Detection of alteration zones using the Dirichlet process Stick-Breaking model-based clustering algorithm to hyperion data: the case study of Kuh-Panj porphyry copper deposits, Southern Iran

Detection of hydrothermal alteration zones (HAZs) associated with porphyry copper systems using remote sensing imagery is a crucial stage for discovering high potential zone of ore mineralization. Statistical model-based clustering methods have great potential for automatic and accurate detection of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Geocarto international Ročník 37; číslo 25; s. 9788 - 9816
Hlavní autoři: Yousefi, Mastoureh, Tabatabaei, Seyed Hassan, Rikhtehgaran, Reyhaneh, Pour, Amin Beiranvand, Pradhan, Biswajeet
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 13.12.2022
Témata:
ISSN:1010-6049, 1752-0762, 1752-0762
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Detection of hydrothermal alteration zones (HAZs) associated with porphyry copper systems using remote sensing imagery is a crucial stage for discovering high potential zone of ore mineralization. Statistical model-based clustering methods have great potential for automatic and accurate detection of hydrothermal alteration minerals using hyperspectral remote sensing imagery. In this research, the Dirichlet Process based on Stick-Breaking (DPSB) model-based clustering algorithm was implemented to hyperion remote sensing imagery to discriminate HAZs associated with the Kuh-Panj porphyry copper deposit, south, Iran. The DPSB clustering algorithm was implemented and subsequently compared with the k-means algorithm, CLARA clustering, hierarchical clustering, Gaussian finite mixture model (GFMM), Gaussian model for high-dimensional (GMHD) and spectral clustering as well as spectral angle mapping (SAM). Results derived from the DPSB model-based clustering algorithm show 88.6% accuracy in distinguishing propylitic, argillic, advanced argillic, propylitic-argillic and phyllic alteration zones. The DPSB algorithm can be broadly implemented to hyperspectral remote sensing imagery for detecting alteration zones associated with porphyry systems.
AbstractList Detection of hydrothermal alteration zones (HAZs) associated with porphyry copper systems using remote sensing imagery is a crucial stage for discovering high potential zone of ore mineralization. Statistical model-based clustering methods have great potential for automatic and accurate detection of hydrothermal alteration minerals using hyperspectral remote sensing imagery. In this research, the Dirichlet Process based on Stick-Breaking (DPSB) model-based clustering algorithm was implemented to hyperion remote sensing imagery to discriminate HAZs associated with the Kuh-Panj porphyry copper deposit, south, Iran. The DPSB clustering algorithm was implemented and subsequently compared with the k-means algorithm, CLARA clustering, hierarchical clustering, Gaussian finite mixture model (GFMM), Gaussian model for high-dimensional (GMHD) and spectral clustering as well as spectral angle mapping (SAM). Results derived from the DPSB model-based clustering algorithm show 88.6% accuracy in distinguishing propylitic, argillic, advanced argillic, propylitic-argillic and phyllic alteration zones. The DPSB algorithm can be broadly implemented to hyperspectral remote sensing imagery for detecting alteration zones associated with porphyry systems.
Author Yousefi, Mastoureh
Pradhan, Biswajeet
Tabatabaei, Seyed Hassan
Rikhtehgaran, Reyhaneh
Pour, Amin Beiranvand
Author_xml – sequence: 1
  givenname: Mastoureh
  orcidid: 0000-0002-8412-0792
  surname: Yousefi
  fullname: Yousefi, Mastoureh
  organization: Department of Mining Engineering, Isfahan University of Technology
– sequence: 2
  givenname: Seyed Hassan
  orcidid: 0000-0003-2869-748X
  surname: Tabatabaei
  fullname: Tabatabaei, Seyed Hassan
  organization: Department of Mining Engineering, Isfahan University of Technology
– sequence: 3
  givenname: Reyhaneh
  orcidid: 0000-0001-5815-2769
  surname: Rikhtehgaran
  fullname: Rikhtehgaran, Reyhaneh
  organization: Department of Mathematical Sciences, Isfahan University of Technology
– sequence: 4
  givenname: Amin Beiranvand
  orcidid: 0000-0001-8783-5120
  surname: Pour
  fullname: Pour, Amin Beiranvand
  organization: Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT)
– sequence: 5
  givenname: Biswajeet
  orcidid: 0000-0001-9863-2054
  surname: Pradhan
  fullname: Pradhan, Biswajeet
  organization: Earth Observation Center, Institute of Climate Change, Universiti Kebangsaan Malaysia
BookMark eNqFkctu1jAQhSNUJHrhEZC8ZEGKL7nCBmi5VK0EUmFtTZxx49aJg-0IhYfj2XD-v92woBtfRuc7nvE5yg4mN2GWvWD0lNGGvmaU0YoW7SmnnG9L2bL6SXbI6pLntK74QTonTb6JnmVHIdxSKuqmEofZn3OMqKJxE3GagI3oYXf7nd4IZAlmuiFxQHJuvFGDxUhm7xSGQK6jUXf5B49wt4lG16PNOwjYE2WXkJy2Mtgb500cRhIdGdY5VZN7DxHe7HxVAkiIS79uDVwuQ_4NplsyOz8Pq1-JcnNiSI-zCyaGV-TaLYnzE7nwMJ1kTzXYgM_v9-Psx6eP38--5FdfP1-cvb_KlShEzHutm1rpjlZlqVpkuqwBe606UWNRYdewsuW8LjgopUTPsWTYctpAV4BQhRDH2cu9bxr-54IhytEEhdbChG4Jkjei4IwK3iZpuZcq70LwqOXszQh-lYzKLS_5kJfc8pL3eSXu7T-cMnGXRfRg7KP0uz1tJu38CL-ct72MsFrndfooZYIU_7f4C-0Yta4
CitedBy_id crossref_primary_10_1016_j_oregeorev_2023_105732
crossref_primary_10_3390_rs16020392
crossref_primary_10_1080_22797254_2023_2299369
crossref_primary_10_1007_s12145_024_01538_6
crossref_primary_10_1038_s41598_023_34531_y
crossref_primary_10_1007_s12517_022_10165_8
crossref_primary_10_1016_j_rsase_2024_101421
crossref_primary_10_1016_j_oregeorev_2023_105605
crossref_primary_10_1080_10106049_2022_2097481
Cites_doi 10.3390/rs12010105
10.2113/gsecongeo.105.1.3
10.1109/TGRS.2003.812908
10.1214/06-BA104
10.1016/j.infrared.2016.05.022
10.1016/j.oregeorev.2017.07.018
10.1080/19479832.2019.1589585
10.1007/3-540-28349-8_2
10.1080/01966324.2007.10737689
10.1016/j.envsoft.2019.01.014
10.1109/LGRS.2006.888109
10.1007/s11053-020-09628-0
10.3390/rs13112101
10.1080/01431160701874587
10.3390/s18103213
10.3390/rs12081239
10.1016/S0034-4257(98)00064-9
10.1016/j.oregeorev.2020.103530
10.1080/01431161.2010.542202
10.1214/ss/1177013818
10.1109/JSTARS.2018.2814617
10.1016/j.oregeorev.2013.03.010
10.3390/rs11091003
10.3390/rs8110890
10.1109/TCBB.2013.32
10.1109/TPAMI.2010.88
10.1145/331499.331504
10.5194/isprs-archives-XLI-B8-431-2016
10.3390/rs11121450
10.1007/BF01908075
10.1016/j.asr.2010.08.021
10.1080/10618600.2000.10474879
10.1016/j.oregeorev.2011.09.009
10.1007/978-981-13-1513-8_32
10.1016/j.oregeorev.2010.05.007
10.3390/rs11182122
10.1016/j.ins.2017.11.016
10.3390/rs13010038
10.1023/A:1012801612483
10.1145/3321386
10.1109/TGRS.2010.2075937
10.2307/2986324
10.1016/j.gexplo.2016.07.002
10.3390/geosciences8070245
10.1016/j.asr.2017.01.027
10.1016/j.gexplo.2015.06.001
10.1186/2193-1801-3-1
10.1080/01431160802282854
10.1080/10106049.2020.1790676
10.1016/j.asr.2011.11.028
10.1007/978-3-642-04005-4_2
10.1214/aos/1176342360
10.1109/TSMCB.2012.2220543
10.1016/j.isprsjprs.2019.07.003
10.1109/CEC.2018.8477770
10.3390/rs9100976
10.1007/978-3-642-75671-9_11
10.1201/b13613
10.1080/19479832.2014.985619
10.3390/rs11050495
10.3390/rs12081261
10.29150/jhrs.v7.4.p189-211
10.1016/j.csda.2007.02.009
10.1080/01621459.1990.10476213
10.1016/j.gexplo.2013.03.005
10.1016/j.isprsjprs.2011.04.003
10.1109/TIT.2005.844059
10.1190/geo2011-0063.1
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1080/10106049.2022.2025917
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Physics
EISSN 1752-0762
EndPage 9816
ExternalDocumentID 10_1080_10106049_2022_2025917
2025917
Genre Research Article
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID .7F
.QJ
0BK
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SJN
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
~02
~S~
AAYXX
CITATION
7S9
L.6
ID FETCH-LOGICAL-c343t-dff87cfb0655c9e1f57aedfcb37e46eb815922742accc3d2e51e9208ab4a3c433
IEDL.DBID TFW
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000741289100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1010-6049
1752-0762
IngestDate Fri Sep 05 17:32:08 EDT 2025
Tue Nov 18 21:54:31 EST 2025
Sat Nov 29 03:13:48 EST 2025
Mon Oct 20 23:48:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-dff87cfb0655c9e1f57aedfcb37e46eb815922742accc3d2e51e9208ab4a3c433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8783-5120
0000-0001-5815-2769
0000-0002-8412-0792
0000-0003-2869-748X
0000-0001-9863-2054
PQID 2834210329
PQPubID 24069
PageCount 29
ParticipantIDs crossref_primary_10_1080_10106049_2022_2025917
proquest_miscellaneous_2834210329
crossref_citationtrail_10_1080_10106049_2022_2025917
informaworld_taylorfrancis_310_1080_10106049_2022_2025917
PublicationCentury 2000
PublicationDate 2022-12-13
PublicationDateYYYYMMDD 2022-12-13
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-13
  day: 13
PublicationDecade 2020
PublicationTitle Geocarto international
PublicationYear 2022
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0072
CIT0071
CIT0030
CIT0073
CIT0076
CIT0031
CIT0075
CIT0034
CIT0078
CIT0033
CIT0077
Abubakar AJa (CIT0001) 2019; 80
CIT0070
George R (CIT0032) 2014; 28
CIT0036
Chattoraj SL (CIT0015) 2020; 91
CIT0035
CIT0079
CIT0038
CIT0037
CIT0039
Khosravi A. (CIT0046) 2007
CIT0083
CIT0082
CIT0041
CIT0085
CIT0084
CIT0043
Lugrin T. (CIT0055) 2013
CIT0042
CIT0086
Kaufman L (CIT0045) 2009; 344
Datt B (CIT0022) 2004
CIT0081
CIT0080
CIT0003
CIT0047
CIT0002
CIT0005
CIT0004
CIT0048
CIT0007
CIT0009
CIT0008
Kaufman L (CIT0044) 2005
Kusuma K (CIT0050) 2019; 74
CIT0052
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
Cugmas M (CIT0021) 2016; 106
CIT0056
CIT0011
Beck R. (CIT0006) 2003
Pour AB (CIT0065) 2014; 3
Hantson S (CIT0040) 2011; 13
Safari M (CIT0074) 2018; 33
CIT0014
CIT0058
CIT0013
CIT0057
CIT0016
CIT0059
CIT0018
CIT0017
CIT0019
CIT0061
CIT0060
CIT0063
CIT0062
CIT0020
Kumar C (CIT0049) 2020; 86
CIT0064
CIT0023
CIT0067
CIT0066
CIT0025
CIT0069
CIT0024
CIT0068
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0013
  doi: 10.3390/rs12010105
– ident: CIT0078
  doi: 10.2113/gsecongeo.105.1.3
– ident: CIT0048
  doi: 10.1109/TGRS.2003.812908
– ident: CIT0012
  doi: 10.1214/06-BA104
– ident: CIT0084
  doi: 10.1016/j.infrared.2016.05.022
– ident: CIT0067
  doi: 10.1016/j.oregeorev.2017.07.018
– ident: CIT0070
  doi: 10.1080/19479832.2019.1589585
– ident: CIT0011
  doi: 10.1007/3-540-28349-8_2
– volume: 91
  start-page: 102162
  year: 2020
  ident: CIT0015
  publication-title: IJAEO
– ident: CIT0034
  doi: 10.1080/01966324.2007.10737689
– volume: 80
  start-page: 157
  year: 2019
  ident: CIT0001
  publication-title: Nigeria. IJAEO
– ident: CIT0047
  doi: 10.1016/j.envsoft.2019.01.014
– ident: CIT0026
  doi: 10.1109/LGRS.2006.888109
– ident: CIT0053
  doi: 10.1007/s11053-020-09628-0
– ident: CIT0037
  doi: 10.3390/rs13112101
– ident: CIT0033
  doi: 10.1080/01431160701874587
– ident: CIT0003
  doi: 10.3390/s18103213
– ident: CIT0075
  doi: 10.3390/rs12081239
– ident: CIT0036
  doi: 10.1016/S0034-4257(98)00064-9
– ident: CIT0082
  doi: 10.1016/j.oregeorev.2020.103530
– volume-title: Bayesian semiparametrics for modelling the clustering of extreme values
  year: 2013
  ident: CIT0055
– ident: CIT0008
  doi: 10.1080/01431161.2010.542202
– ident: CIT0051
  doi: 10.1214/ss/1177013818
– ident: CIT0052
  doi: 10.1109/JSTARS.2018.2814617
– ident: CIT0068
  doi: 10.1016/j.oregeorev.2013.03.010
– ident: CIT0038
  doi: 10.3390/rs11091003
– ident: CIT0083
  doi: 10.3390/rs8110890
– ident: CIT0005
  doi: 10.1109/TCBB.2013.32
– ident: CIT0017
  doi: 10.1109/TPAMI.2010.88
– ident: CIT0043
  doi: 10.1145/331499.331504
– ident: CIT0081
– ident: CIT0042
  doi: 10.5194/isprs-archives-XLI-B8-431-2016
– ident: CIT0085
  doi: 10.3390/rs11121450
– ident: CIT0041
  doi: 10.1007/BF01908075
– ident: CIT0007
  doi: 10.1016/j.asr.2010.08.021
– ident: CIT0058
  doi: 10.1080/10618600.2000.10474879
– ident: CIT0063
  doi: 10.1016/j.oregeorev.2011.09.009
– ident: CIT0059
  doi: 10.1007/978-981-13-1513-8_32
– ident: CIT0030
  doi: 10.1016/j.oregeorev.2010.05.007
– volume: 33
  start-page: 1186
  issue: 11
  year: 2018
  ident: CIT0074
  publication-title: GeoIn
– ident: CIT0086
  doi: 10.3390/rs11182122
– ident: CIT0024
  doi: 10.1016/j.ins.2017.11.016
– ident: CIT0069
  doi: 10.3390/rs13010038
– ident: CIT0039
  doi: 10.1023/A:1012801612483
– ident: CIT0020
  doi: 10.1145/3321386
– ident: CIT0016
  doi: 10.1109/TGRS.2010.2075937
– ident: CIT0023
  doi: 10.2307/2986324
– volume: 28
  start-page: 140
  year: 2014
  ident: CIT0032
  publication-title: IJAEO
– ident: CIT0080
– ident: CIT0025
  doi: 10.1016/j.gexplo.2016.07.002
– ident: CIT0057
  doi: 10.3390/geosciences8070245
– volume-title: EO-1 user guide v. 2.3
  year: 2003
  ident: CIT0006
– ident: CIT0071
  doi: 10.1016/j.asr.2017.01.027
– volume-title: Wiley series in probability and statistics
  year: 2005
  ident: CIT0044
– ident: CIT0035
  doi: 10.1016/j.gexplo.2015.06.001
– volume: 3
  start-page: 1
  issue: 1
  year: 2014
  ident: CIT0065
  publication-title: SpringerPlus
  doi: 10.1186/2193-1801-3-1
– ident: CIT0010
  doi: 10.1080/01431160802282854
– volume: 344
  volume-title: Finding groups in data: an introduction to cluster analysis
  year: 2009
  ident: CIT0045
– volume: 13
  start-page: 691
  issue: 5
  year: 2011
  ident: CIT0040
  publication-title: IJAEO
– ident: CIT0076
  doi: 10.1080/10106049.2020.1790676
– ident: CIT0064
  doi: 10.1016/j.asr.2011.11.028
– ident: CIT0004
  doi: 10.1007/978-3-642-04005-4_2
– ident: CIT0028
  doi: 10.1214/aos/1176342360
– ident: CIT0079
– ident: CIT0054
  doi: 10.1109/TSMCB.2012.2220543
– ident: CIT0029
  doi: 10.1016/j.isprsjprs.2019.07.003
– volume: 86
  start-page: 102006
  year: 2020
  ident: CIT0049
  publication-title: IJAEO
– ident: CIT0002
  doi: 10.1109/CEC.2018.8477770
– ident: CIT0018
  doi: 10.3390/rs9100976
– ident: CIT0062
  doi: 10.1007/978-3-642-75671-9_11
– ident: CIT0056
  doi: 10.1201/b13613
– ident: CIT0066
  doi: 10.1080/19479832.2014.985619
– ident: CIT0060
  doi: 10.3390/rs11050495
– ident: CIT0077
  doi: 10.3390/rs12081261
– ident: CIT0009
  doi: 10.29150/jhrs.v7.4.p189-211
– volume: 106
  start-page: 163
  issue: 1
  year: 2016
  ident: CIT0021
  publication-title: SCIM
– volume-title: Statistical geological and alteration map of Kuh Panj copper deposit
  year: 2007
  ident: CIT0046
– volume: 74
  start-page: 191
  year: 2019
  ident: CIT0050
  publication-title: IJAEO
– volume-title: Hyperion data processing workshop: hands-on processing instructions
  year: 2004
  ident: CIT0022
– ident: CIT0014
  doi: 10.1016/j.csda.2007.02.009
– ident: CIT0031
  doi: 10.1080/01621459.1990.10476213
– ident: CIT0073
  doi: 10.1016/j.gexplo.2013.03.005
– ident: CIT0072
– ident: CIT0061
  doi: 10.1016/j.isprsjprs.2011.04.003
– ident: CIT0019
  doi: 10.1109/TIT.2005.844059
– ident: CIT0027
  doi: 10.1190/geo2011-0063.1
SSID ssj0037863
Score 2.345461
Snippet Detection of hydrothermal alteration zones (HAZs) associated with porphyry copper systems using remote sensing imagery is a crucial stage for discovering high...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9788
SubjectTerms algorithms
Alteration zones
case studies
DPSB
hyperion
Iran
mineralization
porphyry copper systems
remote sensing
SAM
Title Detection of alteration zones using the Dirichlet process Stick-Breaking model-based clustering algorithm to hyperion data: the case study of Kuh-Panj porphyry copper deposits, Southern Iran
URI https://www.tandfonline.com/doi/abs/10.1080/10106049.2022.2025917
https://www.proquest.com/docview/2834210329
Volume 37
WOSCitedRecordID wos000741289100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1752-0762
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037863
  issn: 1010-6049
  databaseCode: TFW
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yKPri6anceSoj-Ghk22Sb1Dd_LYpyHHjqvZUkTa6ra7u0XWH94_zbnElb8RC5B30qLcwQOsnMJPnmG8YeWSIlMzPNVWYCl8pbbvOs5F66ubROmTxW8X98p46O9OlpfjyiCbsRVkl76DAQRURfTYvb2G5CxOEzIcoXKjNJqZYKM_iE6skx9NPSPFl8mnyxUDobIPbobUhkquH5m5Zz0ekcd-kfvjoGoMXufxj6DXZ9zD7h2TBdbrJLvt5jV8dG6NV2j12JiFDX3WI_Xvo-wrRqaALES_VoRPhO7P5AePkzwOwR0GkuXYXmh_VQdADvUfsX_hzTUTqHh9hsh1O4LMGtNsTMQJ_N6qxpl331FfoGqi0xLqN2Qqw-jXodCkBkv6UBvN1U_NjUnwH3CzjSdguuWaMMlD7izrrHELsB-raGNxh_b7MPi1cnL17zsdkDd0KKnpchaOWCxZRo7nKfhLkyvgzOCuVl5q3GvCule2XjnBNl6ueJz9OZNlYa4aQQd9hOjT9gn4EKM6cz_OY95qM-NVpIpUMiQob7y9IeMDkZuXAjEzo15FgVyUiYOpmpIDMVo5kO2JNfYuuBCuQigfz3GVT08QwmDA1TCnGB7MNpuhW44OkWx9S-2XQF5oMyJRrE_O4_6D9k1-iVgDmJuMd2-nbj77PL7lu_7NoHcRH9BMjYG2k
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaggNoLjwKiPAeJI0ab2IkTbrxWrbqskFigt8hx7GbbJVlls5WWH8dvY8ZJUCuEeoBTpEQzsjL2zNj-5hvGXuRESqZHCVexdlwqm_M8jQtupYlkbpROfRX_14maTpOjo_R8LQzBKmkP7TqiCO-raXHTYfQAicNnQJwvVGcSUjEVpvCBusquRRhriT9_Nv42eGOhkrgD2aO_IZmhiudvai7EpwvspX94ax-Cxrf-x-Bvs5t9Agpvuhlzh12x1S7b7nuhl5tddsODQs3qLvv53rYeqVVB7cDfq3s7wg8i-AeCzB8DJpCAfnNuSpwBsOzqDuAzaj_lbzEjpaN48P12OEXMAsxiTeQM9Fovjutm3pbfoa2h3BDpMmon0Oprr9egAHgCXBrA4brkn3R1ArhlwJE2GzD1EmWgsB56tnoJviGgbSo4wBB8j30Zf5i92-d9vwduhBQtL5xLlHE5ZkWRSW3gIqVt4UwulJWxzRNMvUK6WtbGGFGENgpsGo4SnUstjBTiPtuq8Ac8YKDcyCQxvrMWU1Ib6kRIlbhAuBi3mEW-x-Rg5cz0ZOjUk2ORBT1n6mCmjMyU9WbaY69-iy07NpDLBNLzUyhr_TGM63qmZOIS2efDfMtwzdNFjq5svV5lmBLKkJgQ04f_oP8Z296ffZxkk4Pp4SO2Q58IpxOIx2yrbdb2Cbtuztr5qnnqV9QvpWIfkw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagPC88ClXLc5A44moTe-OkN6CsqFqtVqJAb5Hj2M3SbbJKskjbH8dvY8ZJEBVCPcBppaxmZGXs8ef4m28Ye52RKJkexVxF2nGpbMazJMq5lWYsM6N04qv4vxyp6TQ-OUlmPZuw6WmVdIZ2nVCEz9W0uJe5Gxhx-BuQ5AuVmYRUS4UIPlDX2Q2EzhFN8uPJ1yEZCxVHHcce0w3ZDEU8f3NzaXu6JF76R7L2O9Dk_n8Y-wN2r4ef8LabLw_ZNVtusjt9J_RivclueUqoaR6xH_u29TytEioH_lbdRxEuSN4fiDB_CggfAbPm3BQYf1h2VQfwCb2f8XeIR-lDPPhuO5z2yxzMYkXSDPRYL06ret4W59BWUKxJchm9E2V1z_s1aABe_pYGcLgq-EyX3wAPDDjSeg2mWqIN5NYTz5o34NsB2rqEA9yAH7PPkw_H7z_yvtsDN0KKlufOxcq4DDHR2CQ2cGOlbe5MJpSVkc1iBF4hXSxrY4zIQzsObBKOYp1JLYwUYottlPgCthkoNzJxhM-sRUBqQx0LqWIXCBfhATPPdpgcgpyaXgqdOnIs0qBXTB3ClFKY0j5MO2z3l9my0wK5yiD5fQalrf8I47qOKam4wvbVMN1SXPF0jaNLW62aFAGhDEkHMXnyD_5fstuz_Ul6dDA9fMru0j9E0gnEM7bR1iv7nN0039t5U7_w6-knK1weRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+alteration+zones+using+the+Dirichlet+process+Stick-Breaking+model-based+clustering+algorithm+to+hyperion+data%3A+the+case+study+of+Kuh-Panj+porphyry+copper+deposits%2C+Southern+Iran&rft.jtitle=Geocarto+international&rft.au=Yousefi%2C+Mastoureh&rft.au=Tabatabaei%2C+Seyed+Hassan&rft.au=Rikhtehgaran%2C+Reyhaneh&rft.au=Pour%2C+Amin+Beiranvand&rft.date=2022-12-13&rft.pub=Taylor+%26+Francis&rft.issn=1010-6049&rft.eissn=1752-0762&rft.volume=37&rft.issue=25&rft.spage=9788&rft.epage=9816&rft_id=info:doi/10.1080%2F10106049.2022.2025917&rft.externalDocID=2025917
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1010-6049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1010-6049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1010-6049&client=summon