Multi-objective optimization for methane, glycerol, and ethanol steam reforming using lichtenberg algorithm

The growing energy demand is causing the energy sector to look for new sources of efficient and environmentally acceptable fuels. Although hydrogen is traditionally produced through steam reforming of fossil fuels, such as natural gas, different fuels and applications, have also been considered over...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of green energy Jg. 20; H. 4; S. 390 - 407
Hauptverfasser: de Souza, T. A. Z., Pereira, J. L. J., Francisco, M. B., Sotomonte, C. A. R., Jun Ma, B., Gomes, G. F., Coronado, C. J. R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Taylor & Francis 16.03.2023
Schlagworte:
ISSN:1543-5075, 1543-5083, 1543-5083
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The growing energy demand is causing the energy sector to look for new sources of efficient and environmentally acceptable fuels. Although hydrogen is traditionally produced through steam reforming of fossil fuels, such as natural gas, different fuels and applications, have also been considered over the years. In this sense, several studies have focused on finding the best operational conditions for enhancing hydrogen production for each particular cycle. This study provides a statistically detailed analysis of hydrogen production using Response Surface Methodology and Lichtenberg Algorithm, aiming to develop a methodology that can quickly optimize steam reforming cycles respecting process limitations, different feedstock compositions, and other particularities. Process optimization was conducted by creating a direct and interactive link between the thermodynamic simulation software and the optimization algorithm. Lichtenberg Algorithm proved to be an efficient multi-objective optimization tool for quickly optimizing steam reforming cycles, finding Pareto fronts with substantial convergence and coverage. Finally, comparison with other optimization studies showed that previously suggested optimal conditions are close to points obtained from the Lichtenberg algorithm, thereby proving that this new methodology offers a quick and consistent method for optimizing steam reforming and potentially other thermodynamic cycles.
AbstractList The growing energy demand is causing the energy sector to look for new sources of efficient and environmentally acceptable fuels. Although hydrogen is traditionally produced through steam reforming of fossil fuels, such as natural gas, different fuels and applications, have also been considered over the years. In this sense, several studies have focused on finding the best operational conditions for enhancing hydrogen production for each particular cycle. This study provides a statistically detailed analysis of hydrogen production using Response Surface Methodology and Lichtenberg Algorithm, aiming to develop a methodology that can quickly optimize steam reforming cycles respecting process limitations, different feedstock compositions, and other particularities. Process optimization was conducted by creating a direct and interactive link between the thermodynamic simulation software and the optimization algorithm. Lichtenberg Algorithm proved to be an efficient multi-objective optimization tool for quickly optimizing steam reforming cycles, finding Pareto fronts with substantial convergence and coverage. Finally, comparison with other optimization studies showed that previously suggested optimal conditions are close to points obtained from the Lichtenberg algorithm, thereby proving that this new methodology offers a quick and consistent method for optimizing steam reforming and potentially other thermodynamic cycles.
Author Pereira, J. L. J.
Francisco, M. B.
Coronado, C. J. R.
de Souza, T. A. Z.
Sotomonte, C. A. R.
Jun Ma, B.
Gomes, G. F.
Author_xml – sequence: 1
  givenname: T. A. Z.
  orcidid: 0000-0001-9534-0160
  surname: de Souza
  fullname: de Souza, T. A. Z.
  email: tulio_zucareli@unifei.edu.br
  organization: Federal University of Itajubá
– sequence: 2
  givenname: J. L. J.
  surname: Pereira
  fullname: Pereira, J. L. J.
  organization: Federal University of Itajubá
– sequence: 3
  givenname: M. B.
  surname: Francisco
  fullname: Francisco, M. B.
  organization: Federal University of Itajubá
– sequence: 4
  givenname: C. A. R.
  surname: Sotomonte
  fullname: Sotomonte, C. A. R.
  organization: Federal University of Itajubá
– sequence: 5
  givenname: B.
  surname: Jun Ma
  fullname: Jun Ma, B.
  organization: The University of Hong Kong (HKU)
– sequence: 6
  givenname: G. F.
  orcidid: 0000-0003-0811-6334
  surname: Gomes
  fullname: Gomes, G. F.
  organization: Federal University of Itajubá
– sequence: 7
  givenname: C. J. R.
  surname: Coronado
  fullname: Coronado, C. J. R.
  organization: Federal University of Itajubá
BookMark eNqFkM1OwzAQhC1UJNrCIyD5yKEpjh03ibiAKv4kEBc4W47tpC6OXWwXVJ6epC0cOMBldzWaWWm-ERhYZxUApymapqhA5ynNCEU5nWKEcTcoIjk9AMNeTygqyODnzukRGIWwRAh3wmwIXh_XJurEVUslon5X0K2ibvUnj9pZWDsPWxUX3KoJbMxGKO_MBHIr4VZ1BoaoeAu96qyttg1ch34aLRZR2Ur5BnLTOK_joj0GhzU3QZ3s9xi83Fw_z--Sh6fb-_nVQyJIRmJSYyUrRTEWMq8KIoQopUQE00IgQaTEuExrWuYFxTIjlapFNqvrVMyyMsM5RmQMznZ_V969rVWIrNVBKGO6Gm4dGC7StCwyjPPOerGzCu9C6FowoeO2e_RcG5Yi1iNm34hZj5jtEXdp-iu98rrlfvNv7nKX07bHxj-cN5JFvjHO155boQMjf7_4Alxulto
CitedBy_id crossref_primary_10_1016_j_ijhydene_2025_03_308
crossref_primary_10_1108_EC_07_2022_0448
crossref_primary_10_1080_15376494_2024_2313165
crossref_primary_10_3390_e26080698
crossref_primary_10_3390_su14159119
crossref_primary_10_1080_15397734_2023_2197034
crossref_primary_10_1007_s00500_023_08782_w
crossref_primary_10_1108_EC_09_2023_0561
crossref_primary_10_1007_s00521_024_10155_9
crossref_primary_10_1080_15376494_2024_2361452
crossref_primary_10_1080_08916152_2023_2189328
crossref_primary_10_1371_journal_pone_0328005
Cites_doi 10.1016/j.ijhydene.2020.01.110
10.1007/978-3-319-23838-8
10.1016/B978-0-12-078142-3.X5000-9
10.1016/j.cej.2021.130174
10.1016/j.cej.2015.08.045
10.1016/j.rser.2021.111755
10.1108/EC-12-2019-0564
10.1007/s12649-021-01404-2
10.1016/j.ijhydene.2019.02.106
10.1016/j.scitotenv.2021.145056
10.1016/j.eswa.2015.10.039
10.1016/j.supflu.2014.02.006
10.1016/j.ijhydene.2018.12.211
10.1016/j.energy.2010.05.020
10.1016/j.ijhydene.2016.05.047
10.1007/978-3-319-67669-2_2
10.1016/j.jclepro.2021.127577
10.1016/j.cherd.2021.07.014
10.1016/j.fuproc.2013.02.013
10.1016/j.camwa.2011.11.057
10.1016/j.biombioe.2020.105846
10.1016/j.ijhydene.2020.10.012
10.1016/j.renene.2020.06.122
10.1080/0305215X.2020.1839442
10.1016/j.ijhydene.2019.11.079
10.1016/j.ijhydene.2021.01.107
10.1016/j.ijhydene.2010.10.061
10.1103/PhysRevB.27.5686
10.1016/j.cep.2015.05.008
10.1016/j.jclepro.2020.123836
10.1016/j.ijhydene.2007.03.023
10.1016/j.susmat.2020.e00237
10.1016/j.ijhydene.2020.06.238
10.1016/j.ijhydene.2020.07.206
10.1103/PhysRevLett.47.1400
10.1016/j.jclepro.2020.123814
10.1016/j.enconman.2019.01.103
10.1016/j.rser.2015.12.279
10.1016/j.ijhydene.2018.05.094
10.1016/j.advengsoft.2017.01.004
10.1007/s10489-017-1019-8
10.1016/j.eswa.2021.115939
10.1016/j.ijhydene.2009.10.043
10.1016/j.eswa.2020.114522
10.1016/j.ijhydene.2007.08.025
10.1016/j.ijhydene.2020.09.077
10.1016/j.ijhydene.2021.06.164
10.1016/j.ijhydene.2020.06.210
10.1016/j.ijhydene.2021.01.147
10.1016/j.enconman.2018.05.083
10.1016/j.ijhydene.2020.10.019
10.1016/j.engappai.2020.104055
10.1063/1.1707274
10.1016/j.applthermaleng.2013.11.004
10.1002/ep.13199
10.1016/j.apcata.2015.11.047
ContentType Journal Article
Copyright 2022 Taylor & Francis Group, LLC 2022
Copyright_xml – notice: 2022 Taylor & Francis Group, LLC 2022
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1080/15435075.2022.2050375
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1543-5083
EndPage 407
ExternalDocumentID 10_1080_15435075_2022_2050375
2050375
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
29J
30N
4.4
4P2
5GY
5VS
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EDH
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
L8X
LJTGL
M4Z
ML.
NA5
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
TWF
TWQ
UT5
UU3
ZGOLN
~S~
AAYXX
BANNL
CITATION
7S9
L.6
ID FETCH-LOGICAL-c343t-f2edbe522cd7b83ccc9dd03258c0c3dd2291f597852d43befc46ff1c649427203
IEDL.DBID TFW
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000768102700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1543-5075
1543-5083
IngestDate Fri Sep 05 17:23:06 EDT 2025
Sat Nov 29 06:40:03 EST 2025
Tue Nov 18 21:32:57 EST 2025
Mon Oct 20 23:48:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-f2edbe522cd7b83ccc9dd03258c0c3dd2291f597852d43befc46ff1c649427203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9534-0160
0000-0003-0811-6334
PQID 2811984227
PQPubID 24069
PageCount 18
ParticipantIDs proquest_miscellaneous_2811984227
informaworld_taylorfrancis_310_1080_15435075_2022_2050375
crossref_citationtrail_10_1080_15435075_2022_2050375
crossref_primary_10_1080_15435075_2022_2050375
PublicationCentury 2000
PublicationDate 2023-03-16
PublicationDateYYYYMMDD 2023-03-16
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-16
  day: 16
PublicationDecade 2020
PublicationTitle International journal of green energy
PublicationYear 2023
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0033
cit0034
cit0031
cit0032
cit0030
cit0039
cit0037
cit0038
cit0035
cit0036
cit0022
cit0023
cit0020
cit0021
cit0028
cit0026
cit0027
cit0024
cit0025
cit0011
cit0055
cit0012
cit0056
cit0053
cit0010
cit0054
cit0051
cit0052
cit0050
cit0019
Montgomery D. C. (cit0029) 2010
cit0017
cit0018
cit0015
cit0016
cit0013
cit0014
cit0058
cit0044
cit0001
cit0045
cit0042
cit0043
cit0040
Yang X.-S. (cit0057) 2014
cit0041
cit0008
cit0009
cit0006
cit0007
cit0004
cit0048
cit0005
cit0049
cit0002
cit0046
cit0003
cit0047
References_xml – ident: cit0058
  doi: 10.1016/j.ijhydene.2020.01.110
– ident: cit0010
  doi: 10.1007/978-3-319-23838-8
– ident: cit0003
  doi: 10.1016/B978-0-12-078142-3.X5000-9
– ident: cit0011
  doi: 10.1016/j.cej.2021.130174
– ident: cit0042
  doi: 10.1016/j.cej.2015.08.045
– ident: cit0013
  doi: 10.1016/j.rser.2021.111755
– ident: cit0034
  doi: 10.1108/EC-12-2019-0564
– ident: cit0020
  doi: 10.1007/s12649-021-01404-2
– ident: cit0053
  doi: 10.1016/j.ijhydene.2019.02.106
– ident: cit0009
  doi: 10.1016/j.scitotenv.2021.145056
– ident: cit0046
  doi: 10.1016/j.eswa.2015.10.039
– ident: cit0024
  doi: 10.1016/j.supflu.2014.02.006
– ident: cit0031
  doi: 10.1016/j.ijhydene.2018.12.211
– ident: cit0005
  doi: 10.1016/j.energy.2010.05.020
– ident: cit0045
  doi: 10.1016/j.ijhydene.2016.05.047
– ident: cit0052
  doi: 10.1007/978-3-319-67669-2_2
– ident: cit0014
  doi: 10.1016/j.jclepro.2021.127577
– ident: cit0019
  doi: 10.1016/j.cherd.2021.07.014
– ident: cit0021
  doi: 10.1016/j.fuproc.2013.02.013
– ident: cit0007
  doi: 10.1016/j.camwa.2011.11.057
– ident: cit0039
  doi: 10.1016/j.biombioe.2020.105846
– ident: cit0040
  doi: 10.1016/j.ijhydene.2020.10.012
– ident: cit0006
  doi: 10.1016/j.renene.2020.06.122
– ident: cit0015
  doi: 10.1080/0305215X.2020.1839442
– ident: cit0048
  doi: 10.1016/j.ijhydene.2019.11.079
– ident: cit0056
  doi: 10.1016/j.ijhydene.2021.01.107
– ident: cit0002
  doi: 10.1016/j.ijhydene.2010.10.061
– ident: cit0055
  doi: 10.1103/PhysRevB.27.5686
– ident: cit0017
  doi: 10.1016/j.cep.2015.05.008
– ident: cit0026
  doi: 10.1016/j.jclepro.2020.123836
– ident: cit0050
  doi: 10.1016/j.ijhydene.2007.03.023
– ident: cit0030
  doi: 10.1016/j.susmat.2020.e00237
– ident: cit0038
  doi: 10.1016/j.ijhydene.2020.06.238
– ident: cit0041
  doi: 10.1016/j.ijhydene.2020.07.206
– ident: cit0054
  doi: 10.1103/PhysRevLett.47.1400
– ident: cit0012
  doi: 10.1016/j.jclepro.2020.123814
– ident: cit0032
  doi: 10.1016/j.enconman.2019.01.103
– ident: cit0044
  doi: 10.1016/j.rser.2015.12.279
– ident: cit0051
  doi: 10.1016/j.ijhydene.2018.05.094
– ident: cit0043
  doi: 10.1016/j.advengsoft.2017.01.004
– volume-title: Nature-Inspired optimization algorithms
  year: 2014
  ident: cit0057
– ident: cit0028
  doi: 10.1007/s10489-017-1019-8
– ident: cit0036
  doi: 10.1016/j.eswa.2021.115939
– ident: cit0049
  doi: 10.1016/j.ijhydene.2009.10.043
– ident: cit0033
  doi: 10.1016/j.eswa.2020.114522
– ident: cit0047
  doi: 10.1016/j.ijhydene.2007.08.025
– ident: cit0018
  doi: 10.1016/j.ijhydene.2020.09.077
– ident: cit0004
  doi: 10.1016/j.ijhydene.2021.06.164
– ident: cit0001
  doi: 10.1016/j.ijhydene.2020.06.210
– ident: cit0022
  doi: 10.1016/j.ijhydene.2021.01.147
– ident: cit0016
  doi: 10.1016/j.enconman.2018.05.083
– ident: cit0025
  doi: 10.1016/j.ijhydene.2020.10.019
– ident: cit0035
  doi: 10.1016/j.engappai.2020.104055
– ident: cit0027
  doi: 10.1063/1.1707274
– ident: cit0008
  doi: 10.1016/j.applthermaleng.2013.11.004
– volume-title: Applied statistics and probability for engineers
  year: 2010
  ident: cit0029
– ident: cit0037
  doi: 10.1002/ep.13199
– ident: cit0023
  doi: 10.1016/j.apcata.2015.11.047
SSID ssj0025436
Score 2.3604198
Snippet The growing energy demand is causing the energy sector to look for new sources of efficient and environmentally acceptable fuels. Although hydrogen is...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 390
SubjectTerms algorithms
computer simulation
energy
energy industry
ethanol
feedstocks
glycerol
hydrogen
hydrogen production
methane
multi-objective Lichtenberg Algorithm
multi-objective optimization
natural gas
renewable energy sources
response surface methodology
RSM
steam
Steam reforming
thermodynamics
Title Multi-objective optimization for methane, glycerol, and ethanol steam reforming using lichtenberg algorithm
URI https://www.tandfonline.com/doi/abs/10.1080/15435075.2022.2050375
https://www.proquest.com/docview/2811984227
Volume 20
WOSCitedRecordID wos000768102700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1543-5083
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025436
  issn: 1543-5075
  databaseCode: TFW
  dateStart: 20041226
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6keNCDb7G-WMFjo8nu5nUUsXiQ4qFqbyH7aqtpIm0q-O-d3STSItKDngIhs2xmZ-exOzMfQpeEM1-GvnIYIxCgkMDAvDDqcB66AVEukfYG__kh7PWiwSB-rLMJZ3VapYmhddUowupqs7lTPmsy4q7B6lNwY3yI7oippfINjitoYTD9Zmv2uy_fIRd8aeuL4OkYkqaG57dRlqzTUu_SH7raGqDu9j9MfQdt1d4nvqnEZRetqXwPbS70JNxHb7Yk1yn4a6UKcQFKZVJXa2KYKTag02muOniYfQo1LbIOhvlg-7bIsBGbCYZfK0yazRCbzPohzsZiVFbZZDjNhsV0XI4mB-ipe9e_vXdqRAZHUEZLRxMluQKXTciQR1QIEUvpUuJHwhVUSkJiT0OIEvlEMsqVFizQ2hMBi5m98D1ErbzI1RHCWmqmwV1LvYCDS0ZTLQPuahK6KYuY77URa1YiEXW7coOakSVe3dW04WVieJnUvGyjq2-y96pfxyqCeHGZk9IelOgK1SShK2gvGplIYFeaqxZgfzGfJSTyvDhihITHfxj_BG0YdHuT8uYFp6hVTufqDK2Lj3I8m55bSf8CMzv5XA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYoIBUOLU-VvjASRwKJ7byOVdUViO2elsfNil_LQnaDllCJf98ZJ0GLEOIAp0hRxnLG43nYM98Qss-UiE0a20AIBgEKS7DNi-CBUmmYMBsy42_wz_vpYJBdXubztTCYVokxtGuAIryuxs2Nh9FdStwRmH0OfkwM4R3DYqoYG7l-IEsx2FrEzx_2Lh6DLvjUVxjBM0CarornpWGe2Kcn6KXPtLU3Qb3P7zH5NfKpdUDpr0Zi1smCnW6Q1TlYwk1y46tyg0pdN9qQVqBXJm3BJoWpUuw7XUztAR2VD9rOqvKAwoSof1uVFCVnQuHfKsy0GVFMrh_Rcqyv6iahjBblqJqN66vJFjnr_Rn-Pg7apgyB5oLXgWPWKAtemzapyrjWOjcm5CzOdKi5MYzlkYMoJYuZEVxZp0XiXKQTkQt_57tNFqfV1H4h1BknHHhsRZQo8Mp44UyiQsfSsBCZiKMdIrqlkLpFLMfGGaWMWmDTjpcSeSlbXu6Qw0ey2way4zWCfH6dZe3PSlzT2ETyV2j3OqGQsDHxtgXYX93fSZZFUZ4JxtKvbxh_l3w8Hv7ty_7J4PQbWcFm95gBFyXfyWI9u7c_yLL-V4_vZj-92P8HAon9hg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6-ED34Ft9G8Gi1TdLXUdRFURYPvm6hee2udreyWwX_vZO0FUXEg54KpVPSyWQy03wzH0L7RLBQxaH2GCOQoJDI0rww6gkR-xHRPlHuBP_uKm63k4eH9LpGE45qWKXNoU3VKML5aru4n5VpEHFHsOtTCGNCyO6IraUKLY_rOJqE0DmyRn7Tuv_IueBRV2AEV8_KNEU8P73my_b0pXnpN2ftdqDW_D-MfQHN1eEnPq7sZRGN6cESmv3UlHAZPbmaXK8Qj5UvxAV4lX5drolhpNiyTmcDfYA7-ZvUwyI_wDAe7O4WObZ208fwaYXF2XSwhdZ3cN6T3bKCk-Es7xTDXtntr6Db1tnNyblXUzJ4kjJaeoZoJTTEbFLFIqFSylQpn5Iwkb6kShGSBgZylCQkilGhjWSRMYGMWMrcie8qmhgUA72GsFGGGYjXsiASEJPRzKhI-IbEfsYSFgbriDUzwWXdr9zSZuQ8qNuaNrrkVpe81uU6OvwQe64advwmkH6eZl66PyWmojXh9BfZvcYmOCxLe9YC6i9eRpwkQZAmjJB44w_v30XT16ctfnXRvtxEM5bp3sLfgmgLTZTDF72NpuRr2RsNd5zRvwMCufw4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+for+methane%2C+glycerol%2C+and+ethanol+steam+reforming+using+lichtenberg+algorithm&rft.jtitle=International+journal+of+green+energy&rft.au=de+Souza%2C+T.+A.+Z.&rft.au=Pereira%2C+J.+L.+J.&rft.au=Francisco%2C+M.+B.&rft.au=Sotomonte%2C+C.+A.+R.&rft.date=2023-03-16&rft.pub=Taylor+%26+Francis&rft.issn=1543-5075&rft.eissn=1543-5083&rft.volume=20&rft.issue=4&rft.spage=390&rft.epage=407&rft_id=info:doi/10.1080%2F15435075.2022.2050375&rft.externalDocID=2050375
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1543-5075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1543-5075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1543-5075&client=summon