Detection of alteration zones using the Dirichlet process Stick-Breaking model-based clustering algorithm to hyperion data: the case study of Kuh-Panj porphyry copper deposits, Southern Iran
Detection of hydrothermal alteration zones (HAZs) associated with porphyry copper systems using remote sensing imagery is a crucial stage for discovering high potential zone of ore mineralization. Statistical model-based clustering methods have great potential for automatic and accurate detection of...
Saved in:
| Published in: | Geocarto international Vol. 37; no. 25; pp. 9788 - 9816 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Taylor & Francis
13.12.2022
|
| Subjects: | |
| ISSN: | 1010-6049, 1752-0762, 1752-0762 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Detection of hydrothermal alteration zones (HAZs) associated with porphyry copper systems using remote sensing imagery is a crucial stage for discovering high potential zone of ore mineralization. Statistical model-based clustering methods have great potential for automatic and accurate detection of hydrothermal alteration minerals using hyperspectral remote sensing imagery. In this research, the Dirichlet Process based on Stick-Breaking (DPSB) model-based clustering algorithm was implemented to hyperion remote sensing imagery to discriminate HAZs associated with the Kuh-Panj porphyry copper deposit, south, Iran. The DPSB clustering algorithm was implemented and subsequently compared with the k-means algorithm, CLARA clustering, hierarchical clustering, Gaussian finite mixture model (GFMM), Gaussian model for high-dimensional (GMHD) and spectral clustering as well as spectral angle mapping (SAM). Results derived from the DPSB model-based clustering algorithm show 88.6% accuracy in distinguishing propylitic, argillic, advanced argillic, propylitic-argillic and phyllic alteration zones. The DPSB algorithm can be broadly implemented to hyperspectral remote sensing imagery for detecting alteration zones associated with porphyry systems. |
|---|---|
| AbstractList | Detection of hydrothermal alteration zones (HAZs) associated with porphyry copper systems using remote sensing imagery is a crucial stage for discovering high potential zone of ore mineralization. Statistical model-based clustering methods have great potential for automatic and accurate detection of hydrothermal alteration minerals using hyperspectral remote sensing imagery. In this research, the Dirichlet Process based on Stick-Breaking (DPSB) model-based clustering algorithm was implemented to hyperion remote sensing imagery to discriminate HAZs associated with the Kuh-Panj porphyry copper deposit, south, Iran. The DPSB clustering algorithm was implemented and subsequently compared with the k-means algorithm, CLARA clustering, hierarchical clustering, Gaussian finite mixture model (GFMM), Gaussian model for high-dimensional (GMHD) and spectral clustering as well as spectral angle mapping (SAM). Results derived from the DPSB model-based clustering algorithm show 88.6% accuracy in distinguishing propylitic, argillic, advanced argillic, propylitic-argillic and phyllic alteration zones. The DPSB algorithm can be broadly implemented to hyperspectral remote sensing imagery for detecting alteration zones associated with porphyry systems. |
| Author | Yousefi, Mastoureh Pradhan, Biswajeet Tabatabaei, Seyed Hassan Rikhtehgaran, Reyhaneh Pour, Amin Beiranvand |
| Author_xml | – sequence: 1 givenname: Mastoureh orcidid: 0000-0002-8412-0792 surname: Yousefi fullname: Yousefi, Mastoureh organization: Department of Mining Engineering, Isfahan University of Technology – sequence: 2 givenname: Seyed Hassan orcidid: 0000-0003-2869-748X surname: Tabatabaei fullname: Tabatabaei, Seyed Hassan organization: Department of Mining Engineering, Isfahan University of Technology – sequence: 3 givenname: Reyhaneh orcidid: 0000-0001-5815-2769 surname: Rikhtehgaran fullname: Rikhtehgaran, Reyhaneh organization: Department of Mathematical Sciences, Isfahan University of Technology – sequence: 4 givenname: Amin Beiranvand orcidid: 0000-0001-8783-5120 surname: Pour fullname: Pour, Amin Beiranvand organization: Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT) – sequence: 5 givenname: Biswajeet orcidid: 0000-0001-9863-2054 surname: Pradhan fullname: Pradhan, Biswajeet organization: Earth Observation Center, Institute of Climate Change, Universiti Kebangsaan Malaysia |
| BookMark | eNqFkctu1jAQhSNUJHrhEZC8ZEGKL7nCBmi5VK0EUmFtTZxx49aJg-0IhYfj2XD-v92woBtfRuc7nvE5yg4mN2GWvWD0lNGGvmaU0YoW7SmnnG9L2bL6SXbI6pLntK74QTonTb6JnmVHIdxSKuqmEofZn3OMqKJxE3GagI3oYXf7nd4IZAlmuiFxQHJuvFGDxUhm7xSGQK6jUXf5B49wt4lG16PNOwjYE2WXkJy2Mtgb500cRhIdGdY5VZN7DxHe7HxVAkiIS79uDVwuQ_4NplsyOz8Pq1-JcnNiSI-zCyaGV-TaLYnzE7nwMJ1kTzXYgM_v9-Psx6eP38--5FdfP1-cvb_KlShEzHutm1rpjlZlqVpkuqwBe606UWNRYdewsuW8LjgopUTPsWTYctpAV4BQhRDH2cu9bxr-54IhytEEhdbChG4Jkjei4IwK3iZpuZcq70LwqOXszQh-lYzKLS_5kJfc8pL3eSXu7T-cMnGXRfRg7KP0uz1tJu38CL-ct72MsFrndfooZYIU_7f4C-0Yta4 |
| CitedBy_id | crossref_primary_10_1016_j_oregeorev_2023_105732 crossref_primary_10_3390_rs16020392 crossref_primary_10_1080_22797254_2023_2299369 crossref_primary_10_1007_s12145_024_01538_6 crossref_primary_10_1038_s41598_023_34531_y crossref_primary_10_1007_s12517_022_10165_8 crossref_primary_10_1016_j_rsase_2024_101421 crossref_primary_10_1016_j_oregeorev_2023_105605 crossref_primary_10_1080_10106049_2022_2097481 |
| Cites_doi | 10.3390/rs12010105 10.2113/gsecongeo.105.1.3 10.1109/TGRS.2003.812908 10.1214/06-BA104 10.1016/j.infrared.2016.05.022 10.1016/j.oregeorev.2017.07.018 10.1080/19479832.2019.1589585 10.1007/3-540-28349-8_2 10.1080/01966324.2007.10737689 10.1016/j.envsoft.2019.01.014 10.1109/LGRS.2006.888109 10.1007/s11053-020-09628-0 10.3390/rs13112101 10.1080/01431160701874587 10.3390/s18103213 10.3390/rs12081239 10.1016/S0034-4257(98)00064-9 10.1016/j.oregeorev.2020.103530 10.1080/01431161.2010.542202 10.1214/ss/1177013818 10.1109/JSTARS.2018.2814617 10.1016/j.oregeorev.2013.03.010 10.3390/rs11091003 10.3390/rs8110890 10.1109/TCBB.2013.32 10.1109/TPAMI.2010.88 10.1145/331499.331504 10.5194/isprs-archives-XLI-B8-431-2016 10.3390/rs11121450 10.1007/BF01908075 10.1016/j.asr.2010.08.021 10.1080/10618600.2000.10474879 10.1016/j.oregeorev.2011.09.009 10.1007/978-981-13-1513-8_32 10.1016/j.oregeorev.2010.05.007 10.3390/rs11182122 10.1016/j.ins.2017.11.016 10.3390/rs13010038 10.1023/A:1012801612483 10.1145/3321386 10.1109/TGRS.2010.2075937 10.2307/2986324 10.1016/j.gexplo.2016.07.002 10.3390/geosciences8070245 10.1016/j.asr.2017.01.027 10.1016/j.gexplo.2015.06.001 10.1186/2193-1801-3-1 10.1080/01431160802282854 10.1080/10106049.2020.1790676 10.1016/j.asr.2011.11.028 10.1007/978-3-642-04005-4_2 10.1214/aos/1176342360 10.1109/TSMCB.2012.2220543 10.1016/j.isprsjprs.2019.07.003 10.1109/CEC.2018.8477770 10.3390/rs9100976 10.1007/978-3-642-75671-9_11 10.1201/b13613 10.1080/19479832.2014.985619 10.3390/rs11050495 10.3390/rs12081261 10.29150/jhrs.v7.4.p189-211 10.1016/j.csda.2007.02.009 10.1080/01621459.1990.10476213 10.1016/j.gexplo.2013.03.005 10.1016/j.isprsjprs.2011.04.003 10.1109/TIT.2005.844059 10.1190/geo2011-0063.1 |
| ContentType | Journal Article |
| Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 |
| Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1080/10106049.2022.2025917 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Physics |
| EISSN | 1752-0762 |
| EndPage | 9816 |
| ExternalDocumentID | 10_1080_10106049_2022_2025917 2025917 |
| Genre | Research Article |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | .7F .QJ 0BK 30N 4.4 5GY 5VS AAENE AAGDL AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADCVX ADGTB AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ O9- P2P RIG RNANH ROSJB RTWRZ S-T SJN SNACF TBQAZ TDBHL TEN TFL TFT TFW TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ~02 ~S~ AAYXX CITATION 7S9 L.6 |
| ID | FETCH-LOGICAL-c343t-dff87cfb0655c9e1f57aedfcb37e46eb815922742accc3d2e51e9208ab4a3c433 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000741289100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1010-6049 1752-0762 |
| IngestDate | Fri Sep 05 17:32:08 EDT 2025 Tue Nov 18 21:54:31 EST 2025 Sat Nov 29 03:13:48 EST 2025 Mon Oct 20 23:48:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c343t-dff87cfb0655c9e1f57aedfcb37e46eb815922742accc3d2e51e9208ab4a3c433 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8783-5120 0000-0001-5815-2769 0000-0002-8412-0792 0000-0003-2869-748X 0000-0001-9863-2054 |
| PQID | 2834210329 |
| PQPubID | 24069 |
| PageCount | 29 |
| ParticipantIDs | crossref_primary_10_1080_10106049_2022_2025917 proquest_miscellaneous_2834210329 crossref_citationtrail_10_1080_10106049_2022_2025917 informaworld_taylorfrancis_310_1080_10106049_2022_2025917 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-13 |
| PublicationDateYYYYMMDD | 2022-12-13 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationTitle | Geocarto international |
| PublicationYear | 2022 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | CIT0072 CIT0071 CIT0030 CIT0073 CIT0076 CIT0031 CIT0075 CIT0034 CIT0078 CIT0033 CIT0077 Abubakar AJa (CIT0001) 2019; 80 CIT0070 George R (CIT0032) 2014; 28 CIT0036 Chattoraj SL (CIT0015) 2020; 91 CIT0035 CIT0079 CIT0038 CIT0037 CIT0039 Khosravi A. (CIT0046) 2007 CIT0083 CIT0082 CIT0041 CIT0085 CIT0084 CIT0043 Lugrin T. (CIT0055) 2013 CIT0042 CIT0086 Kaufman L (CIT0045) 2009; 344 Datt B (CIT0022) 2004 CIT0081 CIT0080 CIT0003 CIT0047 CIT0002 CIT0005 CIT0004 CIT0048 CIT0007 CIT0009 CIT0008 Kaufman L (CIT0044) 2005 Kusuma K (CIT0050) 2019; 74 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 Cugmas M (CIT0021) 2016; 106 CIT0056 CIT0011 Beck R. (CIT0006) 2003 Pour AB (CIT0065) 2014; 3 Hantson S (CIT0040) 2011; 13 Safari M (CIT0074) 2018; 33 CIT0014 CIT0058 CIT0013 CIT0057 CIT0016 CIT0059 CIT0018 CIT0017 CIT0019 CIT0061 CIT0060 CIT0063 CIT0062 CIT0020 Kumar C (CIT0049) 2020; 86 CIT0064 CIT0023 CIT0067 CIT0066 CIT0025 CIT0069 CIT0024 CIT0068 CIT0027 CIT0026 CIT0029 CIT0028 |
| References_xml | – ident: CIT0013 doi: 10.3390/rs12010105 – ident: CIT0078 doi: 10.2113/gsecongeo.105.1.3 – ident: CIT0048 doi: 10.1109/TGRS.2003.812908 – ident: CIT0012 doi: 10.1214/06-BA104 – ident: CIT0084 doi: 10.1016/j.infrared.2016.05.022 – ident: CIT0067 doi: 10.1016/j.oregeorev.2017.07.018 – ident: CIT0070 doi: 10.1080/19479832.2019.1589585 – ident: CIT0011 doi: 10.1007/3-540-28349-8_2 – volume: 91 start-page: 102162 year: 2020 ident: CIT0015 publication-title: IJAEO – ident: CIT0034 doi: 10.1080/01966324.2007.10737689 – volume: 80 start-page: 157 year: 2019 ident: CIT0001 publication-title: Nigeria. IJAEO – ident: CIT0047 doi: 10.1016/j.envsoft.2019.01.014 – ident: CIT0026 doi: 10.1109/LGRS.2006.888109 – ident: CIT0053 doi: 10.1007/s11053-020-09628-0 – ident: CIT0037 doi: 10.3390/rs13112101 – ident: CIT0033 doi: 10.1080/01431160701874587 – ident: CIT0003 doi: 10.3390/s18103213 – ident: CIT0075 doi: 10.3390/rs12081239 – ident: CIT0036 doi: 10.1016/S0034-4257(98)00064-9 – ident: CIT0082 doi: 10.1016/j.oregeorev.2020.103530 – volume-title: Bayesian semiparametrics for modelling the clustering of extreme values year: 2013 ident: CIT0055 – ident: CIT0008 doi: 10.1080/01431161.2010.542202 – ident: CIT0051 doi: 10.1214/ss/1177013818 – ident: CIT0052 doi: 10.1109/JSTARS.2018.2814617 – ident: CIT0068 doi: 10.1016/j.oregeorev.2013.03.010 – ident: CIT0038 doi: 10.3390/rs11091003 – ident: CIT0083 doi: 10.3390/rs8110890 – ident: CIT0005 doi: 10.1109/TCBB.2013.32 – ident: CIT0017 doi: 10.1109/TPAMI.2010.88 – ident: CIT0043 doi: 10.1145/331499.331504 – ident: CIT0081 – ident: CIT0042 doi: 10.5194/isprs-archives-XLI-B8-431-2016 – ident: CIT0085 doi: 10.3390/rs11121450 – ident: CIT0041 doi: 10.1007/BF01908075 – ident: CIT0007 doi: 10.1016/j.asr.2010.08.021 – ident: CIT0058 doi: 10.1080/10618600.2000.10474879 – ident: CIT0063 doi: 10.1016/j.oregeorev.2011.09.009 – ident: CIT0059 doi: 10.1007/978-981-13-1513-8_32 – ident: CIT0030 doi: 10.1016/j.oregeorev.2010.05.007 – volume: 33 start-page: 1186 issue: 11 year: 2018 ident: CIT0074 publication-title: GeoIn – ident: CIT0086 doi: 10.3390/rs11182122 – ident: CIT0024 doi: 10.1016/j.ins.2017.11.016 – ident: CIT0069 doi: 10.3390/rs13010038 – ident: CIT0039 doi: 10.1023/A:1012801612483 – ident: CIT0020 doi: 10.1145/3321386 – ident: CIT0016 doi: 10.1109/TGRS.2010.2075937 – ident: CIT0023 doi: 10.2307/2986324 – volume: 28 start-page: 140 year: 2014 ident: CIT0032 publication-title: IJAEO – ident: CIT0080 – ident: CIT0025 doi: 10.1016/j.gexplo.2016.07.002 – ident: CIT0057 doi: 10.3390/geosciences8070245 – volume-title: EO-1 user guide v. 2.3 year: 2003 ident: CIT0006 – ident: CIT0071 doi: 10.1016/j.asr.2017.01.027 – volume-title: Wiley series in probability and statistics year: 2005 ident: CIT0044 – ident: CIT0035 doi: 10.1016/j.gexplo.2015.06.001 – volume: 3 start-page: 1 issue: 1 year: 2014 ident: CIT0065 publication-title: SpringerPlus doi: 10.1186/2193-1801-3-1 – ident: CIT0010 doi: 10.1080/01431160802282854 – volume: 344 volume-title: Finding groups in data: an introduction to cluster analysis year: 2009 ident: CIT0045 – volume: 13 start-page: 691 issue: 5 year: 2011 ident: CIT0040 publication-title: IJAEO – ident: CIT0076 doi: 10.1080/10106049.2020.1790676 – ident: CIT0064 doi: 10.1016/j.asr.2011.11.028 – ident: CIT0004 doi: 10.1007/978-3-642-04005-4_2 – ident: CIT0028 doi: 10.1214/aos/1176342360 – ident: CIT0079 – ident: CIT0054 doi: 10.1109/TSMCB.2012.2220543 – ident: CIT0029 doi: 10.1016/j.isprsjprs.2019.07.003 – volume: 86 start-page: 102006 year: 2020 ident: CIT0049 publication-title: IJAEO – ident: CIT0002 doi: 10.1109/CEC.2018.8477770 – ident: CIT0018 doi: 10.3390/rs9100976 – ident: CIT0062 doi: 10.1007/978-3-642-75671-9_11 – ident: CIT0056 doi: 10.1201/b13613 – ident: CIT0066 doi: 10.1080/19479832.2014.985619 – ident: CIT0060 doi: 10.3390/rs11050495 – ident: CIT0077 doi: 10.3390/rs12081261 – ident: CIT0009 doi: 10.29150/jhrs.v7.4.p189-211 – volume: 106 start-page: 163 issue: 1 year: 2016 ident: CIT0021 publication-title: SCIM – volume-title: Statistical geological and alteration map of Kuh Panj copper deposit year: 2007 ident: CIT0046 – volume: 74 start-page: 191 year: 2019 ident: CIT0050 publication-title: IJAEO – volume-title: Hyperion data processing workshop: hands-on processing instructions year: 2004 ident: CIT0022 – ident: CIT0014 doi: 10.1016/j.csda.2007.02.009 – ident: CIT0031 doi: 10.1080/01621459.1990.10476213 – ident: CIT0073 doi: 10.1016/j.gexplo.2013.03.005 – ident: CIT0072 – ident: CIT0061 doi: 10.1016/j.isprsjprs.2011.04.003 – ident: CIT0019 doi: 10.1109/TIT.2005.844059 – ident: CIT0027 doi: 10.1190/geo2011-0063.1 |
| SSID | ssj0037863 |
| Score | 2.345461 |
| Snippet | Detection of hydrothermal alteration zones (HAZs) associated with porphyry copper systems using remote sensing imagery is a crucial stage for discovering high... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9788 |
| SubjectTerms | algorithms Alteration zones case studies DPSB hyperion Iran mineralization porphyry copper systems remote sensing SAM |
| Title | Detection of alteration zones using the Dirichlet process Stick-Breaking model-based clustering algorithm to hyperion data: the case study of Kuh-Panj porphyry copper deposits, Southern Iran |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10106049.2022.2025917 https://www.proquest.com/docview/2834210329 |
| Volume | 37 |
| WOSCitedRecordID | wos000741289100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1752-0762 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037863 issn: 1010-6049 databaseCode: TFW dateStart: 19860101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9xADB5KSEkuSZsHSV-o0GMnrD2za7u3vpaWQgg0pbmZecabbOzF9ha2Py6_LdLYLg0l5JCezBokhpVG0ng-fWLsDR0Z1GSieCoiyWWSGq618txj7sJ8jE5gfRg2kRwfp2dn2UmPJmx6WCWdoX1HFBFiNW1upZsBEYfPiChfqM0kpl4qrOAj6ifH1E9b83T6c4jFIkknHcQeow2JDD08d2m5lZ1ucZf-E6tDAppu_4elP2FbffUJ7zt3ecoeuXKHbfSD0IvVDnscEKGm2WXXn1wbYFolVB7CpXowIvwmdn8gvPw5YPUIGDRnpkDzw6JrOoDvqP2Sf8BylL7DQxi2wyldWjDzJTEz0Gs1P6_qWVtcQVtBsSLGZdROiNV3Qa9BAQjst7SAb8uCn6jyAvC8gCutV2CqBcqAdQF31ryFMA3Q1SV8xfy7x35MP59-_ML7YQ_cCClabr1PE-M1lkRjk7nIjxPlrDdaJE5OnE6x7orpXlkZY4SN3ThyWTxKlZZKGCnEPlsr8Q84YCCstMLqkbKJltaO0Peck176WAgvs9Ehk4ORc9MzodNAjnke9YSpg5lyMlPem-mQHf0RW3RUIPcJZH97UN6GbzC-G5iSi3tkXw_uluOGp1scVbpq2eRYD8qYaBCzZw_Q_5xt0k8C5kTiBVtr66V7ydbNr3bW1K_CJroBnSAbxw |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BAZULj9KKUh6DxJFFsXcT29zKI2rVEiERRG-r9T7qtKkdOQ5S-HH8NmbWNmqFUA9wipRoRqvM7Mzs7jffMPaKjgx6NNI8FZHkMkkNz3PtucfchfkYncD6MGwimUzSk5Psci8MwSrpDO1boogQq2lz02V0D4nDz4g4X6jPJKZmKizho-QmuzXEXEv8-dPxtz4aiyQdtSB7jDck03fx_E3Nlfx0hb30j2gdUtD4_v9Y_AN2rytAYb_1mIfshiu32GY3C71Yb7E7ARRqlo_Yzw-uCUitEioP4V092BF-EME_EGT-FLCABIybM1OgB8Ci7TuAL6j9nL_DipSu4iHM2-GUMS2Y-YrIGehrPT-t6llTXEBTQbEm0mXUTqDVt0GvQQEIBLi0gKNVwT_r8gzwyIArrddgqgXKgHUBerZ8DWEgoKtLOMQUvM2-jj9O3x_wbt4DN0KKhlvv08T4HKuioclc5IeJdtabXCROjlyeYukV09OyNsYIG7th5LJ4kOpcamGkEDtso8Q_4DEDYaUVNh9om-TS2gG6n3PSSx8L4WU22GWyt7IyHRk6zeSYq6jjTO3NpMhMqjPTLnvzW2zRsoFcJ5BddiHVhGsY385MUeIa2Ze9vync8_SQo0tXrZYKS0IZExNi9uQf9L9gmwfTT8fq-HBytMfu0k-E04nEU7bR1Cv3jN0235vZsn4edtQvfB0f8Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagPC88CojyHCSOuNrE3jy4AWVFVbRaiSJ6sxw_moUlWSVZpOXH8duYcRJEhVAPcIqUaEZWZjwztj9_w9hzWjLoJNE8E5HkMs0MLwrtucfchfkYncD60Gwinc-zk5N8MaAJ2wFWSWto3xNFhFhNk3tt_YiIw2dElC90zSSmu1RYwUfpRXYJS-eEnPx49mkMxiLNkh5jj-GGZMZLPH9TcyY9nSEv_SNYhww0u_kfxn6L3RjKT3jV-8ttdsFVu-za0Am93O6yKwESato77MeB6wJOq4LaQzhVD1aE70TvDwSYPwUsHwGj5tKUaH9Y97cO4ANq_8JfYz1KG_EQuu1wypcWzGpD1Az0Wq9O62bZlV-hq6HcEuUyaifI6sug16AABPpbGsDRpuQLXX0GXDDgSJstmHqNMmBdAJ61LyC0A3RNBYeYgO-yj7O3x2_e8aHbAzdCio5b77PU-AJroqnJXeSnqXbWm0KkTiauyLDwiulgWRtjhI3dNHJ5PMl0IbUwUoh7bKfCH3CfgbDSCltMtE0Lae0Enc856aWPhfAyn-wxORpZmYEKnTpyrFQ0MKaOZlJkJjWYaY_t_xJb91wg5wnkv3uQ6sImjO87pihxjuyz0d0Uzng6xtGVqzetwoJQxsSDmD_4B_1P2dXFwUy9P5wfPWTX6QuBdCLxiO10zcY9ZpfNt27ZNk_CfPoJAwceow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+alteration+zones+using+the+Dirichlet+process+Stick-Breaking+model-based+clustering+algorithm+to+hyperion+data%3A+the+case+study+of+Kuh-Panj+porphyry+copper+deposits%2C+Southern+Iran&rft.jtitle=Geocarto+international&rft.au=Yousefi%2C+Mastoureh&rft.au=Tabatabaei%2C+Seyed+Hassan&rft.au=Rikhtehgaran%2C+Reyhaneh&rft.au=Pour%2C+Amin+Beiranvand&rft.date=2022-12-13&rft.issn=1010-6049&rft.eissn=1752-0762&rft.volume=37&rft.issue=25&rft.spage=9788&rft.epage=9816&rft_id=info:doi/10.1080%2F10106049.2022.2025917&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10106049_2022_2025917 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1010-6049&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1010-6049&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1010-6049&client=summon |