Sum Multicoloring of Graphs

Scheduling dependent jobs on multiple machines is modeled by the graph multicoloring problem. In this paper we consider the problem of minimizing the average completion time of all jobs. This is formalized as the sum multicoloring problem: Given a graph and the number of colors required by each vert...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of algorithms Ročník 37; číslo 2; s. 422 - 450
Hlavní autori: Bar-Noy, Amotz, Halldórsson, Magnús M., Kortsarz, Guy, Salman, Ravit, Shachnai, Hadas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: San Diego, CA Elsevier Inc 01.11.2000
Elsevier
Predmet:
ISSN:0196-6774, 1090-2678
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Scheduling dependent jobs on multiple machines is modeled by the graph multicoloring problem. In this paper we consider the problem of minimizing the average completion time of all jobs. This is formalized as the sum multicoloring problem: Given a graph and the number of colors required by each vertex, find a multicoloring which minimizes the sum of the largest colors assigned to the vertices. It reduces to the known sum coloring problem when each vertex requires exactly one color. This paper reports a comprehensive study of the sum multicoloring problem, treating three models: with and without preemptions, as well as co-scheduling where jobs cannot start while others are running. We establish a linear relation between the approximability of the maximum independent set problem and the approximability of the sum multicoloring problem in all three models, via a link to the sum coloring problem. Thus, for classes of graphs for which the independent set problem is ρ-approximable, we obtain O(ρ)-approximations for preemptive and co-scheduling sum multicoloring and O(ρlogn)-approximation for nonpreemptive sum multicoloring. In addition, we give constant ratio approximations for a number of fundamental classes of graphs, including bipartite, line, bounded degree, and planar graphs.
ISSN:0196-6774
1090-2678
DOI:10.1006/jagm.2000.1106