On an accurate A-posteriori error estimator and adaptive time stepping for the implicit and explicit composite time integration algorithms

•The novel design of A-posteriori error estimator based on the generalized polynomial is demonstrated for composite time integration methods.•The proposed error estimators, Disp/P3 and Disp/P4, have generalized compact single-step representations and work for the entire subsites in both implicit and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & structures Ročník 266; s. 106789
Hlavní autori: Wang, Yazhou, Zhang, Tong, Zhang, Xuelin, Mei, Shengwei, Xie, Ningning, Xue, Xiaodai, Tamma, Kumar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 01.07.2022
Elsevier BV
Predmet:
ISSN:0045-7949, 1879-2243
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •The novel design of A-posteriori error estimator based on the generalized polynomial is demonstrated for composite time integration methods.•The proposed error estimators, Disp/P3 and Disp/P4, have generalized compact single-step representations and work for the entire subsites in both implicit and explicit composite schemes.•Validation tests of linear and nonlinear, damped and undamped cases demonstrate the accurate estimation of the local error with arbitrary time steps, and the effectivity index is close to unity.•The adaptive time stepping procedure based on the proposed error estimator is utilized for efficient transient simulations, benefiting to the computational expense. This paper focuses on the design of an accurate and versatile A-posteriori error estimation and adaptive time stepping for general composite schemes and typical of the implicit ρ∞-Bathe and explicit Noh-Bathe composite methods for time integration in second-order transient systems. Two novel error estimators, Disp/P3 and Disp/P4, are newly proposed based on the generalized polynomials. They have generalized compact single-step representations and work for both implicit and explicit, dissipative and non-dissipative composite schemes. Validation tests of linear and nonlinear problems show that the estimated local error reaches excellent agreement with the exact local error, and the third-order convergence rates of the local error are obtained. Besides, the Disp/P4 is more accurate than Disp/P3 as the effectivity index is almost identical to unity when random time steps are taken into consideration, and hence the Disp/P4 is highly recommended to be merged to the adaptive time stepping procedure. Three examples encompassing the wave propagation, damped/undamped spring-pendulum, and nonlinear spring-mass system are solved by implicit and explicit composite methods via the adaptive time stepping. Numerical results show the advantage of adaptive time stepping based on the proposed error estimator in contrast to constant time stepping regarding the CPU cost.
AbstractList This paper focuses on the design of an accurate and versatile A-posteriori error estimation and adaptive time stepping for general composite schemes and typical of the implicit ρ∞-Bathe and explicit Noh-Bathe composite methods for time integration in second-order transient systems. Two novel error estimators, Disp/P3 and Disp/P4, are newly proposed based on the generalized polynomials. They have generalized compact single-step representations and work for both implicit and explicit, dissipative and non-dissipative composite schemes. Validation tests of linear and nonlinear problems show that the estimated local error reaches excellent agreement with the exact local error, and the third-order convergence rates of the local error are obtained. Besides, the Disp/P4 is more accurate than Disp/P3 as the effectivity index is almost identical to unity when random time steps are taken into consideration, and hence the Disp/P4 is highly recommended to be merged to the adaptive time stepping procedure. Three examples encompassing the wave propagation, damped/undamped spring-pendulum, and nonlinear spring-mass system are solved by implicit and explicit composite methods via the adaptive time stepping. Numerical results show the advantage of adaptive time stepping based on the proposed error estimator in contrast to constant time stepping regarding the CPU cost.
•The novel design of A-posteriori error estimator based on the generalized polynomial is demonstrated for composite time integration methods.•The proposed error estimators, Disp/P3 and Disp/P4, have generalized compact single-step representations and work for the entire subsites in both implicit and explicit composite schemes.•Validation tests of linear and nonlinear, damped and undamped cases demonstrate the accurate estimation of the local error with arbitrary time steps, and the effectivity index is close to unity.•The adaptive time stepping procedure based on the proposed error estimator is utilized for efficient transient simulations, benefiting to the computational expense. This paper focuses on the design of an accurate and versatile A-posteriori error estimation and adaptive time stepping for general composite schemes and typical of the implicit ρ∞-Bathe and explicit Noh-Bathe composite methods for time integration in second-order transient systems. Two novel error estimators, Disp/P3 and Disp/P4, are newly proposed based on the generalized polynomials. They have generalized compact single-step representations and work for both implicit and explicit, dissipative and non-dissipative composite schemes. Validation tests of linear and nonlinear problems show that the estimated local error reaches excellent agreement with the exact local error, and the third-order convergence rates of the local error are obtained. Besides, the Disp/P4 is more accurate than Disp/P3 as the effectivity index is almost identical to unity when random time steps are taken into consideration, and hence the Disp/P4 is highly recommended to be merged to the adaptive time stepping procedure. Three examples encompassing the wave propagation, damped/undamped spring-pendulum, and nonlinear spring-mass system are solved by implicit and explicit composite methods via the adaptive time stepping. Numerical results show the advantage of adaptive time stepping based on the proposed error estimator in contrast to constant time stepping regarding the CPU cost.
ArticleNumber 106789
Author Xue, Xiaodai
Zhang, Xuelin
Zhang, Tong
Wang, Yazhou
Mei, Shengwei
Xie, Ningning
Tamma, Kumar
Author_xml – sequence: 1
  givenname: Yazhou
  surname: Wang
  fullname: Wang, Yazhou
  organization: China State Key Laboratory of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
– sequence: 2
  givenname: Tong
  surname: Zhang
  fullname: Zhang, Tong
  organization: China State Key Laboratory of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Xuelin
  surname: Zhang
  fullname: Zhang, Xuelin
  organization: Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 4
  givenname: Shengwei
  surname: Mei
  fullname: Mei, Shengwei
  organization: China State Key Laboratory of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
– sequence: 5
  givenname: Ningning
  surname: Xie
  fullname: Xie, Ningning
  organization: Science and Technology Research Institute, China Three Gorges Corporation, Beijing 100038, China
– sequence: 6
  givenname: Xiaodai
  surname: Xue
  fullname: Xue, Xiaodai
  email: xuexiaodai@tsinghua.edu.cn
  organization: China State Key Laboratory of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
– sequence: 7
  givenname: Kumar
  surname: Tamma
  fullname: Tamma, Kumar
  email: ktamma@umn.edu
  organization: Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
BookMark eNqNkM1OAyEUhYnRxFp9BklcT-WvMCxcNMa_xMSNrgnCnUrTDiNQo6_gU0tt48KNJiTA5Zx7Lt8R2u9jDwidUjKhhMrzxcTF1ZBLWrsJI4zVqlSt3kMj2irdMCb4PhoRIqaN0kIfoqOcF4QQKQgZoc-HHtu6nFsnWwDPmiHmAinEFDCkFBOGXMLKlnqyvcfW26GEN8C1CLhKhyH0c9zV5_ICOKyGZXChfGvhfXfZTBhzKDtX6AvMa1yINXk5r1HlZZWP0UFnlxlOdvsYPV1fPV7eNvcPN3eXs_vGccFL4zo_nQJXLZfMSf1MvKaeU-e5ZZS3rfJMEiu6qeKKi2cAx712khOqJBPa8zE62_YdUnxd19-ZRVynvkYaJhVTsqVaVNXFVuVSzDlBZ-pHvkcuyYalocRs8JuF-cFvNvjNFn_1q1_-IVWM6eMfztnWCRXCW4BksgvQO_AhgSvGx_Bnjy_7_qps
CitedBy_id crossref_primary_10_1007_s11071_023_09065_7
crossref_primary_10_1016_j_jcp_2024_113032
crossref_primary_10_1016_j_ijthermalsci_2025_110144
crossref_primary_10_1108_HFF_03_2023_0161
crossref_primary_10_1007_s00366_023_01876_x
crossref_primary_10_1007_s11831_023_09924_x
crossref_primary_10_1016_j_compstruc_2022_106901
crossref_primary_10_1051_e3sconf_202450503015
crossref_primary_10_1016_j_wavemoti_2024_103320
Cites_doi 10.1016/j.cma.2018.02.007
10.1016/j.compstruc.2018.11.001
10.1007/s11071-019-04936-4
10.1016/j.compstruc.2018.10.008
10.1016/j.compstruc.2006.09.004
10.1016/j.engstruct.2019.05.095
10.1002/nme.1568
10.1016/j.compstruc.2017.10.002
10.1109/TCAD.1985.1270142
10.1002/nme.1559
10.1002/nme.1620151011
10.1016/j.compstruc.2019.05.015
10.1590/S1806-11172007000400024
10.1002/eqe.4290210701
10.1016/j.compstruc.2021.106559
10.1016/j.apm.2018.12.027
10.1016/j.ijmecsci.2020.105429
10.1016/j.compstruc.2020.106433
10.1002/eqe.4290200907
10.1002/cnm.1640090402
10.1061/JMCEA3.0000098
10.1016/j.compstruc.2019.106188
10.1002/eqe.4290050306
10.1016/j.jcp.2020.110097
10.1016/j.compstruc.2021.106531
10.1016/j.compstruc.2006.08.072
10.1115/1.3423600
10.1016/j.cma.2021.113920
10.1016/j.cma.2020.113604
10.1002/nme.873
10.1016/j.compstruc.2013.06.007
10.1002/nme.688
10.1016/j.compfluid.2018.07.013
10.1016/j.compstruc.2005.08.001
10.1016/j.ijheatmasstransfer.2019.07.010
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jul 1, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 1, 2022
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.compstruc.2022.106789
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2243
ExternalDocumentID 10_1016_j_compstruc_2022_106789
S0045794922000499
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSV
SSW
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29F
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABJNI
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
OHT
R2-
SBC
SET
SEW
T9H
TAE
VH1
WUQ
ZY4
~HD
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c343t-cfd55e378362c69b0d91d31cd3a213887d260a4f573734beec3d9c630176249d3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793520400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7949
IngestDate Sun Nov 09 06:35:21 EST 2025
Tue Nov 18 22:51:09 EST 2025
Sat Nov 29 07:29:45 EST 2025
Fri Feb 23 02:41:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Composite time integration
Error estimation
Adaptive time stepping
Second-order transient systems
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-cfd55e378362c69b0d91d31cd3a213887d260a4f573734beec3d9c630176249d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2672768194
PQPubID 2045492
ParticipantIDs proquest_journals_2672768194
crossref_citationtrail_10_1016_j_compstruc_2022_106789
crossref_primary_10_1016_j_compstruc_2022_106789
elsevier_sciencedirect_doi_10_1016_j_compstruc_2022_106789
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & structures
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Li, Yu (b0070) 2019; 69
Noh, Bathe (b0080) 2019; 212
Kim (b0125) 2019; 195
Li, Zeng, Wiberg (b0145) 1993; 9
Hilber, Hughes, Taylor (b0020) 1977; 5
Malakiyeh, Shojaee, Hamzehei-Javaran, Bathe (b0085) 2021; 245
Zakian, Bathe (b0185) 2021; 254
Romero, Lacoma (b0155) 2006; 66
Shao H. The studying on the direct time integration algorithms for structural dynamics response, Master’s thesis, Zhe Jiang University; 1987.
Bathe (b0065) 2007; 85
Wang, Xue, Tamma, Maxam, Qin (b0170) 2021; 374
Zhou, Tamma (b0040) 2004; 59
Baig MMI, Bathe KJ. On direct time integration in large deformation dynamic analysis. In: 3rd MIT conference on computational fluid and solid mechanics; 2005. p. 1044–7.
Wang, Tamma, Maxam, Xue, Qin (b0175) 2021
Wang, Tamma, Xue, Maxam, Qin (b0195) 2021; 430
Chung, Cho, Choi (b0150) 2003; 57
Park (b0015) 1975; 42
Li, Yu, Li (b0110) 2019; 96
Zienkiewicz, Xie (b0135) 1991; 20
Zhou, Tamma (b0045) 2006; 66
Kwon, Bathe, Noh (b0100) 2021; 254
Wilson EL. A computer program for the dynamic stress analysis of underground structures, Technical Report, California Univ Berkeley Structural Engineering Lab; 1968.
Newmark (b0005) 1959; 85
Kim, Reddy (b0120) 2020; 172
Bank, Coughran, Fichtner, Grosse, Rose, Smith (b0050) 1985; 4
Lacoma, Romero (b0160) 2007; 85
Noh, Bathe (b0115) 2013; 129
Noh, Bathe (b0090) 2019; 225
Shao, Cai (b0035) 1988
Kim, Choi (b0105) 2018; 196
Zeng, Wiberg, Li, Xie (b0140) 1992; 21
Malakiyeh, Shojaee, Bathe (b0075) 2019; 212
Wang, Xue, Tamma, Maxam, Qin (b0130) 2021; 384
Wang, Qin, He, Ye (b0200) 2019; 141
Li, Yu, Li (b0205) 2018; 13
Bathe, Baig (b0060) 2005; 83
Wood, Bossak, Zienkiewicz (b0025) 1980; 15
Wang, Qin (b0190) 2018; 174
Deokar, Maxam, Tamma (b0165) 2018; 334
Kwon, Bathe, Noh (b0095) 2020; 230
Beléndez, Pascual, Méndez, Beléndez, Neipp (b0180) 2007; 29
Hilber (10.1016/j.compstruc.2022.106789_b0020) 1977; 5
Wang (10.1016/j.compstruc.2022.106789_b0170) 2021; 374
Kim (10.1016/j.compstruc.2022.106789_b0120) 2020; 172
Li (10.1016/j.compstruc.2022.106789_b0070) 2019; 69
Li (10.1016/j.compstruc.2022.106789_b0205) 2018; 13
Wang (10.1016/j.compstruc.2022.106789_b0190) 2018; 174
Deokar (10.1016/j.compstruc.2022.106789_b0165) 2018; 334
Malakiyeh (10.1016/j.compstruc.2022.106789_b0075) 2019; 212
Bathe (10.1016/j.compstruc.2022.106789_b0065) 2007; 85
Li (10.1016/j.compstruc.2022.106789_b0110) 2019; 96
Wang (10.1016/j.compstruc.2022.106789_b0175) 2021
Noh (10.1016/j.compstruc.2022.106789_b0080) 2019; 212
Kwon (10.1016/j.compstruc.2022.106789_b0095) 2020; 230
Li (10.1016/j.compstruc.2022.106789_b0145) 1993; 9
Park (10.1016/j.compstruc.2022.106789_b0015) 1975; 42
Malakiyeh (10.1016/j.compstruc.2022.106789_b0085) 2021; 245
Wood (10.1016/j.compstruc.2022.106789_b0025) 1980; 15
10.1016/j.compstruc.2022.106789_b0010
10.1016/j.compstruc.2022.106789_b0055
Bathe (10.1016/j.compstruc.2022.106789_b0060) 2005; 83
Wang (10.1016/j.compstruc.2022.106789_b0200) 2019; 141
10.1016/j.compstruc.2022.106789_b0030
Wang (10.1016/j.compstruc.2022.106789_b0130) 2021; 384
Zhou (10.1016/j.compstruc.2022.106789_b0040) 2004; 59
Beléndez (10.1016/j.compstruc.2022.106789_b0180) 2007; 29
Kim (10.1016/j.compstruc.2022.106789_b0105) 2018; 196
Zeng (10.1016/j.compstruc.2022.106789_b0140) 1992; 21
Zienkiewicz (10.1016/j.compstruc.2022.106789_b0135) 1991; 20
Chung (10.1016/j.compstruc.2022.106789_b0150) 2003; 57
Lacoma (10.1016/j.compstruc.2022.106789_b0160) 2007; 85
Kwon (10.1016/j.compstruc.2022.106789_b0100) 2021; 254
Bank (10.1016/j.compstruc.2022.106789_b0050) 1985; 4
Kim (10.1016/j.compstruc.2022.106789_b0125) 2019; 195
Newmark (10.1016/j.compstruc.2022.106789_b0005) 1959; 85
Noh (10.1016/j.compstruc.2022.106789_b0115) 2013; 129
Zhou (10.1016/j.compstruc.2022.106789_b0045) 2006; 66
Zakian (10.1016/j.compstruc.2022.106789_b0185) 2021; 254
Shao (10.1016/j.compstruc.2022.106789_b0035) 1988
Noh (10.1016/j.compstruc.2022.106789_b0090) 2019; 225
Romero (10.1016/j.compstruc.2022.106789_b0155) 2006; 66
Wang (10.1016/j.compstruc.2022.106789_b0195) 2021; 430
References_xml – volume: 374
  start-page: 113604
  year: 2021
  ident: b0170
  article-title: An accurate and simple universal a posteriori error estimator for GS4-1 framework: Adaptive time stepping in first-order transient systems
  publication-title: Comput Methods Appl Mech Eng
– start-page: 1
  year: 2021
  end-page: 27
  ident: b0175
  article-title: An overview of high-order implicit algorithms for first-/second-order systems and novel explicit algorithm designs for first-order system representations
  publication-title: Arch Comput Methods Eng
– reference: Wilson EL. A computer program for the dynamic stress analysis of underground structures, Technical Report, California Univ Berkeley Structural Engineering Lab; 1968.
– volume: 85
  start-page: 67
  year: 1959
  end-page: 94
  ident: b0005
  article-title: A method of computation for structural dynamics
  publication-title: J Eng Mech Divis
– volume: 334
  start-page: 414
  year: 2018
  end-page: 439
  ident: b0165
  article-title: A novel and simple a posteriori error estimator for LMS methods under the umbrella of GSSSS framework: Adaptive time stepping in second-order dynamical systems
  publication-title: Comput Methods Appl Mech Eng
– volume: 42
  start-page: 464
  year: 1975
  end-page: 470
  ident: b0015
  article-title: An improved stiffly stable method for direct integration of nonlinear structural dynamic equations
  publication-title: J Appl Mech
– volume: 9
  start-page: 273
  year: 1993
  end-page: 292
  ident: b0145
  article-title: A simple local error estimator and an adaptive time-stepping procedure for direct integration method in dynamic analysis
  publication-title: Commun Numer Methods Eng
– volume: 4
  start-page: 436
  year: 1985
  end-page: 451
  ident: b0050
  article-title: Transient simulation of silicon devices and circuits
  publication-title: IEEE Trans Comput Aided Des Integr Circ Syst
– volume: 196
  start-page: 341
  year: 2018
  end-page: 354
  ident: b0105
  article-title: An improved implicit time integration algorithm: The generalized composite time integration algorithm
  publication-title: Comput Struct
– volume: 66
  start-page: 635
  year: 2006
  end-page: 660
  ident: b0155
  article-title: A methodology for the formulation of error estimators for time integration in linear solid and structural dynamics
  publication-title: Int J Numer Meth Eng
– volume: 174
  start-page: 122
  year: 2018
  end-page: 134
  ident: b0190
  article-title: An improved time-splitting method for simulating natural convection heat transfer in a square cavity by Legendre spectral element approximation
  publication-title: Comput Fluids
– reference: Shao H. The studying on the direct time integration algorithms for structural dynamics response, Master’s thesis, Zhe Jiang University; 1987.
– volume: 141
  start-page: 949
  year: 2019
  end-page: 963
  ident: b0200
  article-title: Spectral element method for numerical simulation of ETHD enhanced heat transfer in an enclosure with uniform and sinusoidal temperature boundary conditions
  publication-title: Int J Heat Mass Transf
– volume: 59
  start-page: 597
  year: 2004
  end-page: 668
  ident: b0040
  article-title: Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics
  publication-title: Int J Numer Meth Eng
– volume: 13
  year: 2018
  ident: b0205
  article-title: A generalized structure-dependent semi-explicit method for structural dynamics
  publication-title: J Comput Nonlinear Dyn
– volume: 21
  start-page: 555
  year: 1992
  end-page: 571
  ident: b0140
  article-title: A posteriori local error estimation and adaptive time-stepping for Newmark integration in dynamic analysis
  publication-title: Earthquake Eng Struct Dynam
– volume: 20
  start-page: 871
  year: 1991
  end-page: 887
  ident: b0135
  article-title: A simple error estimator and adaptive time stepping procedure for dynamic analysis
  publication-title: Earthquake Eng Struct Dynam
– volume: 15
  start-page: 1562
  year: 1980
  end-page: 1566
  ident: b0025
  article-title: An alpha modification of Newmark’s method
  publication-title: Int J Numer Meth Eng
– volume: 129
  start-page: 178
  year: 2013
  end-page: 193
  ident: b0115
  article-title: An explicit time integration scheme for the analysis of wave propagations
  publication-title: Comput Struct
– volume: 85
  start-page: 158
  year: 2007
  end-page: 169
  ident: b0160
  article-title: Error estimation for the HHT method in non-linear solid dynamics
  publication-title: Comput Struct
– start-page: C16
  year: 1988
  end-page: C20
  ident: b0035
  article-title: The direct integration three-parameters optimal schemes for structural dynamics
  publication-title: Proceeding of the International Conference: Machine Dynamics and Engineering Applications
– volume: 254
  start-page: 106531
  year: 2021
  ident: b0185
  article-title: Transient wave propagations with the Noh-Bathe scheme and the spectral element method
  publication-title: Comput Struct
– volume: 212
  start-page: 289
  year: 2019
  end-page: 298
  ident: b0075
  article-title: The Bathe time integration method revisited for prescribing desired numerical dissipation
  publication-title: Comput Struct
– volume: 245
  start-page: 106433
  year: 2021
  ident: b0085
  article-title: New insights into the
  publication-title: Comput Struct
– volume: 96
  start-page: 2475
  year: 2019
  end-page: 2507
  ident: b0110
  article-title: A novel family of controllably dissipative composite integration algorithms for structural dynamic analysis
  publication-title: Nonlinear Dyn
– volume: 57
  start-page: 537
  year: 2003
  end-page: 554
  ident: b0150
  article-title: A priori error estimator of the generalized-
  publication-title: Int J Numer Meth Eng
– volume: 5
  start-page: 283
  year: 1977
  end-page: 292
  ident: b0020
  article-title: Improved numerical dissipation for time integration algorithms in structural dynamics
  publication-title: Earthq Eng Struct Dynam
– volume: 212
  start-page: 299
  year: 2019
  end-page: 310
  ident: b0080
  article-title: The Bathe time integration method with controllable spectral radius: The
  publication-title: Comput Struct
– volume: 384
  start-page: 113920
  year: 2021
  ident: b0130
  article-title: A three-time-level a posteriori error estimator for GS4-2 framework: Adaptive time stepping for second-order transient systems
  publication-title: Comput Methods Appl Mech Eng
– volume: 69
  start-page: 255
  year: 2019
  end-page: 272
  ident: b0070
  article-title: An alternative to the Bathe algorithm
  publication-title: Appl Math Model
– volume: 254
  start-page: 106559
  year: 2021
  ident: b0100
  article-title: Selecting the load at the intermediate time point of the
  publication-title: Comput Struct
– volume: 83
  start-page: 2513
  year: 2005
  end-page: 2524
  ident: b0060
  article-title: On a composite implicit time integration procedure for nonlinear dynamics
  publication-title: Comput Struct
– volume: 225
  start-page: 106079
  year: 2019
  ident: b0090
  article-title: For direct time integrations: A comparison of the Newmark and
  publication-title: Comput Struct
– volume: 230
  start-page: 106188
  year: 2020
  ident: b0095
  article-title: An analysis of implicit time integration schemes for wave propagations
  publication-title: Comput Struct
– volume: 29
  start-page: 645
  year: 2007
  end-page: 648
  ident: b0180
  article-title: Exact solution for the nonlinear pendulum
  publication-title: Revista brasileira de ensino de física
– volume: 430
  start-page: 110097
  year: 2021
  ident: b0195
  article-title: Generalized Petrov-Galerkin time finite element weighted residual methodology for designing high-order unconditionally stable algorithms with controllable numerical dissipation
  publication-title: J Comput Phys
– volume: 66
  start-page: 1738
  year: 2006
  end-page: 1790
  ident: b0045
  article-title: Algorithms by design with illustrations to solid and structural mechanics/dynamics
  publication-title: Int J Numer Meth Eng
– volume: 195
  start-page: 358
  year: 2019
  end-page: 372
  ident: b0125
  article-title: A new family of two-stage explicit time integration methods with dissipation control capability for structural dynamics
  publication-title: Eng Struct
– volume: 85
  start-page: 437
  year: 2007
  end-page: 445
  ident: b0065
  article-title: Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme
  publication-title: Comput Struct
– volume: 172
  start-page: 105429
  year: 2020
  ident: b0120
  article-title: Novel explicit time integration schemes for efficient transient analyses of structural problems
  publication-title: Int J Mech Sci
– reference: Baig MMI, Bathe KJ. On direct time integration in large deformation dynamic analysis. In: 3rd MIT conference on computational fluid and solid mechanics; 2005. p. 1044–7.
– volume: 334
  start-page: 414
  year: 2018
  ident: 10.1016/j.compstruc.2022.106789_b0165
  article-title: A novel and simple a posteriori error estimator for LMS methods under the umbrella of GSSSS framework: Adaptive time stepping in second-order dynamical systems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.02.007
– volume: 212
  start-page: 299
  year: 2019
  ident: 10.1016/j.compstruc.2022.106789_b0080
  article-title: The Bathe time integration method with controllable spectral radius: The ρ∞-Bathe method
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2018.11.001
– ident: 10.1016/j.compstruc.2022.106789_b0010
– volume: 96
  start-page: 2475
  year: 2019
  ident: 10.1016/j.compstruc.2022.106789_b0110
  article-title: A novel family of controllably dissipative composite integration algorithms for structural dynamic analysis
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-019-04936-4
– volume: 212
  start-page: 289
  year: 2019
  ident: 10.1016/j.compstruc.2022.106789_b0075
  article-title: The Bathe time integration method revisited for prescribing desired numerical dissipation
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2018.10.008
– volume: 85
  start-page: 437
  year: 2007
  ident: 10.1016/j.compstruc.2022.106789_b0065
  article-title: Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2006.09.004
– start-page: C16
  year: 1988
  ident: 10.1016/j.compstruc.2022.106789_b0035
  article-title: The direct integration three-parameters optimal schemes for structural dynamics
– volume: 195
  start-page: 358
  year: 2019
  ident: 10.1016/j.compstruc.2022.106789_b0125
  article-title: A new family of two-stage explicit time integration methods with dissipation control capability for structural dynamics
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.05.095
– volume: 66
  start-page: 635
  year: 2006
  ident: 10.1016/j.compstruc.2022.106789_b0155
  article-title: A methodology for the formulation of error estimators for time integration in linear solid and structural dynamics
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.1568
– volume: 196
  start-page: 341
  year: 2018
  ident: 10.1016/j.compstruc.2022.106789_b0105
  article-title: An improved implicit time integration algorithm: The generalized composite time integration algorithm
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2017.10.002
– volume: 4
  start-page: 436
  year: 1985
  ident: 10.1016/j.compstruc.2022.106789_b0050
  article-title: Transient simulation of silicon devices and circuits
  publication-title: IEEE Trans Comput Aided Des Integr Circ Syst
  doi: 10.1109/TCAD.1985.1270142
– volume: 13
  year: 2018
  ident: 10.1016/j.compstruc.2022.106789_b0205
  article-title: A generalized structure-dependent semi-explicit method for structural dynamics
  publication-title: J Comput Nonlinear Dyn
– volume: 66
  start-page: 1738
  year: 2006
  ident: 10.1016/j.compstruc.2022.106789_b0045
  article-title: Algorithms by design with illustrations to solid and structural mechanics/dynamics
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.1559
– volume: 15
  start-page: 1562
  year: 1980
  ident: 10.1016/j.compstruc.2022.106789_b0025
  article-title: An alpha modification of Newmark’s method
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.1620151011
– volume: 225
  start-page: 106079
  year: 2019
  ident: 10.1016/j.compstruc.2022.106789_b0090
  article-title: For direct time integrations: A comparison of the Newmark and ρ∞ -Bathe schemes
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2019.05.015
– volume: 29
  start-page: 645
  year: 2007
  ident: 10.1016/j.compstruc.2022.106789_b0180
  article-title: Exact solution for the nonlinear pendulum
  publication-title: Revista brasileira de ensino de física
  doi: 10.1590/S1806-11172007000400024
– volume: 21
  start-page: 555
  year: 1992
  ident: 10.1016/j.compstruc.2022.106789_b0140
  article-title: A posteriori local error estimation and adaptive time-stepping for Newmark integration in dynamic analysis
  publication-title: Earthquake Eng Struct Dynam
  doi: 10.1002/eqe.4290210701
– volume: 254
  start-page: 106559
  year: 2021
  ident: 10.1016/j.compstruc.2022.106789_b0100
  article-title: Selecting the load at the intermediate time point of the ρ∞ -Bathe time integration scheme
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2021.106559
– ident: 10.1016/j.compstruc.2022.106789_b0030
– volume: 69
  start-page: 255
  year: 2019
  ident: 10.1016/j.compstruc.2022.106789_b0070
  article-title: An alternative to the Bathe algorithm
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2018.12.027
– volume: 172
  start-page: 105429
  year: 2020
  ident: 10.1016/j.compstruc.2022.106789_b0120
  article-title: Novel explicit time integration schemes for efficient transient analyses of structural problems
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2020.105429
– ident: 10.1016/j.compstruc.2022.106789_b0055
– volume: 245
  start-page: 106433
  year: 2021
  ident: 10.1016/j.compstruc.2022.106789_b0085
  article-title: New insights into the β1/β2-Bathe time integration scheme when L-stable
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2020.106433
– volume: 20
  start-page: 871
  year: 1991
  ident: 10.1016/j.compstruc.2022.106789_b0135
  article-title: A simple error estimator and adaptive time stepping procedure for dynamic analysis
  publication-title: Earthquake Eng Struct Dynam
  doi: 10.1002/eqe.4290200907
– volume: 9
  start-page: 273
  year: 1993
  ident: 10.1016/j.compstruc.2022.106789_b0145
  article-title: A simple local error estimator and an adaptive time-stepping procedure for direct integration method in dynamic analysis
  publication-title: Commun Numer Methods Eng
  doi: 10.1002/cnm.1640090402
– volume: 85
  start-page: 67
  year: 1959
  ident: 10.1016/j.compstruc.2022.106789_b0005
  article-title: A method of computation for structural dynamics
  publication-title: J Eng Mech Divis
  doi: 10.1061/JMCEA3.0000098
– volume: 230
  start-page: 106188
  year: 2020
  ident: 10.1016/j.compstruc.2022.106789_b0095
  article-title: An analysis of implicit time integration schemes for wave propagations
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2019.106188
– volume: 5
  start-page: 283
  year: 1977
  ident: 10.1016/j.compstruc.2022.106789_b0020
  article-title: Improved numerical dissipation for time integration algorithms in structural dynamics
  publication-title: Earthq Eng Struct Dynam
  doi: 10.1002/eqe.4290050306
– volume: 430
  start-page: 110097
  year: 2021
  ident: 10.1016/j.compstruc.2022.106789_b0195
  article-title: Generalized Petrov-Galerkin time finite element weighted residual methodology for designing high-order unconditionally stable algorithms with controllable numerical dissipation
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2020.110097
– volume: 254
  start-page: 106531
  year: 2021
  ident: 10.1016/j.compstruc.2022.106789_b0185
  article-title: Transient wave propagations with the Noh-Bathe scheme and the spectral element method
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2021.106531
– volume: 85
  start-page: 158
  year: 2007
  ident: 10.1016/j.compstruc.2022.106789_b0160
  article-title: Error estimation for the HHT method in non-linear solid dynamics
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2006.08.072
– volume: 42
  start-page: 464
  year: 1975
  ident: 10.1016/j.compstruc.2022.106789_b0015
  article-title: An improved stiffly stable method for direct integration of nonlinear structural dynamic equations
  publication-title: J Appl Mech
  doi: 10.1115/1.3423600
– volume: 384
  start-page: 113920
  year: 2021
  ident: 10.1016/j.compstruc.2022.106789_b0130
  article-title: A three-time-level a posteriori error estimator for GS4-2 framework: Adaptive time stepping for second-order transient systems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.113920
– volume: 374
  start-page: 113604
  year: 2021
  ident: 10.1016/j.compstruc.2022.106789_b0170
  article-title: An accurate and simple universal a posteriori error estimator for GS4-1 framework: Adaptive time stepping in first-order transient systems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113604
– volume: 59
  start-page: 597
  year: 2004
  ident: 10.1016/j.compstruc.2022.106789_b0040
  article-title: Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.873
– volume: 129
  start-page: 178
  year: 2013
  ident: 10.1016/j.compstruc.2022.106789_b0115
  article-title: An explicit time integration scheme for the analysis of wave propagations
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2013.06.007
– volume: 57
  start-page: 537
  year: 2003
  ident: 10.1016/j.compstruc.2022.106789_b0150
  article-title: A priori error estimator of the generalized-αmethod for structural dynamics
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.688
– start-page: 1
  year: 2021
  ident: 10.1016/j.compstruc.2022.106789_b0175
  article-title: An overview of high-order implicit algorithms for first-/second-order systems and novel explicit algorithm designs for first-order system representations
  publication-title: Arch Comput Methods Eng
– volume: 174
  start-page: 122
  year: 2018
  ident: 10.1016/j.compstruc.2022.106789_b0190
  article-title: An improved time-splitting method for simulating natural convection heat transfer in a square cavity by Legendre spectral element approximation
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2018.07.013
– volume: 83
  start-page: 2513
  year: 2005
  ident: 10.1016/j.compstruc.2022.106789_b0060
  article-title: On a composite implicit time integration procedure for nonlinear dynamics
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2005.08.001
– volume: 141
  start-page: 949
  year: 2019
  ident: 10.1016/j.compstruc.2022.106789_b0200
  article-title: Spectral element method for numerical simulation of ETHD enhanced heat transfer in an enclosure with uniform and sinusoidal temperature boundary conditions
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2019.07.010
SSID ssj0006400
Score 2.4114296
Snippet •The novel design of A-posteriori error estimator based on the generalized polynomial is demonstrated for composite time integration methods.•The proposed...
This paper focuses on the design of an accurate and versatile A-posteriori error estimation and adaptive time stepping for general composite schemes and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106789
SubjectTerms Adaptive time stepping
Algorithms
Composite time integration
Dissipation
Error estimation
Errors
Mass-spring systems
Polynomials
Second-order transient systems
Time integration
Wave propagation
Title On an accurate A-posteriori error estimator and adaptive time stepping for the implicit and explicit composite time integration algorithms
URI https://dx.doi.org/10.1016/j.compstruc.2022.106789
https://www.proquest.com/docview/2672768194
Volume 266
WOSCitedRecordID wos000793520400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2243
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006400
  issn: 0045-7949
  databaseCode: AIEXJ
  dateStart: 19950103
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLVKxwM8ID7FYCA_8FZ1amM3afZWoSHgYUOiiPIUObazZipplLZbxU_gv_AfudcfSbaByh6Qqqhxc52k99j32jo-JuRNlmoRZhlOuuNsFY8UNCk-6OtMYHxPmcoGZrOJ6ORkPJvFnzqdX34tzMUiKorxdhuX_9XVUAbOxqWzt3B3XSkUwHdwOhzB7XD8J8efIr24J6TcoApEb9IvcR1HlS-rvKerChW-oVl_x8G2VWpVojT8IdxmvgeXlqVnV2JSmhvKeW6J6HrrTpCJjnQvZ-VFJwy3eXEGt1rPnQy6V0Fwu0esDNasau2magiMX9289TfxY77c3JjOni5dhG0Xzja4mL6GjDbEhM9zXZxd6rw9nRE01Ne6i-aooWl1TH0XHYTtThZV7-y-Qzf6fzsVcY7uK82rHOI9DhuLq4rb1yJhzU_01LfzpK4owYoSW9EdshdEMBLrkr3Jh-PZxzr0h9yvebLvcIVQ-Mdn-ls6dC0xMNnO9CF54IYpdGLh9Yh0dPGY3G-JVz4hP08LKuDjgEbbQKMGaLQGGlyoqAcaRchQDzQKQKMANOqBZq71QKM10KxVC2i0AdpT8uXd8fTt-77b2aMvGWfrvszUaKQZriAKZBinAxUPFRtKxUQwZBD3FAyzBc9GEYsYT7WWTMUyhGAEsZvHij0j3WJZ6OeEhvEogzFKyiRUnWVSRGKMef0QRsJRKvk-Cf0fnEgne4-7ryySHU7eJ4PasLTKL7tNjrwHE5fA2sQ0AXzuNj7wPk9cd7JKAiRKhJC18xe3f5yX5F7Twg5IF37Xr8hdebHOV9Vrh93f4hHTzQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+an+accurate+A-posteriori+error+estimator+and+adaptive+time+stepping+for+the+implicit+and+explicit+composite+time+integration+algorithms&rft.jtitle=Computers+%26+structures&rft.au=Wang%2C+Yazhou&rft.au=Zhang%2C+Tong&rft.au=Zhang%2C+Xuelin&rft.au=Mei%2C+Shengwei&rft.date=2022-07-01&rft.issn=0045-7949&rft.volume=266&rft.spage=106789&rft_id=info:doi/10.1016%2Fj.compstruc.2022.106789&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compstruc_2022_106789
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7949&client=summon