dx.doi.org/10.1016/j.ijinfomgt.2020.102282 https://www.proquest.com/docview/2503454376 |
| Volume | 57 |
| WOSCitedRecordID | wos000618806300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017052 issn: 0268-4012 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMXxFMUFuQDBxBKlIfT2NwqWLQ8drXSFqm3yImdVas2u2rS1fYf8KP4cYwfeRVQ2QOXyLUyVtL5Mp4ZzwOh17nkgFopHB75uUN8kINpKEMHlOWQAr-FzIhuNhGfntLZjJ0NBj_rXJjrZVwU9OaGXf1XVsMcMFulzt6C3c2iMAFjYDpcge1w_SfGq2abGS-rOvsQDPwVX25BslTS9gW3dcRl-W6jXQXfzqcn-l49mGyqS1XeUlWZaEq82iw4paZ2z7yVu6RUjUG3KoUYfqz64TSLNlC-9Tv2qlU02ZO7pMpDfbHZGrF47H50GyfD2jhtv7pn7ZyOc7KHYOduK1dXBsInbte9EfidqBgjBYMxBSPX74lsU9Paylxls5oGRr9tB8YzsXDnCzW9ulDBs4EuV2Ep-gW4dzbGJlyxjoRbJM1CiVooMQvdQQdBHDE6RAeTz0ezL80pVuzpjk_NK_TiC__4TH_Tjnb0BK38TB-g-9ZqwRODtodoIItHaGRSu7HdHkr8xtYwf_sY_eigEAOysEUhblCIWxRijUKswKfv1YMOCnGLQqxQiAGFuItCPC-wQSHWKMQtlJ6g75-Oph-OHdv0w8lCElZOTlOWgh2QeiSloE9SzmgWjIXwqRAsozImmSdCHos8TuMg8KSAPZLwjAlGKSinT9GwuCzkM4QZlTwMwzgPgpRI4YEtIyNBMu4JxiPCR2hc_9lJZiviq8Ysy2QPw0fIawivTFGY_STva24mVrc1OmsCWN1PfFjzP7GfaJmA7RKSiMDLP7_947xA99qP7RANq_VGvkR3s-tqXq5fWRz_Aq5R2c0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+and+Anomaly+Detection+approaches+using+LSTM+and+LSTM+Autoencoder+techniques+with+the+applications+in+supply+chain+management&rft.jtitle=International+journal+of+information+management&rft.au=Nguyen%2C+H.D.&rft.au=Tran%2C+K.P.&rft.au=Thomassey%2C+S.&rft.au=Hamad%2C+M.&rft.date=2021-04-01&rft.issn=0268-4012&rft.volume=57&rft.spage=102282&rft_id=info:doi/10.1016%2Fj.ijinfomgt.2020.102282&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijinfomgt_2020_102282 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-4012&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-4012&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-4012&client=summon |