Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management

•Two data-driven approached are proposed to enhance decision making better in supply chain.•A multivariate time series forecasting is performed with a Long Short Term Memory (LSTM) network based method.•A LSTM Autoencoder network-based method combined with a one-class support vector machine.•The pro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of information management Ročník 57; s. 102282
Hlavní autoři: Nguyen, H.D., Tran, K.P., Thomassey, S., Hamad, M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.04.2021
Elsevier Science Ltd
Témata:
ISSN:0268-4012, 1873-4707
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Two data-driven approached are proposed to enhance decision making better in supply chain.•A multivariate time series forecasting is performed with a Long Short Term Memory (LSTM) network based method.•A LSTM Autoencoder network-based method combined with a one-class support vector machine.•The proposed approach is implemented to both benchmarking and real datasets. Making appropriate decisions is indeed a key factor to help companies facing challenges from supply chains nowadays. In this paper, we propose two data-driven approaches that allow making better decisions in supply chain management. In particular, we suggest a Long Short Term Memory (LSTM) network-based method for forecasting multivariate time series data and an LSTM Autoencoder network-based method combined with a one-class support vector machine algorithm for detecting anomalies in sales. Unlike other approaches, we recommend combining external and internal company data sources for the purpose of enhancing the performance of forecasting algorithms using multivariate LSTM with the optimal hyperparameters. In addition, we also propose a method to optimize hyperparameters for hybrid algorithms for detecting anomalies in time series data. The proposed approaches will be applied to both benchmarking datasets and real data in fashion retail. The obtained results show that the LSTM Autoencoder based method leads to better performance for anomaly detection compared to the LSTM based method suggested in a previous study. The proposed forecasting method for multivariate time series data also performs better than some other methods based on a dataset provided by NASA.
AbstractList •Two data-driven approached are proposed to enhance decision making better in supply chain.•A multivariate time series forecasting is performed with a Long Short Term Memory (LSTM) network based method.•A LSTM Autoencoder network-based method combined with a one-class support vector machine.•The proposed approach is implemented to both benchmarking and real datasets. Making appropriate decisions is indeed a key factor to help companies facing challenges from supply chains nowadays. In this paper, we propose two data-driven approaches that allow making better decisions in supply chain management. In particular, we suggest a Long Short Term Memory (LSTM) network-based method for forecasting multivariate time series data and an LSTM Autoencoder network-based method combined with a one-class support vector machine algorithm for detecting anomalies in sales. Unlike other approaches, we recommend combining external and internal company data sources for the purpose of enhancing the performance of forecasting algorithms using multivariate LSTM with the optimal hyperparameters. In addition, we also propose a method to optimize hyperparameters for hybrid algorithms for detecting anomalies in time series data. The proposed approaches will be applied to both benchmarking datasets and real data in fashion retail. The obtained results show that the LSTM Autoencoder based method leads to better performance for anomaly detection compared to the LSTM based method suggested in a previous study. The proposed forecasting method for multivariate time series data also performs better than some other methods based on a dataset provided by NASA.
Making appropriate decisions is indeed a key factor to help companies facing challenges from supply chains nowadays. In this paper, we propose two data-driven approaches that allow making better decisions in supply chain management. In particular, we suggest a Long Short Term Memory (LSTM) network-based method for forecasting multivariate time series data and an LSTM Autoencoder network-based method combined with a one-class support vector machine algorithm for detecting anomalies in sales. Unlike other approaches, we recommend combining external and internal company data sources for the purpose of enhancing the performance of forecasting algorithms using multivariate LSTM with the optimal hyperparameters. In addition, we also propose a method to optimize hyperparameters for hybrid algorithms for detecting anomalies in time series data. The proposed approaches will be applied to both benchmarking datasets and real data in fashion retail. The obtained results show that the LSTM Autoencoder based method leads to better performance for anomaly detection compared to the LSTM based method suggested in a previous study. The proposed forecasting method for multivariate time series data also performs better than some other methods based on a dataset provided by NASA.
ArticleNumber 102282
Author Hamad, M.
Nguyen, H.D.
Thomassey, S.
Tran, K.P.
Author_xml – sequence: 1
  givenname: H.D.
  surname: Nguyen
  fullname: Nguyen, H.D.
  organization: Institute of Artificial Intelligence and Data Science, Dong A University, Da Nang, Viet Nam
– sequence: 2
  givenname: K.P.
  surname: Tran
  fullname: Tran, K.P.
  email: kim-phuc.tran@ensait.fr
  organization: ENSAIT, GEMTEX - Laboratoire de Génie et Matériaux Textiles, Lille, F-59000, France
– sequence: 3
  givenname: S.
  surname: Thomassey
  fullname: Thomassey, S.
  organization: ENSAIT, GEMTEX - Laboratoire de Génie et Matériaux Textiles, Lille, F-59000, France
– sequence: 4
  givenname: M.
  surname: Hamad
  fullname: Hamad, M.
  organization: CEO Driven, 54 Rue Norbert Segard, Hem, 59510, France
BookMark eNqNkUFv2yAUx1HVSUu7fYYh7ewMsGPwYYeoa7tKmXpod0YYnmOsGDLAq_IN-rGHk6qHXdoT8PT_PXg_LtC58w4Q-kLJkhJafxuWdrCu8-M2LRlhc5Uxwc7QggpeFhUn_BwtCKtFURHKPqKLGAdCKCcrtkDPNz6AVjFZt8XKGbx2flS7A_4BCXSy3mG13wevdA8RT3GObR4efx2zx816Sh6c9gYCzkjv7J8pR59s6nHqYcZ3Vqu5VcTW4TjlwgHrXuXDqJzawggufUIfOrWL8PllvUS_b64fr34Wm_vbu6v1ptBlVaaiE23TErFqSdUKVgqhGqFZbQwVxjRaAK80MaXipuMtZ4yAKXldKd2YRoialpfo66lvHmp-aJKDn4LLV0q2ImW1qnI-p76fUjr4GAN0Utt0nCEFZXeSEjnLl4N8lS9n-fIkP_P8P34f7KjC4R3k-kRClvDXQpBR2-wXjM0flaTx9s0e_wAh_qid
CitedBy_id crossref_primary_10_1016_j_knosys_2021_107763
crossref_primary_10_1016_j_sna_2023_114982
crossref_primary_10_1177_14759217231183143
crossref_primary_10_3390_s21030972
crossref_primary_10_3390_su16093581
crossref_primary_10_1016_j_eswa_2022_117056
crossref_primary_10_1016_j_procir_2025_02_214
crossref_primary_10_3390_bioengineering10040405
crossref_primary_10_3390_jrfm18050277
crossref_primary_10_1007_s42835_023_01630_9
crossref_primary_10_3390_app112110126
crossref_primary_10_1002_for_3073
crossref_primary_10_1016_j_cie_2025_111518
crossref_primary_10_1007_s10489_021_02736_1
crossref_primary_10_1016_j_ijggc_2024_104188
crossref_primary_10_3233_MGS_221511
crossref_primary_10_1016_j_nanoen_2024_110186
crossref_primary_10_3390_s23136078
crossref_primary_10_1109_TVT_2025_3537578
crossref_primary_10_3390_s23167239
crossref_primary_10_1016_j_apenergy_2023_122438
crossref_primary_10_1016_j_apenergy_2023_120932
crossref_primary_10_1007_s10479_025_06618_4
crossref_primary_10_1016_j_pnucene_2024_105114
crossref_primary_10_59717_j_xinn_energy_2025_100081
crossref_primary_10_1016_j_seppur_2022_121651
crossref_primary_10_1016_j_procs_2022_12_386
crossref_primary_10_1177_13506501211073242
crossref_primary_10_1177_1548512921999108
crossref_primary_10_1080_08982112_2023_2179404
crossref_primary_10_3390_app11135869
crossref_primary_10_1016_j_oceaneng_2024_117700
crossref_primary_10_1007_s12351_024_00831_y
crossref_primary_10_3390_s24092833
crossref_primary_10_3390_diagnostics13020254
crossref_primary_10_1016_j_eswa_2022_118006
crossref_primary_10_1103_PhysRevAccelBeams_26_024801
crossref_primary_10_1109_ACCESS_2024_3405628
crossref_primary_10_4018_IJeC_315789
crossref_primary_10_4018_JOEUC_335591
crossref_primary_10_1007_s10489_025_06749_y
crossref_primary_10_1016_j_procs_2022_01_242
crossref_primary_10_1016_j_asoc_2022_108768
crossref_primary_10_1016_j_procs_2025_04_514
crossref_primary_10_1108_JBIM_02_2023_0122
crossref_primary_10_1007_s42979_024_03483_z
crossref_primary_10_1093_jigpal_jzae023
crossref_primary_10_5585_2023_24056
crossref_primary_10_32604_cmc_2022_021113
crossref_primary_10_3390_s24051495
crossref_primary_10_1109_JSEN_2024_3480133
crossref_primary_10_1155_2021_5543204
crossref_primary_10_1007_s11042_023_15638_w
crossref_primary_10_1016_j_cie_2023_109768
crossref_primary_10_1016_j_ifacol_2023_10_974
crossref_primary_10_1016_j_jfoodeng_2023_111914
crossref_primary_10_1016_j_engappai_2024_108469
crossref_primary_10_1016_j_ocemod_2024_102463
crossref_primary_10_1007_s41060_024_00692_w
crossref_primary_10_1016_j_apenergy_2024_124520
crossref_primary_10_1016_j_asoc_2024_111686
crossref_primary_10_1016_j_neucom_2022_06_042
crossref_primary_10_1080_00207543_2024_2342019
crossref_primary_10_1109_JSEN_2024_3404558
crossref_primary_10_3389_fcomp_2024_1424935
crossref_primary_10_1109_JSEN_2022_3230361
crossref_primary_10_1080_00207543_2022_2029611
crossref_primary_10_1007_s00521_024_09901_w
crossref_primary_10_1093_ijlct_ctae028
crossref_primary_10_1049_2024_8425877
crossref_primary_10_1109_ACCESS_2024_3425582
crossref_primary_10_1155_2023_1594622
crossref_primary_10_1007_s11276_021_02755_3
crossref_primary_10_1016_j_ijdrr_2024_105055
crossref_primary_10_1016_j_ymssp_2023_110819
crossref_primary_10_1080_00207543_2023_2179859
crossref_primary_10_1016_j_compind_2021_103509
crossref_primary_10_1016_j_dsp_2022_103704
crossref_primary_10_1080_03772063_2024_2448588
crossref_primary_10_3390_app12168239
crossref_primary_10_1016_j_icte_2024_07_007
crossref_primary_10_3390_electronics13112021
crossref_primary_10_1016_j_jii_2023_100443
crossref_primary_10_3390_ai5030060
crossref_primary_10_1007_s12652_022_04493_6
crossref_primary_10_1109_MM_2021_3112476
crossref_primary_10_1109_ACCESS_2024_3524942
crossref_primary_10_1109_ACCESS_2024_3364395
crossref_primary_10_1155_2022_7898888
crossref_primary_10_1016_j_cosrev_2024_100665
crossref_primary_10_1016_j_idm_2025_08_006
crossref_primary_10_1007_s00521_023_08222_8
crossref_primary_10_1016_j_eswa_2022_118604
crossref_primary_10_1515_ijcre_2022_0116
crossref_primary_10_1109_JBHI_2023_3323014
crossref_primary_10_1002_spe_3407
crossref_primary_10_1007_s00521_024_09962_x
crossref_primary_10_19113_sdufenbed_1655066
crossref_primary_10_1016_j_geoen_2024_213279
crossref_primary_10_1007_s12065_021_00694_8
crossref_primary_10_1016_j_ipm_2023_103383
crossref_primary_10_1016_j_prime_2025_100911
crossref_primary_10_1109_ACCESS_2023_3308698
crossref_primary_10_1155_2022_6469054
crossref_primary_10_3390_s22239428
crossref_primary_10_1109_JIOT_2023_3323620
crossref_primary_10_1016_j_eswa_2021_115153
crossref_primary_10_3390_en15134877
crossref_primary_10_1007_s11063_022_11037_8
crossref_primary_10_1016_j_neucom_2022_06_014
crossref_primary_10_1016_j_knosys_2023_111002
crossref_primary_10_3390_en17081947
crossref_primary_10_1155_2022_3058947
crossref_primary_10_1016_j_egyr_2023_04_236
crossref_primary_10_1007_s00500_023_09121_9
crossref_primary_10_1287_ijoc_2022_0155
crossref_primary_10_3390_en17102340
crossref_primary_10_3390_s24072125
crossref_primary_10_1007_s10462_023_10662_6
crossref_primary_10_1080_00223131_2025_2464742
crossref_primary_10_1587_nolta_15_183
crossref_primary_10_3389_fgene_2025_1637427
crossref_primary_10_1016_j_cie_2021_107770
crossref_primary_10_1108_JSIT_03_2025_0139
crossref_primary_10_1016_j_petrol_2022_110983
crossref_primary_10_3390_pr13020594
crossref_primary_10_1155_2022_7266037
crossref_primary_10_1016_j_compchemeng_2023_108560
crossref_primary_10_3390_en15186659
crossref_primary_10_1016_j_jss_2024_111989
crossref_primary_10_1007_s10479_023_05760_1
crossref_primary_10_1016_j_eswa_2023_122895
crossref_primary_10_3390_s22165945
crossref_primary_10_1007_s12530_023_09513_0
crossref_primary_10_3389_fceng_2022_899941
crossref_primary_10_4018_JGIM_361589
crossref_primary_10_3390_electronics11203315
crossref_primary_10_1007_s10489_025_06461_x
crossref_primary_10_2166_hydro_2024_061
crossref_primary_10_1016_j_conengprac_2023_105531
crossref_primary_10_1016_j_trf_2024_12_031
crossref_primary_10_3390_math10203796
crossref_primary_10_1002_stc_2993
crossref_primary_10_1080_00207543_2024_2390968
crossref_primary_10_3390_app132111636
crossref_primary_10_1109_ACCESS_2022_3167640
crossref_primary_10_1109_ACCESS_2023_3306409
crossref_primary_10_1016_j_ifacol_2022_09_573
crossref_primary_10_4018_JOEUC_342841
crossref_primary_10_7736_JKSPE_024_129
crossref_primary_10_1016_j_eswa_2024_123226
crossref_primary_10_1016_j_jclepro_2023_140116
crossref_primary_10_1109_ACCESS_2023_3325896
crossref_primary_10_3390_en17071665
crossref_primary_10_3390_app122211650
crossref_primary_10_1016_j_ssci_2022_105766
crossref_primary_10_1080_00207543_2021_1901153
crossref_primary_10_3390_bioengineering10060683
crossref_primary_10_1016_j_aei_2023_102041
crossref_primary_10_1177_03611981241287193
crossref_primary_10_1155_2022_4241016
crossref_primary_10_3390_app15073507
crossref_primary_10_1016_j_jksuci_2022_10_021
crossref_primary_10_1155_2022_5386341
crossref_primary_10_3390_s23218688
crossref_primary_10_1007_s10489_021_02662_2
crossref_primary_10_1016_j_procs_2024_09_153
crossref_primary_10_3390_electronics10091007
crossref_primary_10_3390_a16010052
crossref_primary_10_1109_ACCESS_2024_3500793
crossref_primary_10_1016_j_ress_2022_108353
crossref_primary_10_4018_JOEUC_378673
crossref_primary_10_1109_TITS_2025_3580960
crossref_primary_10_1016_j_ifacol_2022_09_550
crossref_primary_10_3390_info13010002
crossref_primary_10_3390_su152416759
crossref_primary_10_3390_jrfm17110485
crossref_primary_10_3390_s25051610
crossref_primary_10_1016_j_energy_2024_132823
crossref_primary_10_1007_s00500_021_06110_8
crossref_primary_10_1007_s10479_022_05070_y
crossref_primary_10_1186_s40537_023_00746_z
crossref_primary_10_1016_j_ipm_2023_103569
crossref_primary_10_3390_app121910078
crossref_primary_10_1109_TCSVT_2022_3178430
crossref_primary_10_1007_s00521_022_07375_2
crossref_primary_10_1080_09720510_2022_2130572
crossref_primary_10_1016_j_websem_2024_100821
crossref_primary_10_1002_widm_70016
crossref_primary_10_14267_VEZTUD_2024_07_08_08
crossref_primary_10_1007_s10846_021_01496_x
crossref_primary_10_1016_j_eswa_2023_121698
crossref_primary_10_1155_2023_9523230
crossref_primary_10_1016_j_inffus_2022_10_008
crossref_primary_10_1109_ACCESS_2023_3266275
crossref_primary_10_1007_s00422_022_00937_6
crossref_primary_10_3390_s23167182
crossref_primary_10_1007_s10661_024_12848_z
crossref_primary_10_3390_forecast6020014
crossref_primary_10_1016_j_ifacol_2022_09_659
crossref_primary_10_1007_s10586_024_04365_y
crossref_primary_10_3390_app14146188
crossref_primary_10_1016_j_apor_2021_103030
crossref_primary_10_1063_5_0221722
crossref_primary_10_1016_j_chroma_2022_463486
crossref_primary_10_1016_j_frl_2023_104304
Cites_doi 10.1080/00207543.2019.1627439
10.1109/ICMLA.2018.00227
10.1016/j.compind.2019.103182
10.1016/j.ijinfomgt.2019.07.011
10.1016/j.ijpe.2010.07.018
10.1016/j.ress.2018.11.027
10.1109/ICMLA.2018.00207
10.1109/JAS.2019.1911393
10.1016/S0925-2312(01)00702-0
10.1016/j.ijinfomgt.2019.06.002
10.3844/jmssp.2018.253.260
10.1093/sjaf/34.3.131
10.1016/j.ejor.2006.12.004
10.1016/j.ijinfomgt.2019.05.027
10.1016/j.ifacol.2019.11.567
10.1016/j.tre.2019.03.001
10.1080/00207543.2018.1488086
10.1016/j.asoc.2020.106344
10.1080/10962247.2018.1459956
10.1109/TNNLS.2016.2582924
10.3390/su9112073
10.1016/j.ijinfomgt.2018.08.006
10.1162/089976601750264965
10.1007/978-3-319-48057-2_9
10.1016/j.ijinfomgt.2018.06.008
10.5755/j01.eee.19.3.3699
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. Apr 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Apr 2021
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ijinfomgt.2020.102282
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Social Sciences (General)
EISSN 1873-4707
ExternalDocumentID 10_1016_j_ijinfomgt_2020_102282
S026840122031481X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77K
8P~
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFRF
ABIVO
ABJNI
ABKBG
ABMAC
ABMMH
ABMVD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACHQT
ACHRH
ACNTT
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AFFNX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
BNSAS
C2-
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLX
HMY
HVGLF
HZ~
IHE
J1W
KOM
LG8
LY1
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SBM
SCC
SDF
SDG
SDS
SES
SEW
SPCBC
SSB
SSL
SSO
SSS
SSZ
T5K
TAE
TAF
TN5
U5U
UHS
UNMZH
WUQ
XPP
YK3
ZMT
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c343t-f8b9b085b04b82388a98c26dd18dd9c8e74c0d3a7df7b7220ed3764ac9d988613
ISICitedReferencesCount 294
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000618806300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0268-4012
IngestDate Fri Nov 14 18:40:57 EST 2025
Sat Nov 29 07:17:43 EST 2025
Tue Nov 18 21:04:25 EST 2025
Fri Feb 23 02:46:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords One-class SVM
Long short term memory networks
Autoencoder
Forecasting
Anomaly detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-f8b9b085b04b82388a98c26dd18dd9c8e74c0d3a7df7b7220ed3764ac9d988613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2503454376
PQPubID 32309
ParticipantIDs proquest_journals_2503454376
crossref_citationtrail_10_1016_j_ijinfomgt_2020_102282
crossref_primary_10_1016_j_ijinfomgt_2020_102282
elsevier_sciencedirect_doi_10_1016_j_ijinfomgt_2020_102282
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of information management
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Roesch, Van Deusen (bib0125) 2010; 34
Sirovich, Craparotta, Marocco (bib0150) 2018
Thomassey (bib0155) 2010; 128
Greff, Srivastava, Koutník, Steunebrink, Schmidhuber (bib0055) 2016; 28
Huang, Wang (bib0070) 2014
Ellefsen, Bjørlykhaug, Æsøy, Ushakov, Zhang (bib0045) 2019; 183
Bontemps, McDermott, Le-Khac (bib0015) 2016
Malhotra, Vig, Shroff, Agarwal (bib0100) 2015
Schölkopf, Platt, Shawe-Taylor, Smola, Williamson (bib0135) 2001; 13
Zhang (bib0185) 2003; 50
Provotar, Linder, Veres (bib0120) 2019
Principi, Rossetti, Squartini, Piazza (bib0115) 2019; 6
Yang, Yu, Zhao, Yu, Xu, Wu, Liu (bib0180) 2020; 50
Sharma, Singh (bib0140) 2013; 65
Freeman, Taylor, Gharabaghi, Thé (bib0050) 2018; 68
Xia, Song, Zheng, Pan, Xi (bib0175) 2020; 115
Ivanov, Dolgui, Sokolov (bib0080) 2019; 57
Lim, Zohren (bib0090) 2020
Tran, Du Nguyen, Thomassey (bib0165) 2019; 52
Ivanov, Dolgui (bib0075) 2020
Carbonneau, Laframboise, Vahidov (bib0020) 2008; 184
Saxena, Goebel (bib0130) 2008
Thomassey (bib0160) 2014
Chalapathy, Chawla (bib0025) 2019
Siami-Namini, Tavakoli, Namin (bib0145) 2018
Maqsood, Mehmood, Maqsood, Yasir, Afzal, Aadil, Selim, Muhammad (bib0105) 2020; 50
Dolgui, Ivanov, Potryasaev, Sokolov, Ivanova, Werner (bib0040) 2020; 58
Zhao, Dai, Zhou (bib0190) 2013; 19
Alfian, Syafrudin, Rhee (bib0010) 2017; 9
Habeeb, Nasaruddin, Gani, Hashem, Ahmed, Imran (bib0060) 2019; 45
Acharya, Singh, Pereira, Singh (bib0005) 2018; 42
Kingma, Welling (bib0085) 2019
Hosseini, Ivanov, Dolgui (bib0065) 2019; 125
Chen, Das, Ivanov (bib0030) 2019; 49
Malhotra, Ramakrishnan, Anand, Vig, Agarwal, Shroff (bib0095) 2016
Pereira, Silveira (bib0110) 2018
Wang (bib0170) 2018
Deng, Zhang, Cheng, Zheng, Jiang, Liu, Peng (bib0035) 2020
Sirovich (10.1016/j.ijinfomgt.2020.102282_bib0150) 2018
Chalapathy (10.1016/j.ijinfomgt.2020.102282_bib0025) 2019
Alfian (10.1016/j.ijinfomgt.2020.102282_bib0010) 2017; 9
Chen (10.1016/j.ijinfomgt.2020.102282_bib0030) 2019; 49
Freeman (10.1016/j.ijinfomgt.2020.102282_bib0050) 2018; 68
Kingma (10.1016/j.ijinfomgt.2020.102282_bib0085) 2019
Malhotra (10.1016/j.ijinfomgt.2020.102282_bib0095) 2016
Ellefsen (10.1016/j.ijinfomgt.2020.102282_bib0045) 2019; 183
Saxena (10.1016/j.ijinfomgt.2020.102282_bib0130) 2008
Huang (10.1016/j.ijinfomgt.2020.102282_bib0070) 2014
Xia (10.1016/j.ijinfomgt.2020.102282_bib0175) 2020; 115
Ivanov (10.1016/j.ijinfomgt.2020.102282_bib0075) 2020
Maqsood (10.1016/j.ijinfomgt.2020.102282_bib0105) 2020; 50
Malhotra (10.1016/j.ijinfomgt.2020.102282_bib0100) 2015
Ivanov (10.1016/j.ijinfomgt.2020.102282_bib0080) 2019; 57
Sharma (10.1016/j.ijinfomgt.2020.102282_bib0140) 2013; 65
Acharya (10.1016/j.ijinfomgt.2020.102282_bib0005) 2018; 42
Deng (10.1016/j.ijinfomgt.2020.102282_bib0035) 2020
Thomassey (10.1016/j.ijinfomgt.2020.102282_bib0155) 2010; 128
Habeeb (10.1016/j.ijinfomgt.2020.102282_bib0060) 2019; 45
Hosseini (10.1016/j.ijinfomgt.2020.102282_bib0065) 2019; 125
Carbonneau (10.1016/j.ijinfomgt.2020.102282_bib0020) 2008; 184
Lim (10.1016/j.ijinfomgt.2020.102282_bib0090) 2020
Bontemps (10.1016/j.ijinfomgt.2020.102282_bib0015) 2016
Schölkopf (10.1016/j.ijinfomgt.2020.102282_bib0135) 2001; 13
Dolgui (10.1016/j.ijinfomgt.2020.102282_bib0040) 2020; 58
Zhang (10.1016/j.ijinfomgt.2020.102282_bib0185) 2003; 50
Yang (10.1016/j.ijinfomgt.2020.102282_bib0180) 2020; 50
Greff (10.1016/j.ijinfomgt.2020.102282_bib0055) 2016; 28
Zhao (10.1016/j.ijinfomgt.2020.102282_bib0190) 2013; 19
Principi (10.1016/j.ijinfomgt.2020.102282_bib0115) 2019; 6
Tran (10.1016/j.ijinfomgt.2020.102282_bib0165) 2019; 52
Provotar (10.1016/j.ijinfomgt.2020.102282_bib0120) 2019
Wang (10.1016/j.ijinfomgt.2020.102282_bib0170) 2018
Roesch (10.1016/j.ijinfomgt.2020.102282_bib0125) 2010; 34
Thomassey (10.1016/j.ijinfomgt.2020.102282_bib0160) 2014
Pereira (10.1016/j.ijinfomgt.2020.102282_bib0110) 2018
Siami-Namini (10.1016/j.ijinfomgt.2020.102282_bib0145) 2018
References_xml – volume: 9
  start-page: 2073
  year: 2017
  ident: bib0010
  article-title: Real-time monitoring system using smartphone-based sensors and nosql database for perishable supply chain
  publication-title: Sustainability
– volume: 183
  start-page: 240
  year: 2019
  end-page: 251
  ident: bib0045
  article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture
  publication-title: Reliability Engineering & System Safety
– volume: 50
  start-page: 452
  year: 2020
  end-page: 462
  ident: bib0180
  article-title: Big data analytics for financial market volatility forecast based on support vector machine
  publication-title: International Journal of Information Management
– volume: 42
  start-page: 90
  year: 2018
  end-page: 101
  ident: bib0005
  article-title: Big data, knowledge co-creation and decision making in fashion industry
  publication-title: International Journal of Information Management
– volume: 28
  start-page: 2222
  year: 2016
  end-page: 2232
  ident: bib0055
  article-title: LSTM: A search space odyssey
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 115
  start-page: 103182
  year: 2020
  ident: bib0175
  article-title: An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation
  publication-title: Computers in Industry
– start-page: 9
  year: 2014
  end-page: 27
  ident: bib0160
  article-title: Sales forecasting in apparel and fashion industry: A review
  publication-title: Intelligent fashion forecasting systems: Models and applications
– start-page: 106344
  year: 2020
  ident: bib0035
  article-title: A remaining useful life prediction method with long-short term feature processing for aircraft engines
  publication-title: Applied Soft Computing
– start-page: 1394
  year: 2018
  end-page: 1401
  ident: bib0145
  article-title: A comparison of arima and LSTM in forecasting time series
  publication-title: 2018 17th IEEE international conference on machine learning and applications (ICMLA)
– start-page: 173
  year: 2018
  end-page: 195
  ident: bib0150
  article-title: An intelligent fashion replenishment system based on data analytics and expert judgment
  publication-title: In artificial intelligence for fashion industry in the big data era
– volume: 184
  start-page: 1140
  year: 2008
  end-page: 1154
  ident: bib0020
  article-title: Application of machine learning techniques for supply chain demand forecasting
  publication-title: European Journal of Operational Research
– volume: 65
  year: 2013
  ident: bib0140
  article-title: Outlier detection in RFID datasets in supply chain process: A review
  publication-title: International Journal of Computer Applications
– start-page: 1
  year: 2020
  end-page: 14
  ident: bib0075
  article-title: A digital supply chain twin for managing the disruption risks and resilience in the era of industry 4.0
  publication-title: Production Planning & Control
– year: 2019
  ident: bib0085
  article-title: An introduction to variational autoencoders
– start-page: 1275
  year: 2018
  end-page: 1282
  ident: bib0110
  article-title: Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders with attention
  publication-title: 2018 17th IEEE international conference on machine learning and applications (ICMLA)
– year: 2020
  ident: bib0090
  article-title: Time series forecasting with deep learning: A survey
– volume: 45
  start-page: 289
  year: 2019
  end-page: 307
  ident: bib0060
  article-title: Real-time big data processing for anomaly detection: A survey
  publication-title: International Journal of Information Management
– volume: 58
  start-page: 2184
  year: 2020
  end-page: 2199
  ident: bib0040
  article-title: Blockchain-oriented dynamic modelling of smart contract design and execution in the supply chain
  publication-title: International Journal of Production Research
– year: 2019
  ident: bib0025
  article-title: Deep learning for anomaly detection: A survey
– volume: 57
  start-page: 829
  year: 2019
  end-page: 846
  ident: bib0080
  article-title: The impact of digital technology and industry 4.0 on the ripple effect and supply chain risk analytics
  publication-title: International Journal of Production Research
– year: 2016
  ident: bib0095
  article-title: LSTM-based encoder-decoder for multi-sensor anomaly detection
– volume: 13
  start-page: 1443
  year: 2001
  end-page: 1471
  ident: bib0135
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Computation
– year: 2008
  ident: bib0130
  article-title: C-MAPSS data set
  publication-title: NASA Ames prognostics data repository
– start-page: 253
  year: 2018
  end-page: 260
  ident: bib0170
  article-title: Advanced multivariate time series forecasting models
  publication-title: Journal of Mathematics and Statistics
– volume: 34
  start-page: 131
  year: 2010
  end-page: 137
  ident: bib0125
  article-title: Anomaly detection for analysis of annual inventory data: A quality control approach
  publication-title: Southern Journal of Applied Forestry
– start-page: 141
  year: 2016
  end-page: 152
  ident: bib0015
  article-title: Collective anomaly detection based on long short-term memory recurrent neural networks
  publication-title: International conference on future data and security engineering, Springer
– volume: 50
  start-page: 432
  year: 2020
  end-page: 451
  ident: bib0105
  article-title: A local and global event sentiment based efficient stock exchange forecasting using deep learning
  publication-title: International Journal of Information Management
– start-page: 513
  year: 2019
  end-page: 517
  ident: bib0120
  article-title: Unsupervised anomaly detection in time series using LSTM-based autoencoders
  publication-title: IEEE international conference on advanced trends in information theory (ATIT)
– volume: 52
  start-page: 2408
  year: 2019
  end-page: 2412
  ident: bib0165
  article-title: Anomaly detection using long short term memory networks and its applications in supply chain management
  publication-title: IFAC-PapersOnLine
– volume: 128
  start-page: 470
  year: 2010
  end-page: 483
  ident: bib0155
  article-title: Sales forecasts in clothing industry: The key success factor of the supply chain management
  publication-title: International Journal of Production Economics
– start-page: 89
  year: 2015
  end-page: 94
  ident: bib0100
  article-title: Long short term memory networks for anomaly detection in time series
  publication-title: Proceedings, Vol. 89
– volume: 50
  start-page: 159
  year: 2003
  end-page: 175
  ident: bib0185
  article-title: Time series forecasting using a hybrid arima and neural network model
  publication-title: Neurocomputing
– volume: 6
  start-page: 441
  year: 2019
  end-page: 451
  ident: bib0115
  article-title: Unsupervised electric motor fault detection by using deep autoencoders
  publication-title: IEEE/CAA Journal of Automatica Sinica
– volume: 125
  start-page: 285
  year: 2019
  end-page: 307
  ident: bib0065
  article-title: Review of quantitative methods for supply chain resilience analysis
  publication-title: Transportation Research Part E: Logistics and Transportation Review
– volume: 68
  start-page: 866
  year: 2018
  end-page: 886
  ident: bib0050
  article-title: Forecasting air quality time series using deep learning
  publication-title: Journal of the Air & Waste Management Association
– volume: 49
  start-page: 330
  year: 2019
  end-page: 342
  ident: bib0030
  article-title: Building resilience and managing post-disruption supply chain recovery: Lessons from the information and communication technology industry
  publication-title: International Journal of Information Management
– volume: 19
  start-page: 65
  year: 2013
  end-page: 68
  ident: bib0190
  article-title: Outlier detection in cold-chain logistics temperature monitoring
  publication-title: Elektronika ir Elektrotechnika
– start-page: 3309
  year: 2014
  end-page: 3312
  ident: bib0070
  article-title: Research on supply chain abnormal event detection based on the RFID technology
  publication-title: Applied Mechanics and Materials, Vol. 513
– volume: 58
  start-page: 2184
  issue: 7
  year: 2020
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0040
  article-title: Blockchain-oriented dynamic modelling of smart contract design and execution in the supply chain
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2019.1627439
– start-page: 1394
  year: 2018
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0145
  article-title: A comparison of arima and LSTM in forecasting time series
  publication-title: 2018 17th IEEE international conference on machine learning and applications (ICMLA)
  doi: 10.1109/ICMLA.2018.00227
– volume: 115
  start-page: 103182
  year: 2020
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0175
  article-title: An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation
  publication-title: Computers in Industry
  doi: 10.1016/j.compind.2019.103182
– start-page: 9
  year: 2014
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0160
  article-title: Sales forecasting in apparel and fashion industry: A review
– volume: 50
  start-page: 432
  year: 2020
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0105
  article-title: A local and global event sentiment based efficient stock exchange forecasting using deep learning
  publication-title: International Journal of Information Management
  doi: 10.1016/j.ijinfomgt.2019.07.011
– year: 2019
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0085
– volume: 65
  issue: 25
  year: 2013
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0140
  article-title: Outlier detection in RFID datasets in supply chain process: A review
  publication-title: International Journal of Computer Applications
– volume: 128
  start-page: 470
  issue: 2
  year: 2010
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0155
  article-title: Sales forecasts in clothing industry: The key success factor of the supply chain management
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2010.07.018
– volume: 183
  start-page: 240
  year: 2019
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0045
  article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2018.11.027
– start-page: 1275
  year: 2018
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0110
  article-title: Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders with attention
  publication-title: 2018 17th IEEE international conference on machine learning and applications (ICMLA)
  doi: 10.1109/ICMLA.2018.00207
– volume: 6
  start-page: 441
  issue: 2
  year: 2019
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0115
  article-title: Unsupervised electric motor fault detection by using deep autoencoders
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2019.1911393
– volume: 50
  start-page: 159
  year: 2003
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0185
  article-title: Time series forecasting using a hybrid arima and neural network model
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00702-0
– volume: 49
  start-page: 330
  year: 2019
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0030
  article-title: Building resilience and managing post-disruption supply chain recovery: Lessons from the information and communication technology industry
  publication-title: International Journal of Information Management
  doi: 10.1016/j.ijinfomgt.2019.06.002
– start-page: 513
  year: 2019
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0120
  article-title: Unsupervised anomaly detection in time series using LSTM-based autoencoders
  publication-title: IEEE international conference on advanced trends in information theory (ATIT)
– start-page: 253
  issue: 14
  year: 2018
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0170
  article-title: Advanced multivariate time series forecasting models
  publication-title: Journal of Mathematics and Statistics
  doi: 10.3844/jmssp.2018.253.260
– volume: 34
  start-page: 131
  issue: 3
  year: 2010
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0125
  article-title: Anomaly detection for analysis of annual inventory data: A quality control approach
  publication-title: Southern Journal of Applied Forestry
  doi: 10.1093/sjaf/34.3.131
– start-page: 1
  year: 2020
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0075
  article-title: A digital supply chain twin for managing the disruption risks and resilience in the era of industry 4.0
  publication-title: Production Planning & Control
– volume: 184
  start-page: 1140
  issue: 3
  year: 2008
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0020
  article-title: Application of machine learning techniques for supply chain demand forecasting
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.12.004
– volume: 50
  start-page: 452
  year: 2020
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0180
  article-title: Big data analytics for financial market volatility forecast based on support vector machine
  publication-title: International Journal of Information Management
  doi: 10.1016/j.ijinfomgt.2019.05.027
– volume: 52
  start-page: 2408
  issue: 13
  year: 2019
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0165
  article-title: Anomaly detection using long short term memory networks and its applications in supply chain management
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.11.567
– start-page: 3309
  year: 2014
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0070
  article-title: Research on supply chain abnormal event detection based on the RFID technology
– start-page: 89
  year: 2015
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0100
  article-title: Long short term memory networks for anomaly detection in time series
  publication-title: Proceedings, Vol. 89
– year: 2008
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0130
  article-title: C-MAPSS data set
– start-page: 173
  year: 2018
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0150
  article-title: An intelligent fashion replenishment system based on data analytics and expert judgment
– volume: 125
  start-page: 285
  year: 2019
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0065
  article-title: Review of quantitative methods for supply chain resilience analysis
  publication-title: Transportation Research Part E: Logistics and Transportation Review
  doi: 10.1016/j.tre.2019.03.001
– volume: 57
  start-page: 829
  issue: 3
  year: 2019
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0080
  article-title: The impact of digital technology and industry 4.0 on the ripple effect and supply chain risk analytics
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2018.1488086
– year: 2020
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0090
– year: 2016
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0095
– start-page: 106344
  year: 2020
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0035
  article-title: A remaining useful life prediction method with long-short term feature processing for aircraft engines
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106344
– volume: 68
  start-page: 866
  issue: 8
  year: 2018
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0050
  article-title: Forecasting air quality time series using deep learning
  publication-title: Journal of the Air & Waste Management Association
  doi: 10.1080/10962247.2018.1459956
– volume: 28
  start-page: 2222
  issue: 10
  year: 2016
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0055
  article-title: LSTM: A search space odyssey
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2582924
– volume: 9
  start-page: 2073
  issue: 11
  year: 2017
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0010
  article-title: Real-time monitoring system using smartphone-based sensors and nosql database for perishable supply chain
  publication-title: Sustainability
  doi: 10.3390/su9112073
– volume: 45
  start-page: 289
  year: 2019
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0060
  article-title: Real-time big data processing for anomaly detection: A survey
  publication-title: International Journal of Information Management
  doi: 10.1016/j.ijinfomgt.2018.08.006
– volume: 13
  start-page: 1443
  issue: 7
  year: 2001
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0135
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Computation
  doi: 10.1162/089976601750264965
– start-page: 141
  year: 2016
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0015
  article-title: Collective anomaly detection based on long short-term memory recurrent neural networks
  publication-title: International conference on future data and security engineering, Springer
  doi: 10.1007/978-3-319-48057-2_9
– year: 2019
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0025
– volume: 42
  start-page: 90
  year: 2018
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0005
  article-title: Big data, knowledge co-creation and decision making in fashion industry
  publication-title: International Journal of Information Management
  doi: 10.1016/j.ijinfomgt.2018.06.008
– volume: 19
  start-page: 65
  issue: 3
  year: 2013
  ident: 10.1016/j.ijinfomgt.2020.102282_bib0190
  article-title: Outlier detection in cold-chain logistics temperature monitoring
  publication-title: Elektronika ir Elektrotechnika
  doi: 10.5755/j01.eee.19.3.3699
SSID ssj0017052
Score 2.6948183
Snippet •Two data-driven approached are proposed to enhance decision making better in supply chain.•A multivariate time series forecasting is performed with a Long...
Making appropriate decisions is indeed a key factor to help companies facing challenges from supply chains nowadays. In this paper, we propose two data-driven...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102282
SubjectTerms Algorithms
Anomalies
Anomaly detection
Autoencoder
Companies
Data
Datasets
Decision making
Decisions
Forecasting
Long short term memory networks
Multivariate analysis
One-class SVM
Optimization
Sales
Short term memory
Social networks
Space technology
Supply
Supply chain management
Supply chains
Support vector machines
Time series
Title Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management
URI https://dx.doi.org/10.1016/j.ijinfomgt.2020.102282
https://www.proquest.com/docview/2503454376
Volume 57
WOSCitedRecordID wos000618806300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017052
  issn: 0268-4012
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMXVF4iUNAeOICQLXu9ye72FkFRebSqlCDlZtlru0qUuFXsVM0_4N_wF5l9eO0UUEGIi-WsvHaS-Tw7MzvzDUKvFCULSRIKbolgHiU58RIpIk8KCosRB0coMM0m2Okpn83EWa_3vamFuVqysuTX1-Lyv4oaxkDYqnT2L8TtbgoDcA5ChyOIHY5_JHjVbFMmVd1UH4KDv0qWW9AsdW77glse8bx6u9Ghgi-T6Ym-Vp-MN_WFordULBOO4tVWwSkztbvnrcIllWoMulUlxPBhtZtOs2gT5du44w5bhauevDlVRajPN1ujFo_9974LMqxN0Pazf9aO6Twnuwk28Vu9ujIQPvG74Q0SdrJidMytqbtpk5wqTRfLwfO1Cdi5Ud2cRR5lpoduo9sN-fVPy4SJWCz8-UINr85VUi3RNBaEk3ZldPmKk0CT4oSEKLZ_Hs7uoD3ChoL30d7449Hsk9u4YoFu8uS-4E5K4S8f9zuD6IZpoO2d6T66bx0VPDYAe4B6efkQDUw1N7YrQoVfW9ryN4_Qtw7wMIAJW-BhBzzcAg9r4GGFN32tPukAD7fAwwp4GICHu8DD8xIb4GENPNyi5zH6-uFo-u7Ys30-PBnRqPYKnooUTP80oCkHBcETwSUZZVnIs0xInjMqgyxKWFawlIEM8gyWRQo6JROcgz36BPXLizJ_inCRDVkki1EhWAGOQJiEQaJM9lGUFhEL6ACNmj87lpYEX_ViWcZNtuMidlKKlZRiI6UBCtzES8MDc_uUw0aasTVnjZkaAwxvn3zQyD-2b2UVg7sS0SGFH__sX-79HN1r37QD1K_Xm_wFuiuv6nm1fmkR_QNL6tcM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+and+Anomaly+Detection+approaches+using+LSTM+and+LSTM+Autoencoder+techniques+with+the+applications+in+supply+chain+management&rft.jtitle=International+journal+of+information+management&rft.au=Nguyen%2C+H.D.&rft.au=Tran%2C+K.P.&rft.au=Thomassey%2C+S.&rft.au=Hamad%2C+M.&rft.date=2021-04-01&rft.pub=Elsevier+Ltd&rft.issn=0268-4012&rft.eissn=1873-4707&rft.volume=57&rft_id=info:doi/10.1016%2Fj.ijinfomgt.2020.102282&rft.externalDocID=S026840122031481X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-4012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-4012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-4012&client=summon