Multi-rate Real Time Hybrid Simulation operated on a flexible LabVIEW real-time platform

•RTHS strategy which enables the substructure to execute at two different rates.•Optimizing computational resources while maintaining good actuator control.•Performance of the strategy is successfully evaluated on a mass-spring-damper system. This paper presents a real-time hybrid simulation (RTHS)...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering structures Ročník 239; s. 112308
Hlavní autoři: Waldbjoern, Jacob P., Maghareh, Amin, Ou, Ge, Dyke, Shirley J., Stang, Henrik
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 15.07.2021
Elsevier BV
Témata:
ISSN:0141-0296, 1873-7323
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •RTHS strategy which enables the substructure to execute at two different rates.•Optimizing computational resources while maintaining good actuator control.•Performance of the strategy is successfully evaluated on a mass-spring-damper system. This paper presents a real-time hybrid simulation (RTHS) strategy where the numerical and experimental substructures are executed at two different rates to optimize computational resources while maintaining an effective actuator control. The concept is referred to here as multi-rate real-time hybrid simulation (mrRTHS), and this approach is intended to enable low-cost RTHS by facilitating testing in the case of limited computational resources. Operated on a Laboratory Virtual Engineering Workshop (LabVIEW) real-time target, the mrRTHS concept is demonstrated through both a single- and multipledegree-of-freedom (SDOF) and (MDOF) mass-spring-damper system. The numerical substructure generates a displacement signal with a coarse time step of Δt. Using the current and three previous displacement data points, a finer control signal is defined with a time step of δt, using a third-order polynomial algorithm–referred to here as the polynomial fitting extrapolator. Both the numerical substructure and polynomial fitting extrapolator is executed with a sampling rate of Δt by an on-board single-core processor–referred to here as the digital signal processor (DSP). Through a field-programmable gate array (FPGA) the control signal is compensated and transmitted to the transfer system through an I/O module with a sampling rate of 1 kHz (i.e. δt = 0.001 sec). The ratio between Δt and δt are an integer–referred to here as the execution ratio. For an execution ratio of 1:5 and 1:10 the system performance is evaluated against a numerical model of the emulated structure–referred to here as the reference structure. For both the SDOF and MDOF system, a good correlation between the mrRTHS and reference is achieved with execution ratios of 1:5 and 1:10. When changing the execution ratio from 1:5 to 1:10, approximately 50% reduction of the required computational resources on the DSP is achieved.
AbstractList This paper presents a real-time hybrid simulation (RTHS) strategy where the numerical and experimental substructures are executed at two different rates to optimize computational resources while maintaining an effective actuator control. The concept is referred to here as multi-rate real-time hybrid simulation (mrRTHS), and this approach is intended to enable low-cost RTHS by facilitating testing in the case of limited computational resources. Operated on a Laboratory Virtual Engineering Workshop (LabVIEW) real-time target, the mrRTHS concept is demonstrated through both a single- and multipledegree-of-freedom (SDOF) and (MDOF) mass-spring-damper system. The numerical substructure generates a displacement signal with a coarse time step of Δt. Using the current and three previous displacement data points, a finer control signal is defined with a time step of δt, using a third-order polynomial algorithm–referred to here as the polynomial fitting extrapolator. Both the numerical substructure and polynomial fitting extrapolator is executed with a sampling rate of Δt by an on-board single-core processor–referred to here as the digital signal processor (DSP). Through a field-programmable gate array (FPGA) the control signal is compensated and transmitted to the transfer system through an I/O module with a sampling rate of 1 kHz (i.e. δt = 0.001 sec). The ratio between Δt and δt are an integer–referred to here as the execution ratio. For an execution ratio of 1:5 and 1:10 the system performance is evaluated against a numerical model of the emulated structure–referred to here as the reference structure. For both the SDOF and MDOF system, a good correlation between the mrRTHS and reference is achieved with execution ratios of 1:5 and 1:10. When changing the execution ratio from 1:5 to 1:10, approximately 50% reduction of the required computational resources on the DSP is achieved.
•RTHS strategy which enables the substructure to execute at two different rates.•Optimizing computational resources while maintaining good actuator control.•Performance of the strategy is successfully evaluated on a mass-spring-damper system. This paper presents a real-time hybrid simulation (RTHS) strategy where the numerical and experimental substructures are executed at two different rates to optimize computational resources while maintaining an effective actuator control. The concept is referred to here as multi-rate real-time hybrid simulation (mrRTHS), and this approach is intended to enable low-cost RTHS by facilitating testing in the case of limited computational resources. Operated on a Laboratory Virtual Engineering Workshop (LabVIEW) real-time target, the mrRTHS concept is demonstrated through both a single- and multipledegree-of-freedom (SDOF) and (MDOF) mass-spring-damper system. The numerical substructure generates a displacement signal with a coarse time step of Δt. Using the current and three previous displacement data points, a finer control signal is defined with a time step of δt, using a third-order polynomial algorithm–referred to here as the polynomial fitting extrapolator. Both the numerical substructure and polynomial fitting extrapolator is executed with a sampling rate of Δt by an on-board single-core processor–referred to here as the digital signal processor (DSP). Through a field-programmable gate array (FPGA) the control signal is compensated and transmitted to the transfer system through an I/O module with a sampling rate of 1 kHz (i.e. δt = 0.001 sec). The ratio between Δt and δt are an integer–referred to here as the execution ratio. For an execution ratio of 1:5 and 1:10 the system performance is evaluated against a numerical model of the emulated structure–referred to here as the reference structure. For both the SDOF and MDOF system, a good correlation between the mrRTHS and reference is achieved with execution ratios of 1:5 and 1:10. When changing the execution ratio from 1:5 to 1:10, approximately 50% reduction of the required computational resources on the DSP is achieved.
ArticleNumber 112308
Author Waldbjoern, Jacob P.
Stang, Henrik
Ou, Ge
Dyke, Shirley J.
Maghareh, Amin
Author_xml – sequence: 1
  givenname: Jacob P.
  surname: Waldbjoern
  fullname: Waldbjoern, Jacob P.
  email: jpwa@mek.dtu.dk
  organization: Department of Mechanical Engineering, Technical University of Denmark, Niels Koppels Allé 404, 2800 Kgs. Lyngby, Denmark
– sequence: 2
  givenname: Amin
  surname: Maghareh
  fullname: Maghareh, Amin
  email: amaghare@purdue.edu
  organization: Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051, USA
– sequence: 3
  givenname: Ge
  surname: Ou
  fullname: Ou, Ge
  email: gou@purdue.edu
  organization: Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051, USA
– sequence: 4
  givenname: Shirley J.
  surname: Dyke
  fullname: Dyke, Shirley J.
  email: sdyke@purdue.edu
  organization: Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051, USA
– sequence: 5
  givenname: Henrik
  surname: Stang
  fullname: Stang, Henrik
  email: hs@byg.dtu.dk
  organization: Department of Civil Engineering, Technical University of Denmark, Brovej 118, 2800 Kgs. Lyngby, Denmark
BookMark eNqNkD1PwzAQQC1UJNrCb8ASc8rZbr4GhqoqtFIREpSPzXKcC3KUJsVxEP33OBQxsMB0N7x3J70RGdRNjYScM5gwYNFlOcH6tXW2027CgbMJY1xAckSGLIlFEAsuBmQIbMoC4Gl0QkZtWwIATxIYkpfbrnImsMohvUdV0Y3ZIl3uM2ty-mC2XaWcaWra7LBncup3RYsKP0xWIV2r7Gm1eKbWq4Hr1Z0XisZuT8lxoaoWz77nmDxeLzbzZbC-u1nNZ-tAi6lwQcEiptgUC0wzrUUWiZxDmAuRqCSKI50AZkmKYYxZrlg4DRnGLArjEFJeRKDEmFwc7u5s89Zh62TZdLb2LyUPQ_BGCtxT8YHStmlbi4XcWbNVdi8ZyD6jLOVPRtlnlIeM3rz6ZWrjvpo4q0z1D3928NFHeDdoZasN1hpzY9GzeWP-vPEJbVqV2w
CitedBy_id crossref_primary_10_1002_stc_3119
crossref_primary_10_1016_j_mechmachtheory_2023_105474
crossref_primary_10_3390_buildings15162930
crossref_primary_10_1002_eqe_4107
crossref_primary_10_1002_rnc_7824
crossref_primary_10_1016_j_engstruct_2023_117353
crossref_primary_10_1088_1755_1315_912_1_012009
crossref_primary_10_1002_eer2_25
crossref_primary_10_3390_mi15020247
crossref_primary_10_1002_eqe_4069
crossref_primary_10_1007_s11012_023_01675_0
crossref_primary_10_1016_j_istruc_2024_106525
Cites_doi 10.1002/(SICI)1096-9845(199904)28:4<393::AID-EQE823>3.0.CO;2-C
10.1016/j.proeng.2011.07.071
10.1109/ACC.2009.5160246
10.1016/j.engstruct.2011.01.032
10.12989/sss.2014.14.6.1221
10.1098/rsta.2001.0876
10.1002/eqe.757
10.1193/1.1585867
10.1061/(ASCE)0733-9445(1989)115:8(2113)
10.1002/eqe.2713
10.1111/str.12157
10.1016/j.engstruct.2011.10.006
10.1016/j.compstruct.2006.06.008
10.1063/1.5019144
10.1016/j.jcsr.2010.04.011
10.1061/(ASCE)ST.1943-541X.0000314
10.1002/eqe.2448
10.1002/eqe.4290210106
10.1109/ACC.2009.5160643
10.12989/sss.2014.14.6.1151
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jul 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 15, 2021
DBID AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
FR3
JG9
KR7
SOI
DOI 10.1016/j.engstruct.2021.112308
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
ExternalDocumentID 10_1016_j_engstruct_2021_112308
S0141029621004582
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
VH1
WUQ
ZY4
~HD
7SR
7ST
8BQ
8FD
AGCQF
C1K
FR3
JG9
KR7
SOI
ID FETCH-LOGICAL-c343t-f161a14efe9bcc3b63d205d338a8676c80eb89e57ebda15451e716575092f60a3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000657389100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0141-0296
IngestDate Wed Aug 13 06:59:39 EDT 2025
Sat Nov 29 07:24:19 EST 2025
Tue Nov 18 22:42:47 EST 2025
Fri Feb 23 02:36:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Performance evaluation
Real-time hybrid simulation
Field programmable gate array
Hardware-in-the-loop
Experimental substructure
Numerical substructure
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-f161a14efe9bcc3b63d205d338a8676c80eb89e57ebda15451e716575092f60a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2550545902
PQPubID 2045481
ParticipantIDs proquest_journals_2550545902
crossref_primary_10_1016_j_engstruct_2021_112308
crossref_citationtrail_10_1016_j_engstruct_2021_112308
elsevier_sciencedirect_doi_10_1016_j_engstruct_2021_112308
PublicationCentury 2000
PublicationDate 2021-07-15
PublicationDateYYYYMMDD 2021-07-15
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-15
  day: 15
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering structures
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References National Instruments, - 2 2008. [Online]. [Accessed 12 11 2014].
Jacobsen, Hitaka, Nakashima (b0060) 2010; 66
Chen C, Ricles JM. A general approach for analysis of actuator delay compensation methods for real-time testing. In: The 14th World Conference on Earthquake Engineering, Beijing, China; 2008.
Bitter, Mohiuddin, Nawrocki (b0140) 2001
Nakashima, Kato, Takaoka (b0035) 1992; 21
Phillips BM, Spencer BF. Model-based servo-hydraulic control for real-time hybrid simulation. Urbana-Champaign, Illinois, USA: Newmark Structural Engineering Laboratory, University of Illinois at Urbana-Champaign; 2011.
Ellis (b0165) 2000
Maghareh, Waldbjoern, Dyke, Prakash (b0120) 2016; 45
Jensen, Falzon, Ankersen, Stang (b0085) 2006; 76
Waldbjoern JP, Hoegh JH, Stang H, Berggreen CC, Wittrup-Schmidt J, Branner K. Hybrid testing of composite structures with single-axis control. In: The 19th International Conference on Composite Materials, Montréal; 2013.
Shing, Nakashima, Bursi (b0030) 1996; 12
National Instruments, - 6 2014. [Online]. [Accessed 21 11 2014].
Carrion JE, Spencer BF. Model-based strategies for real-time hybrid testing. Urbana-Champaign, Illinois, USA: Newmark Structural Engineering Laboratory, University of Illinois at Urbana-Champaign; 2007.
Mahin, Shing, Thewalt, Hanson (b0025) 1989; 115
Ito, Murata, Hoki, Nakashima (b0055) 2011; 14
Ferry D, Maghareh A, Bunting G, Prakash A, Agrawal K, Lu C, Dyke S. On the performance of a highly parallelizable concurrency platform for real-time hybrid simulation. In: The 6'th World Conference on Structural Control and Monitoring, Barcelona, Spain; 2014.
Williams MS. Real-time hybrid testing in structural dynamics. In: The 5th Australasian Congress on Applied Mechanics, Brisbane, Australia; 2007.
Nakashima (b0115) 2001; 373
Dyke SJ. Acceleration feedback control strategies for active and semi-active systems: modeling, alogrithm development and experimental verification [Ph.D. Dissertation]. IN: University of Notre Dame; 1996.
Bursi, Gonzalez-Buelga, Vulcan, Neild, Wagg (b0010) 2008; 37
Takanashi, Nakaschiman (b0015) 1987; 113
Mucha W, Kus W. Mountain bicycle frame testing as an example of practical implementation of hybrid simulation using RTFEM. In: Computer Methods in Mechanics (CMM2017), Lublin, Poland; 2018.
Maghareh, Dyke, Prakash, Bunting (b0180) 2014; 43
Karavasilis, Ricles, Sause, Chen (b0050) 2011; 33
Lin YZ, Christenson RE. Comparison of real-time hybrid testing with shake table test for an MR damper controlled structure. In: Americam Control Conference, St. Louis, Missouri, USA; 2009.
National Instruments, - 8 2009. [Online]. [Accessed 12 11 2014].
Maghareh, Dyke, Prakash, Rhoads (b0175) 2014; 14
Horiuchi T, Nakagawa M, Sugano M, Konno T. Development of real-time hybrid experiment system with actuator delay compensation. In: Proc. 11th World conference on Earthquake engineering. Acapulco; 1996.
Bonnet (b0125) 2006
Carrion JE, Spencer BF, Phillips BM. Real-time hybrid testing of a semi-actively controlled structure with an MR damper. In: American Control Conference, St. Louis, Missouri, USA; 2009.
Nakashima, Masaoka (b0040) 1999; 28
Hoegh, Waldbjoern, Wittrup-Schmidt, Stang, Berggreen (b0045) 2015; 51
Shao, Reinhorn, Sivaselvan (b0005) 2011; 137
Chen, Ricles, Karavasilis, Chae, Sause (b0065) 2012; 35
Jensen (b0090) 2008
Ashasi-Sorkhabi, Mercan (b0135) 2014; 14
10.1016/j.engstruct.2021.112308_b0075
10.1016/j.engstruct.2021.112308_b0130
Jacobsen (10.1016/j.engstruct.2021.112308_b0060) 2010; 66
10.1016/j.engstruct.2021.112308_b0110
Nakashima (10.1016/j.engstruct.2021.112308_b0115) 2001; 373
10.1016/j.engstruct.2021.112308_b0155
Maghareh (10.1016/j.engstruct.2021.112308_b0175) 2014; 14
Maghareh (10.1016/j.engstruct.2021.112308_b0180) 2014; 43
Hoegh (10.1016/j.engstruct.2021.112308_b0045) 2015; 51
Karavasilis (10.1016/j.engstruct.2021.112308_b0050) 2011; 33
Jensen (10.1016/j.engstruct.2021.112308_b0090) 2008
Jensen (10.1016/j.engstruct.2021.112308_b0085) 2006; 76
Maghareh (10.1016/j.engstruct.2021.112308_b0120) 2016; 45
Mahin (10.1016/j.engstruct.2021.112308_b0025) 1989; 115
Nakashima (10.1016/j.engstruct.2021.112308_b0035) 1992; 21
Bursi (10.1016/j.engstruct.2021.112308_b0010) 2008; 37
10.1016/j.engstruct.2021.112308_b0080
Shao (10.1016/j.engstruct.2021.112308_b0005) 2011; 137
10.1016/j.engstruct.2021.112308_b0160
Ellis (10.1016/j.engstruct.2021.112308_b0165) 2000
Nakashima (10.1016/j.engstruct.2021.112308_b0040) 1999; 28
10.1016/j.engstruct.2021.112308_b0020
Takanashi (10.1016/j.engstruct.2021.112308_b0015) 1987; 113
10.1016/j.engstruct.2021.112308_b0100
10.1016/j.engstruct.2021.112308_b0145
10.1016/j.engstruct.2021.112308_b0105
Bitter (10.1016/j.engstruct.2021.112308_b0140) 2001
Ashasi-Sorkhabi (10.1016/j.engstruct.2021.112308_b0135) 2014; 14
Shing (10.1016/j.engstruct.2021.112308_b0030) 1996; 12
Ito (10.1016/j.engstruct.2021.112308_b0055) 2011; 14
Chen (10.1016/j.engstruct.2021.112308_b0065) 2012; 35
Bonnet (10.1016/j.engstruct.2021.112308_b0125) 2006
10.1016/j.engstruct.2021.112308_b0070
10.1016/j.engstruct.2021.112308_b0170
10.1016/j.engstruct.2021.112308_b0095
10.1016/j.engstruct.2021.112308_b0150
References_xml – volume: 21
  start-page: 79
  year: 1992
  end-page: 92
  ident: b0035
  article-title: Development of real-time pseudo dynamic testing
  publication-title: Earthquake Eng Struct Dyn
– reference: Phillips BM, Spencer BF. Model-based servo-hydraulic control for real-time hybrid simulation. Urbana-Champaign, Illinois, USA: Newmark Structural Engineering Laboratory, University of Illinois at Urbana-Champaign; 2011.
– reference: Chen C, Ricles JM. A general approach for analysis of actuator delay compensation methods for real-time testing. In: The 14th World Conference on Earthquake Engineering, Beijing, China; 2008.
– reference: Carrion JE, Spencer BF. Model-based strategies for real-time hybrid testing. Urbana-Champaign, Illinois, USA: Newmark Structural Engineering Laboratory, University of Illinois at Urbana-Champaign; 2007.
– volume: 12
  start-page: 29
  year: 1996
  end-page: 56
  ident: b0030
  article-title: Application of pseudodynamic test method to structural research
  publication-title: Earthquake Spectra
– reference: . National Instruments, - 8 2009. [Online]. [Accessed 12 11 2014].
– volume: 37
  start-page: 339
  year: 2008
  end-page: 360
  ident: b0010
  article-title: Novel Coupling Rosenbrockbased algorithm for real-time dynamic substructure testing
  publication-title: Earthquake Eng Struct Dyn
– volume: 28
  start-page: 393
  year: 1999
  end-page: 420
  ident: b0040
  article-title: Real time on-line test for MDOF systems
  publication-title: Earthquake Eng Struct Dyn
– volume: 33
  start-page: 1859
  year: 2011
  end-page: 1869
  ident: b0050
  article-title: Experimental evaluation of the seismic performance of steel MRFs with compressed elatsomer dampers using large-scale real-time hybrid simulation
  publication-title: Eng Struct
– volume: 113
  start-page: 1014
  year: 1987
  end-page: 1032
  ident: b0015
  article-title: Japanese activities on ON-LINE testing
  publication-title: J Eng Mech
– year: 2006
  ident: b0125
  article-title: The development of multi-axis real-time substructure testing
– reference: Dyke SJ. Acceleration feedback control strategies for active and semi-active systems: modeling, alogrithm development and experimental verification [Ph.D. Dissertation]. IN: University of Notre Dame; 1996.
– reference: Mucha W, Kus W. Mountain bicycle frame testing as an example of practical implementation of hybrid simulation using RTFEM. In: Computer Methods in Mechanics (CMM2017), Lublin, Poland; 2018.
– volume: 14
  start-page: 1221
  year: 2014
  end-page: 1245
  ident: b0175
  article-title: Establishing a stability switch criterion for effective RTHS implementation
  publication-title: J Smart Struct Syst
– year: 2000
  ident: b0165
  article-title: Control system design guide
– volume: 43
  start-page: 2299
  year: 2014
  end-page: 2318
  ident: b0180
  article-title: Establishing a predictive performance indicator for real-time hybrid simulation
  publication-title: Earthquake Eng Struct Dyn
– volume: 14
  start-page: 567
  year: 2011
  end-page: 571
  ident: b0055
  article-title: Online hybrid test on buildings with stud-type damper made of slitted steel plates stifferened by wood panels
  publication-title: Procedia Eng
– volume: 137
  start-page: 748
  year: 2011
  end-page: 760
  ident: b0005
  article-title: Real-time hybrid simulation using shake tables and dynamic actuators
  publication-title: J Struct Eng
– reference: Horiuchi T, Nakagawa M, Sugano M, Konno T. Development of real-time hybrid experiment system with actuator delay compensation. In: Proc. 11th World conference on Earthquake engineering. Acapulco; 1996.
– volume: 373
  start-page: 1851
  year: 2001
  end-page: 1867
  ident: b0115
  article-title: Development, potential, and limitations of real-time online (pseudo-dynamic) testing
  publication-title: Philos Trans Roy Soc A: Math Phys Eng Sci
– volume: 14
  start-page: 1151
  year: 2014
  end-page: 1172
  ident: b0135
  article-title: Development, implementation and verification of a user configurable platform for real-time hybrid simulation
  publication-title: Smart Struct Syst
– year: 2001
  ident: b0140
  article-title: LabVIEW advanced programming techniques
– reference: Williams MS. Real-time hybrid testing in structural dynamics. In: The 5th Australasian Congress on Applied Mechanics, Brisbane, Australia; 2007.
– volume: 76
  start-page: 52
  year: 2006
  end-page: 61
  ident: b0085
  article-title: Structural testing and numerical simulation of a 34m composite wind turbine blade
  publication-title: Compos Struct
– reference: . National Instruments, - 6 2014. [Online]. [Accessed 21 11 2014].
– volume: 35
  start-page: 71
  year: 2012
  end-page: 82
  ident: b0065
  article-title: Evaluation of a real-time hybrid simulation system for performance evaluation of structures with rate dependent devices subjected to seimic loading
  publication-title: Eng Struct
– volume: 66
  start-page: 1320
  year: 2010
  end-page: 1329
  ident: b0060
  article-title: Online test of building frame with slit-wall dampers capable of condition assessment
  publication-title: J Constr Steel Res
– volume: 115
  start-page: 2113
  year: 1989
  end-page: 2128
  ident: b0025
  article-title: Pseudodynamic test method. Current status and future directions
  publication-title: J Struct Eng
– reference: Ferry D, Maghareh A, Bunting G, Prakash A, Agrawal K, Lu C, Dyke S. On the performance of a highly parallelizable concurrency platform for real-time hybrid simulation. In: The 6'th World Conference on Structural Control and Monitoring, Barcelona, Spain; 2014.
– year: 2008
  ident: b0090
  article-title: Ultimate strength of a large wind turbine blade
– volume: 51
  start-page: 459
  year: 2015
  end-page: 473
  ident: b0045
  article-title: Quasi-static single-component hybrid testing of a composite structure with multi-axial control
  publication-title: Strain
– volume: 45
  start-page: 1411
  year: 2016
  end-page: 1425
  ident: b0120
  article-title: Adaptive multi-rate interface: development and experimental verification of an interface for multi-rate real-time hybrid simulation
  publication-title: Earthquake Eng Struct Dyn
– reference: Lin YZ, Christenson RE. Comparison of real-time hybrid testing with shake table test for an MR damper controlled structure. In: Americam Control Conference, St. Louis, Missouri, USA; 2009.
– reference: Carrion JE, Spencer BF, Phillips BM. Real-time hybrid testing of a semi-actively controlled structure with an MR damper. In: American Control Conference, St. Louis, Missouri, USA; 2009.
– reference: Waldbjoern JP, Hoegh JH, Stang H, Berggreen CC, Wittrup-Schmidt J, Branner K. Hybrid testing of composite structures with single-axis control. In: The 19th International Conference on Composite Materials, Montréal; 2013.
– reference: . National Instruments, - 2 2008. [Online]. [Accessed 12 11 2014].
– year: 2000
  ident: 10.1016/j.engstruct.2021.112308_b0165
– year: 2006
  ident: 10.1016/j.engstruct.2021.112308_b0125
– volume: 28
  start-page: 393
  issue: 4
  year: 1999
  ident: 10.1016/j.engstruct.2021.112308_b0040
  article-title: Real time on-line test for MDOF systems
  publication-title: Earthquake Eng Struct Dyn
  doi: 10.1002/(SICI)1096-9845(199904)28:4<393::AID-EQE823>3.0.CO;2-C
– ident: 10.1016/j.engstruct.2021.112308_b0100
– volume: 14
  start-page: 567
  year: 2011
  ident: 10.1016/j.engstruct.2021.112308_b0055
  article-title: Online hybrid test on buildings with stud-type damper made of slitted steel plates stifferened by wood panels
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2011.07.071
– ident: 10.1016/j.engstruct.2021.112308_b0020
– ident: 10.1016/j.engstruct.2021.112308_b0075
  doi: 10.1109/ACC.2009.5160246
– ident: 10.1016/j.engstruct.2021.112308_b0150
– volume: 33
  start-page: 1859
  issue: 6
  year: 2011
  ident: 10.1016/j.engstruct.2021.112308_b0050
  article-title: Experimental evaluation of the seismic performance of steel MRFs with compressed elatsomer dampers using large-scale real-time hybrid simulation
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2011.01.032
– volume: 14
  start-page: 1221
  issue: 6
  year: 2014
  ident: 10.1016/j.engstruct.2021.112308_b0175
  article-title: Establishing a stability switch criterion for effective RTHS implementation
  publication-title: J Smart Struct Syst
  doi: 10.12989/sss.2014.14.6.1221
– volume: 373
  start-page: 1851
  issue: 2035
  year: 2001
  ident: 10.1016/j.engstruct.2021.112308_b0115
  article-title: Development, potential, and limitations of real-time online (pseudo-dynamic) testing
  publication-title: Philos Trans Roy Soc A: Math Phys Eng Sci
  doi: 10.1098/rsta.2001.0876
– volume: 37
  start-page: 339
  issue: 3
  year: 2008
  ident: 10.1016/j.engstruct.2021.112308_b0010
  article-title: Novel Coupling Rosenbrockbased algorithm for real-time dynamic substructure testing
  publication-title: Earthquake Eng Struct Dyn
  doi: 10.1002/eqe.757
– volume: 113
  start-page: 1014
  issue: 7
  year: 1987
  ident: 10.1016/j.engstruct.2021.112308_b0015
  article-title: Japanese activities on ON-LINE testing
  publication-title: J Eng Mech
– year: 2008
  ident: 10.1016/j.engstruct.2021.112308_b0090
– volume: 12
  start-page: 29
  issue: 1
  year: 1996
  ident: 10.1016/j.engstruct.2021.112308_b0030
  article-title: Application of pseudodynamic test method to structural research
  publication-title: Earthquake Spectra
  doi: 10.1193/1.1585867
– volume: 115
  start-page: 2113
  issue: 8
  year: 1989
  ident: 10.1016/j.engstruct.2021.112308_b0025
  article-title: Pseudodynamic test method. Current status and future directions
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(1989)115:8(2113)
– volume: 45
  start-page: 1411
  issue: 9
  year: 2016
  ident: 10.1016/j.engstruct.2021.112308_b0120
  article-title: Adaptive multi-rate interface: development and experimental verification of an interface for multi-rate real-time hybrid simulation
  publication-title: Earthquake Eng Struct Dyn
  doi: 10.1002/eqe.2713
– volume: 51
  start-page: 459
  issue: 6
  year: 2015
  ident: 10.1016/j.engstruct.2021.112308_b0045
  article-title: Quasi-static single-component hybrid testing of a composite structure with multi-axial control
  publication-title: Strain
  doi: 10.1111/str.12157
– ident: 10.1016/j.engstruct.2021.112308_b0080
– ident: 10.1016/j.engstruct.2021.112308_b0130
– volume: 35
  start-page: 71
  year: 2012
  ident: 10.1016/j.engstruct.2021.112308_b0065
  article-title: Evaluation of a real-time hybrid simulation system for performance evaluation of structures with rate dependent devices subjected to seimic loading
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2011.10.006
– ident: 10.1016/j.engstruct.2021.112308_b0170
– ident: 10.1016/j.engstruct.2021.112308_b0155
– ident: 10.1016/j.engstruct.2021.112308_b0160
– volume: 76
  start-page: 52
  issue: 1–2
  year: 2006
  ident: 10.1016/j.engstruct.2021.112308_b0085
  article-title: Structural testing and numerical simulation of a 34m composite wind turbine blade
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2006.06.008
– ident: 10.1016/j.engstruct.2021.112308_b0110
  doi: 10.1063/1.5019144
– volume: 66
  start-page: 1320
  issue: 11
  year: 2010
  ident: 10.1016/j.engstruct.2021.112308_b0060
  article-title: Online test of building frame with slit-wall dampers capable of condition assessment
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2010.04.011
– ident: 10.1016/j.engstruct.2021.112308_b0095
– year: 2001
  ident: 10.1016/j.engstruct.2021.112308_b0140
– volume: 137
  start-page: 748
  issue: 7
  year: 2011
  ident: 10.1016/j.engstruct.2021.112308_b0005
  article-title: Real-time hybrid simulation using shake tables and dynamic actuators
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0000314
– ident: 10.1016/j.engstruct.2021.112308_b0105
– volume: 43
  start-page: 2299
  issue: 15
  year: 2014
  ident: 10.1016/j.engstruct.2021.112308_b0180
  article-title: Establishing a predictive performance indicator for real-time hybrid simulation
  publication-title: Earthquake Eng Struct Dyn
  doi: 10.1002/eqe.2448
– volume: 21
  start-page: 79
  issue: 1
  year: 1992
  ident: 10.1016/j.engstruct.2021.112308_b0035
  article-title: Development of real-time pseudo dynamic testing
  publication-title: Earthquake Eng Struct Dyn
  doi: 10.1002/eqe.4290210106
– ident: 10.1016/j.engstruct.2021.112308_b0070
  doi: 10.1109/ACC.2009.5160643
– volume: 14
  start-page: 1151
  issue: 6
  year: 2014
  ident: 10.1016/j.engstruct.2021.112308_b0135
  article-title: Development, implementation and verification of a user configurable platform for real-time hybrid simulation
  publication-title: Smart Struct Syst
  doi: 10.12989/sss.2014.14.6.1151
– ident: 10.1016/j.engstruct.2021.112308_b0145
SSID ssj0002880
Score 2.431492
Snippet •RTHS strategy which enables the substructure to execute at two different rates.•Optimizing computational resources while maintaining good actuator...
This paper presents a real-time hybrid simulation (RTHS) strategy where the numerical and experimental substructures are executed at two different rates to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112308
SubjectTerms Actuators
Algorithms
Computer applications
Data points
Digital signal processing
Digital signal processors
Experimental substructure
Field programmable gate array
Field programmable gate arrays
Hardware-in-the-loop
Mass-spring-damper systems
Mathematical models
Microprocessors
Numerical models
Numerical substructure
Performance evaluation
Polynomials
Real time
Real-time hybrid simulation
Sampling
Simulation
Title Multi-rate Real Time Hybrid Simulation operated on a flexible LabVIEW real-time platform
URI https://dx.doi.org/10.1016/j.engstruct.2021.112308
https://www.proquest.com/docview/2550545902
Volume 239
WOSCitedRecordID wos000657389100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZl00N7KH3SPFp06M1osSU_5NyWkpIuIQ0kbfdmJFlOdtl4l91NSf59ZyzZTvogLaUXY4xl2ZrP0qdh5htC3uU65irhmmWVtCw2lWKoMsVkqVNZ5TIxTbWGL0fZ8bGcTPIT71VaN-UEsrqW19f58r-aGq6BsTF19i_M3T0ULsA5GB2OYHY4_pHhm5RahgoQGCE_b5I8gsMbzMwKTqeXvlxXsFiinDLQTQxHDirUxcQkqiOlMVwiAC45Z1h4HutMb5DZ3vHh9yqGgVOgvVr1wYhf1bzUs4V1ccJjmHN1cDLsfd_nF2plG3fO6HLagfPTlfPRd9T6xscNXUxXOHONh7c9FDxC16fL0XRuszZ1po9Tcp5MuJHnXgfbzb4yEywTLgG5nZ65Ezv6aap3XofZ0Nbn7kOH2DemRIlQ9qtbF3N42oS0QoccRfISCev2Fs-SXA7I1ujjwWTcLeBcNgX3uje8Exb4y-5-R2p-WN4bznL2lDzxmw06ciB5Rh7Y-jl5fMt4L8ikhwtFuFCEC3VwoT1caAsXCueKtnChHi60gwtt4fKSfP5wcPb-kPlqG8yIWGxYBdxfRbGtbK6NEToVJQ-TUgipZJqlRoZWy9wmmdWlQuIdWdhrJ8g4eZWGSrwig3pR29eEwiooVMRh_JIqllGYaxS7kErlxsRxlm2TtB2uwngpeqyIMi_amMNZ0Y1zgeNcuHHeJmHXcOnUWO5vst_ao_Ck0pHFAoB0f-O91oKF_8XXBcdNfYyyRzv_8uxd8qj_WfbIAG6wb8hD820zXa_eekx-B39AqVI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-rate+Real+Time+Hybrid+Simulation+operated+on+a+flexible+LabVIEW+real-time+platform&rft.jtitle=Engineering+structures&rft.au=Waldbjoern%2C+Jacob+P.&rft.au=Maghareh%2C+Amin&rft.au=Ou%2C+Ge&rft.au=Dyke%2C+Shirley+J.&rft.date=2021-07-15&rft.pub=Elsevier+Ltd&rft.issn=0141-0296&rft.eissn=1873-7323&rft.volume=239&rft_id=info:doi/10.1016%2Fj.engstruct.2021.112308&rft.externalDocID=S0141029621004582
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon