Multi-objective optimization for methane, glycerol, and ethanol steam reforming using lichtenberg algorithm
The growing energy demand is causing the energy sector to look for new sources of efficient and environmentally acceptable fuels. Although hydrogen is traditionally produced through steam reforming of fossil fuels, such as natural gas, different fuels and applications, have also been considered over...
Gespeichert in:
| Veröffentlicht in: | International journal of green energy Jg. 20; H. 4; S. 390 - 407 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Taylor & Francis
16.03.2023
|
| Schlagworte: | |
| ISSN: | 1543-5075, 1543-5083, 1543-5083 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The growing energy demand is causing the energy sector to look for new sources of efficient and environmentally acceptable fuels. Although hydrogen is traditionally produced through steam reforming of fossil fuels, such as natural gas, different fuels and applications, have also been considered over the years. In this sense, several studies have focused on finding the best operational conditions for enhancing hydrogen production for each particular cycle. This study provides a statistically detailed analysis of hydrogen production using Response Surface Methodology and Lichtenberg Algorithm, aiming to develop a methodology that can quickly optimize steam reforming cycles respecting process limitations, different feedstock compositions, and other particularities. Process optimization was conducted by creating a direct and interactive link between the thermodynamic simulation software and the optimization algorithm. Lichtenberg Algorithm proved to be an efficient multi-objective optimization tool for quickly optimizing steam reforming cycles, finding Pareto fronts with substantial convergence and coverage. Finally, comparison with other optimization studies showed that previously suggested optimal conditions are close to points obtained from the Lichtenberg algorithm, thereby proving that this new methodology offers a quick and consistent method for optimizing steam reforming and potentially other thermodynamic cycles. |
|---|---|
| AbstractList | The growing energy demand is causing the energy sector to look for new sources of efficient and environmentally acceptable fuels. Although hydrogen is traditionally produced through steam reforming of fossil fuels, such as natural gas, different fuels and applications, have also been considered over the years. In this sense, several studies have focused on finding the best operational conditions for enhancing hydrogen production for each particular cycle. This study provides a statistically detailed analysis of hydrogen production using Response Surface Methodology and Lichtenberg Algorithm, aiming to develop a methodology that can quickly optimize steam reforming cycles respecting process limitations, different feedstock compositions, and other particularities. Process optimization was conducted by creating a direct and interactive link between the thermodynamic simulation software and the optimization algorithm. Lichtenberg Algorithm proved to be an efficient multi-objective optimization tool for quickly optimizing steam reforming cycles, finding Pareto fronts with substantial convergence and coverage. Finally, comparison with other optimization studies showed that previously suggested optimal conditions are close to points obtained from the Lichtenberg algorithm, thereby proving that this new methodology offers a quick and consistent method for optimizing steam reforming and potentially other thermodynamic cycles. |
| Author | Pereira, J. L. J. Francisco, M. B. Coronado, C. J. R. de Souza, T. A. Z. Sotomonte, C. A. R. Jun Ma, B. Gomes, G. F. |
| Author_xml | – sequence: 1 givenname: T. A. Z. orcidid: 0000-0001-9534-0160 surname: de Souza fullname: de Souza, T. A. Z. email: tulio_zucareli@unifei.edu.br organization: Federal University of Itajubá – sequence: 2 givenname: J. L. J. surname: Pereira fullname: Pereira, J. L. J. organization: Federal University of Itajubá – sequence: 3 givenname: M. B. surname: Francisco fullname: Francisco, M. B. organization: Federal University of Itajubá – sequence: 4 givenname: C. A. R. surname: Sotomonte fullname: Sotomonte, C. A. R. organization: Federal University of Itajubá – sequence: 5 givenname: B. surname: Jun Ma fullname: Jun Ma, B. organization: The University of Hong Kong (HKU) – sequence: 6 givenname: G. F. orcidid: 0000-0003-0811-6334 surname: Gomes fullname: Gomes, G. F. organization: Federal University of Itajubá – sequence: 7 givenname: C. J. R. surname: Coronado fullname: Coronado, C. J. R. organization: Federal University of Itajubá |
| BookMark | eNqFkM1OwzAQhC1UJNrCIyD5yKEpjh03ibiAKv4kEBc4W47tpC6OXWwXVJ6epC0cOMBldzWaWWm-ERhYZxUApymapqhA5ynNCEU5nWKEcTcoIjk9AMNeTygqyODnzukRGIWwRAh3wmwIXh_XJurEVUslon5X0K2ibvUnj9pZWDsPWxUX3KoJbMxGKO_MBHIr4VZ1BoaoeAu96qyttg1ch34aLRZR2Ur5BnLTOK_joj0GhzU3QZ3s9xi83Fw_z--Sh6fb-_nVQyJIRmJSYyUrRTEWMq8KIoQopUQE00IgQaTEuExrWuYFxTIjlapFNqvrVMyyMsM5RmQMznZ_V969rVWIrNVBKGO6Gm4dGC7StCwyjPPOerGzCu9C6FowoeO2e_RcG5Yi1iNm34hZj5jtEXdp-iu98rrlfvNv7nKX07bHxj-cN5JFvjHO155boQMjf7_4Alxulto |
| CitedBy_id | crossref_primary_10_1016_j_ijhydene_2025_03_308 crossref_primary_10_1108_EC_07_2022_0448 crossref_primary_10_1080_15376494_2024_2313165 crossref_primary_10_3390_e26080698 crossref_primary_10_3390_su14159119 crossref_primary_10_1080_15397734_2023_2197034 crossref_primary_10_1007_s00500_023_08782_w crossref_primary_10_1108_EC_09_2023_0561 crossref_primary_10_1007_s00521_024_10155_9 crossref_primary_10_1080_15376494_2024_2361452 crossref_primary_10_1080_08916152_2023_2189328 crossref_primary_10_1371_journal_pone_0328005 |
| Cites_doi | 10.1016/j.ijhydene.2020.01.110 10.1007/978-3-319-23838-8 10.1016/B978-0-12-078142-3.X5000-9 10.1016/j.cej.2021.130174 10.1016/j.cej.2015.08.045 10.1016/j.rser.2021.111755 10.1108/EC-12-2019-0564 10.1007/s12649-021-01404-2 10.1016/j.ijhydene.2019.02.106 10.1016/j.scitotenv.2021.145056 10.1016/j.eswa.2015.10.039 10.1016/j.supflu.2014.02.006 10.1016/j.ijhydene.2018.12.211 10.1016/j.energy.2010.05.020 10.1016/j.ijhydene.2016.05.047 10.1007/978-3-319-67669-2_2 10.1016/j.jclepro.2021.127577 10.1016/j.cherd.2021.07.014 10.1016/j.fuproc.2013.02.013 10.1016/j.camwa.2011.11.057 10.1016/j.biombioe.2020.105846 10.1016/j.ijhydene.2020.10.012 10.1016/j.renene.2020.06.122 10.1080/0305215X.2020.1839442 10.1016/j.ijhydene.2019.11.079 10.1016/j.ijhydene.2021.01.107 10.1016/j.ijhydene.2010.10.061 10.1103/PhysRevB.27.5686 10.1016/j.cep.2015.05.008 10.1016/j.jclepro.2020.123836 10.1016/j.ijhydene.2007.03.023 10.1016/j.susmat.2020.e00237 10.1016/j.ijhydene.2020.06.238 10.1016/j.ijhydene.2020.07.206 10.1103/PhysRevLett.47.1400 10.1016/j.jclepro.2020.123814 10.1016/j.enconman.2019.01.103 10.1016/j.rser.2015.12.279 10.1016/j.ijhydene.2018.05.094 10.1016/j.advengsoft.2017.01.004 10.1007/s10489-017-1019-8 10.1016/j.eswa.2021.115939 10.1016/j.ijhydene.2009.10.043 10.1016/j.eswa.2020.114522 10.1016/j.ijhydene.2007.08.025 10.1016/j.ijhydene.2020.09.077 10.1016/j.ijhydene.2021.06.164 10.1016/j.ijhydene.2020.06.210 10.1016/j.ijhydene.2021.01.147 10.1016/j.enconman.2018.05.083 10.1016/j.ijhydene.2020.10.019 10.1016/j.engappai.2020.104055 10.1063/1.1707274 10.1016/j.applthermaleng.2013.11.004 10.1002/ep.13199 10.1016/j.apcata.2015.11.047 |
| ContentType | Journal Article |
| Copyright | 2022 Taylor & Francis Group, LLC 2022 |
| Copyright_xml | – notice: 2022 Taylor & Francis Group, LLC 2022 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1080/15435075.2022.2050375 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1543-5083 |
| EndPage | 407 |
| ExternalDocumentID | 10_1080_15435075_2022_2050375 2050375 |
| Genre | Research Article |
| GroupedDBID | .7F .QJ 0BK 0R~ 29J 30N 4.4 4P2 5GY 5VS AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EDH E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM L8X LJTGL M4Z ML. NA5 O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TTHFI TUROJ TWF TWQ UT5 UU3 ZGOLN ~S~ AAYXX BANNL CITATION 7S9 L.6 |
| ID | FETCH-LOGICAL-c343t-f2edbe522cd7b83ccc9dd03258c0c3dd2291f597852d43befc46ff1c649427203 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000768102700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1543-5075 1543-5083 |
| IngestDate | Fri Sep 05 17:23:06 EDT 2025 Sat Nov 29 06:40:03 EST 2025 Tue Nov 18 21:32:57 EST 2025 Mon Oct 20 23:48:08 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c343t-f2edbe522cd7b83ccc9dd03258c0c3dd2291f597852d43befc46ff1c649427203 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9534-0160 0000-0003-0811-6334 |
| PQID | 2811984227 |
| PQPubID | 24069 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2811984227 informaworld_taylorfrancis_310_1080_15435075_2022_2050375 crossref_citationtrail_10_1080_15435075_2022_2050375 crossref_primary_10_1080_15435075_2022_2050375 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-16 |
| PublicationDateYYYYMMDD | 2023-03-16 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of green energy |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | cit0033 cit0034 cit0031 cit0032 cit0030 cit0039 cit0037 cit0038 cit0035 cit0036 cit0022 cit0023 cit0020 cit0021 cit0028 cit0026 cit0027 cit0024 cit0025 cit0011 cit0055 cit0012 cit0056 cit0053 cit0010 cit0054 cit0051 cit0052 cit0050 cit0019 Montgomery D. C. (cit0029) 2010 cit0017 cit0018 cit0015 cit0016 cit0013 cit0014 cit0058 cit0044 cit0001 cit0045 cit0042 cit0043 cit0040 Yang X.-S. (cit0057) 2014 cit0041 cit0008 cit0009 cit0006 cit0007 cit0004 cit0048 cit0005 cit0049 cit0002 cit0046 cit0003 cit0047 |
| References_xml | – ident: cit0058 doi: 10.1016/j.ijhydene.2020.01.110 – ident: cit0010 doi: 10.1007/978-3-319-23838-8 – ident: cit0003 doi: 10.1016/B978-0-12-078142-3.X5000-9 – ident: cit0011 doi: 10.1016/j.cej.2021.130174 – ident: cit0042 doi: 10.1016/j.cej.2015.08.045 – ident: cit0013 doi: 10.1016/j.rser.2021.111755 – ident: cit0034 doi: 10.1108/EC-12-2019-0564 – ident: cit0020 doi: 10.1007/s12649-021-01404-2 – ident: cit0053 doi: 10.1016/j.ijhydene.2019.02.106 – ident: cit0009 doi: 10.1016/j.scitotenv.2021.145056 – ident: cit0046 doi: 10.1016/j.eswa.2015.10.039 – ident: cit0024 doi: 10.1016/j.supflu.2014.02.006 – ident: cit0031 doi: 10.1016/j.ijhydene.2018.12.211 – ident: cit0005 doi: 10.1016/j.energy.2010.05.020 – ident: cit0045 doi: 10.1016/j.ijhydene.2016.05.047 – ident: cit0052 doi: 10.1007/978-3-319-67669-2_2 – ident: cit0014 doi: 10.1016/j.jclepro.2021.127577 – ident: cit0019 doi: 10.1016/j.cherd.2021.07.014 – ident: cit0021 doi: 10.1016/j.fuproc.2013.02.013 – ident: cit0007 doi: 10.1016/j.camwa.2011.11.057 – ident: cit0039 doi: 10.1016/j.biombioe.2020.105846 – ident: cit0040 doi: 10.1016/j.ijhydene.2020.10.012 – ident: cit0006 doi: 10.1016/j.renene.2020.06.122 – ident: cit0015 doi: 10.1080/0305215X.2020.1839442 – ident: cit0048 doi: 10.1016/j.ijhydene.2019.11.079 – ident: cit0056 doi: 10.1016/j.ijhydene.2021.01.107 – ident: cit0002 doi: 10.1016/j.ijhydene.2010.10.061 – ident: cit0055 doi: 10.1103/PhysRevB.27.5686 – ident: cit0017 doi: 10.1016/j.cep.2015.05.008 – ident: cit0026 doi: 10.1016/j.jclepro.2020.123836 – ident: cit0050 doi: 10.1016/j.ijhydene.2007.03.023 – ident: cit0030 doi: 10.1016/j.susmat.2020.e00237 – ident: cit0038 doi: 10.1016/j.ijhydene.2020.06.238 – ident: cit0041 doi: 10.1016/j.ijhydene.2020.07.206 – ident: cit0054 doi: 10.1103/PhysRevLett.47.1400 – ident: cit0012 doi: 10.1016/j.jclepro.2020.123814 – ident: cit0032 doi: 10.1016/j.enconman.2019.01.103 – ident: cit0044 doi: 10.1016/j.rser.2015.12.279 – ident: cit0051 doi: 10.1016/j.ijhydene.2018.05.094 – ident: cit0043 doi: 10.1016/j.advengsoft.2017.01.004 – volume-title: Nature-Inspired optimization algorithms year: 2014 ident: cit0057 – ident: cit0028 doi: 10.1007/s10489-017-1019-8 – ident: cit0036 doi: 10.1016/j.eswa.2021.115939 – ident: cit0049 doi: 10.1016/j.ijhydene.2009.10.043 – ident: cit0033 doi: 10.1016/j.eswa.2020.114522 – ident: cit0047 doi: 10.1016/j.ijhydene.2007.08.025 – ident: cit0018 doi: 10.1016/j.ijhydene.2020.09.077 – ident: cit0004 doi: 10.1016/j.ijhydene.2021.06.164 – ident: cit0001 doi: 10.1016/j.ijhydene.2020.06.210 – ident: cit0022 doi: 10.1016/j.ijhydene.2021.01.147 – ident: cit0016 doi: 10.1016/j.enconman.2018.05.083 – ident: cit0025 doi: 10.1016/j.ijhydene.2020.10.019 – ident: cit0035 doi: 10.1016/j.engappai.2020.104055 – ident: cit0027 doi: 10.1063/1.1707274 – ident: cit0008 doi: 10.1016/j.applthermaleng.2013.11.004 – volume-title: Applied statistics and probability for engineers year: 2010 ident: cit0029 – ident: cit0037 doi: 10.1002/ep.13199 – ident: cit0023 doi: 10.1016/j.apcata.2015.11.047 |
| SSID | ssj0025436 |
| Score | 2.3604198 |
| Snippet | The growing energy demand is causing the energy sector to look for new sources of efficient and environmentally acceptable fuels. Although hydrogen is... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 390 |
| SubjectTerms | algorithms computer simulation energy energy industry ethanol feedstocks glycerol hydrogen hydrogen production methane multi-objective Lichtenberg Algorithm multi-objective optimization natural gas renewable energy sources response surface methodology RSM steam Steam reforming thermodynamics |
| Title | Multi-objective optimization for methane, glycerol, and ethanol steam reforming using lichtenberg algorithm |
| URI | https://www.tandfonline.com/doi/abs/10.1080/15435075.2022.2050375 https://www.proquest.com/docview/2811984227 |
| Volume | 20 |
| WOSCitedRecordID | wos000768102700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1543-5083 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025436 issn: 1543-5075 databaseCode: TFW dateStart: 20041226 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6keNCDb7G-WMFjo8nu5nUUsXiQ4qFqbyH7aqtpIm0q-O-d3STSItKDngIhs2xmZ-exOzMfQpeEM1-GvnIYIxCgkMDAvDDqcB66AVEukfYG__kh7PWiwSB-rLMJZ3VapYmhddUowupqs7lTPmsy4q7B6lNwY3yI7oippfINjitoYTD9Zmv2uy_fIRd8aeuL4OkYkqaG57dRlqzTUu_SH7raGqDu9j9MfQdt1d4nvqnEZRetqXwPbS70JNxHb7Yk1yn4a6UKcQFKZVJXa2KYKTag02muOniYfQo1LbIOhvlg-7bIsBGbCYZfK0yazRCbzPohzsZiVFbZZDjNhsV0XI4mB-ipe9e_vXdqRAZHUEZLRxMluQKXTciQR1QIEUvpUuJHwhVUSkJiT0OIEvlEMsqVFizQ2hMBi5m98D1ErbzI1RHCWmqmwV1LvYCDS0ZTLQPuahK6KYuY77URa1YiEXW7coOakSVe3dW04WVieJnUvGyjq2-y96pfxyqCeHGZk9IelOgK1SShK2gvGplIYFeaqxZgfzGfJSTyvDhihITHfxj_BG0YdHuT8uYFp6hVTufqDK2Lj3I8m55bSf8CMzv5XA |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYoIBUOLU-VvjASRwKJ7byOVdUViO2elsfNil_LQnaDllCJf98ZJ0GLEOIAp0hRxnLG43nYM98Qss-UiE0a20AIBgEKS7DNi-CBUmmYMBsy42_wz_vpYJBdXubztTCYVokxtGuAIryuxs2Nh9FdStwRmH0OfkwM4R3DYqoYG7l-IEsx2FrEzx_2Lh6DLvjUVxjBM0CarornpWGe2Kcn6KXPtLU3Qb3P7zH5NfKpdUDpr0Zi1smCnW6Q1TlYwk1y46tyg0pdN9qQVqBXJm3BJoWpUuw7XUztAR2VD9rOqvKAwoSof1uVFCVnQuHfKsy0GVFMrh_Rcqyv6iahjBblqJqN66vJFjnr_Rn-Pg7apgyB5oLXgWPWKAtemzapyrjWOjcm5CzOdKi5MYzlkYMoJYuZEVxZp0XiXKQTkQt_57tNFqfV1H4h1BknHHhsRZQo8Mp44UyiQsfSsBCZiKMdIrqlkLpFLMfGGaWMWmDTjpcSeSlbXu6Qw0ey2way4zWCfH6dZe3PSlzT2ETyV2j3OqGQsDHxtgXYX93fSZZFUZ4JxtKvbxh_l3w8Hv7ty_7J4PQbWcFm95gBFyXfyWI9u7c_yLL-V4_vZj-92P8HAon9hg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6-ED34Ft9G8Gi1TdLXUdRFURYPvm6hee2udreyWwX_vZO0FUXEg54KpVPSyWQy03wzH0L7RLBQxaH2GCOQoJDI0rww6gkR-xHRPlHuBP_uKm63k4eH9LpGE45qWKXNoU3VKML5aru4n5VpEHFHsOtTCGNCyO6IraUKLY_rOJqE0DmyRn7Tuv_IueBRV2AEV8_KNEU8P73my_b0pXnpN2ftdqDW_D-MfQHN1eEnPq7sZRGN6cESmv3UlHAZPbmaXK8Qj5UvxAV4lX5drolhpNiyTmcDfYA7-ZvUwyI_wDAe7O4WObZ208fwaYXF2XSwhdZ3cN6T3bKCk-Es7xTDXtntr6Db1tnNyblXUzJ4kjJaeoZoJTTEbFLFIqFSylQpn5Iwkb6kShGSBgZylCQkilGhjWSRMYGMWMrcie8qmhgUA72GsFGGGYjXsiASEJPRzKhI-IbEfsYSFgbriDUzwWXdr9zSZuQ8qNuaNrrkVpe81uU6OvwQe64advwmkH6eZl66PyWmojXh9BfZvcYmOCxLe9YC6i9eRpwkQZAmjJB44w_v30XT16ctfnXRvtxEM5bp3sLfgmgLTZTDF72NpuRr2RsNd5zRvwMCufw4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+for+methane%2C+glycerol%2C+and+ethanol+steam+reforming+using+lichtenberg+algorithm&rft.jtitle=International+journal+of+green+energy&rft.au=de+Souza%2C+T.+A.+Z.&rft.au=Pereira%2C+J.+L.+J.&rft.au=Francisco%2C+M.+B.&rft.au=Sotomonte%2C+C.+A.+R.&rft.date=2023-03-16&rft.pub=Taylor+%26+Francis&rft.issn=1543-5075&rft.eissn=1543-5083&rft.volume=20&rft.issue=4&rft.spage=390&rft.epage=407&rft_id=info:doi/10.1080%2F15435075.2022.2050375&rft.externalDocID=2050375 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1543-5075&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1543-5075&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1543-5075&client=summon |