On an accurate A-posteriori error estimator and adaptive time stepping for the implicit and explicit composite time integration algorithms
•The novel design of A-posteriori error estimator based on the generalized polynomial is demonstrated for composite time integration methods.•The proposed error estimators, Disp/P3 and Disp/P4, have generalized compact single-step representations and work for the entire subsites in both implicit and...
Uložené v:
| Vydané v: | Computers & structures Ročník 266; s. 106789 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Elsevier Ltd
01.07.2022
Elsevier BV |
| Predmet: | |
| ISSN: | 0045-7949, 1879-2243 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •The novel design of A-posteriori error estimator based on the generalized polynomial is demonstrated for composite time integration methods.•The proposed error estimators, Disp/P3 and Disp/P4, have generalized compact single-step representations and work for the entire subsites in both implicit and explicit composite schemes.•Validation tests of linear and nonlinear, damped and undamped cases demonstrate the accurate estimation of the local error with arbitrary time steps, and the effectivity index is close to unity.•The adaptive time stepping procedure based on the proposed error estimator is utilized for efficient transient simulations, benefiting to the computational expense.
This paper focuses on the design of an accurate and versatile A-posteriori error estimation and adaptive time stepping for general composite schemes and typical of the implicit ρ∞-Bathe and explicit Noh-Bathe composite methods for time integration in second-order transient systems. Two novel error estimators, Disp/P3 and Disp/P4, are newly proposed based on the generalized polynomials. They have generalized compact single-step representations and work for both implicit and explicit, dissipative and non-dissipative composite schemes. Validation tests of linear and nonlinear problems show that the estimated local error reaches excellent agreement with the exact local error, and the third-order convergence rates of the local error are obtained. Besides, the Disp/P4 is more accurate than Disp/P3 as the effectivity index is almost identical to unity when random time steps are taken into consideration, and hence the Disp/P4 is highly recommended to be merged to the adaptive time stepping procedure. Three examples encompassing the wave propagation, damped/undamped spring-pendulum, and nonlinear spring-mass system are solved by implicit and explicit composite methods via the adaptive time stepping. Numerical results show the advantage of adaptive time stepping based on the proposed error estimator in contrast to constant time stepping regarding the CPU cost. |
|---|---|
| AbstractList | This paper focuses on the design of an accurate and versatile A-posteriori error estimation and adaptive time stepping for general composite schemes and typical of the implicit ρ∞-Bathe and explicit Noh-Bathe composite methods for time integration in second-order transient systems. Two novel error estimators, Disp/P3 and Disp/P4, are newly proposed based on the generalized polynomials. They have generalized compact single-step representations and work for both implicit and explicit, dissipative and non-dissipative composite schemes. Validation tests of linear and nonlinear problems show that the estimated local error reaches excellent agreement with the exact local error, and the third-order convergence rates of the local error are obtained. Besides, the Disp/P4 is more accurate than Disp/P3 as the effectivity index is almost identical to unity when random time steps are taken into consideration, and hence the Disp/P4 is highly recommended to be merged to the adaptive time stepping procedure. Three examples encompassing the wave propagation, damped/undamped spring-pendulum, and nonlinear spring-mass system are solved by implicit and explicit composite methods via the adaptive time stepping. Numerical results show the advantage of adaptive time stepping based on the proposed error estimator in contrast to constant time stepping regarding the CPU cost. •The novel design of A-posteriori error estimator based on the generalized polynomial is demonstrated for composite time integration methods.•The proposed error estimators, Disp/P3 and Disp/P4, have generalized compact single-step representations and work for the entire subsites in both implicit and explicit composite schemes.•Validation tests of linear and nonlinear, damped and undamped cases demonstrate the accurate estimation of the local error with arbitrary time steps, and the effectivity index is close to unity.•The adaptive time stepping procedure based on the proposed error estimator is utilized for efficient transient simulations, benefiting to the computational expense. This paper focuses on the design of an accurate and versatile A-posteriori error estimation and adaptive time stepping for general composite schemes and typical of the implicit ρ∞-Bathe and explicit Noh-Bathe composite methods for time integration in second-order transient systems. Two novel error estimators, Disp/P3 and Disp/P4, are newly proposed based on the generalized polynomials. They have generalized compact single-step representations and work for both implicit and explicit, dissipative and non-dissipative composite schemes. Validation tests of linear and nonlinear problems show that the estimated local error reaches excellent agreement with the exact local error, and the third-order convergence rates of the local error are obtained. Besides, the Disp/P4 is more accurate than Disp/P3 as the effectivity index is almost identical to unity when random time steps are taken into consideration, and hence the Disp/P4 is highly recommended to be merged to the adaptive time stepping procedure. Three examples encompassing the wave propagation, damped/undamped spring-pendulum, and nonlinear spring-mass system are solved by implicit and explicit composite methods via the adaptive time stepping. Numerical results show the advantage of adaptive time stepping based on the proposed error estimator in contrast to constant time stepping regarding the CPU cost. |
| ArticleNumber | 106789 |
| Author | Xue, Xiaodai Zhang, Xuelin Zhang, Tong Wang, Yazhou Mei, Shengwei Xie, Ningning Tamma, Kumar |
| Author_xml | – sequence: 1 givenname: Yazhou surname: Wang fullname: Wang, Yazhou organization: China State Key Laboratory of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China – sequence: 2 givenname: Tong surname: Zhang fullname: Zhang, Tong organization: China State Key Laboratory of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China – sequence: 3 givenname: Xuelin surname: Zhang fullname: Zhang, Xuelin organization: Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China – sequence: 4 givenname: Shengwei surname: Mei fullname: Mei, Shengwei organization: China State Key Laboratory of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China – sequence: 5 givenname: Ningning surname: Xie fullname: Xie, Ningning organization: Science and Technology Research Institute, China Three Gorges Corporation, Beijing 100038, China – sequence: 6 givenname: Xiaodai surname: Xue fullname: Xue, Xiaodai email: xuexiaodai@tsinghua.edu.cn organization: China State Key Laboratory of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China – sequence: 7 givenname: Kumar surname: Tamma fullname: Tamma, Kumar email: ktamma@umn.edu organization: Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA |
| BookMark | eNqNkM1OAyEUhYnRxFp9BklcT-WvMCxcNMa_xMSNrgnCnUrTDiNQo6_gU0tt48KNJiTA5Zx7Lt8R2u9jDwidUjKhhMrzxcTF1ZBLWrsJI4zVqlSt3kMj2irdMCb4PhoRIqaN0kIfoqOcF4QQKQgZoc-HHtu6nFsnWwDPmiHmAinEFDCkFBOGXMLKlnqyvcfW26GEN8C1CLhKhyH0c9zV5_ICOKyGZXChfGvhfXfZTBhzKDtX6AvMa1yINXk5r1HlZZWP0UFnlxlOdvsYPV1fPV7eNvcPN3eXs_vGccFL4zo_nQJXLZfMSf1MvKaeU-e5ZZS3rfJMEiu6qeKKi2cAx712khOqJBPa8zE62_YdUnxd19-ZRVynvkYaJhVTsqVaVNXFVuVSzDlBZ-pHvkcuyYalocRs8JuF-cFvNvjNFn_1q1_-IVWM6eMfztnWCRXCW4BksgvQO_AhgSvGx_Bnjy_7_qps |
| CitedBy_id | crossref_primary_10_1007_s11071_023_09065_7 crossref_primary_10_1016_j_jcp_2024_113032 crossref_primary_10_1016_j_ijthermalsci_2025_110144 crossref_primary_10_1108_HFF_03_2023_0161 crossref_primary_10_1007_s00366_023_01876_x crossref_primary_10_1007_s11831_023_09924_x crossref_primary_10_1016_j_compstruc_2022_106901 crossref_primary_10_1051_e3sconf_202450503015 crossref_primary_10_1016_j_wavemoti_2024_103320 |
| Cites_doi | 10.1016/j.cma.2018.02.007 10.1016/j.compstruc.2018.11.001 10.1007/s11071-019-04936-4 10.1016/j.compstruc.2018.10.008 10.1016/j.compstruc.2006.09.004 10.1016/j.engstruct.2019.05.095 10.1002/nme.1568 10.1016/j.compstruc.2017.10.002 10.1109/TCAD.1985.1270142 10.1002/nme.1559 10.1002/nme.1620151011 10.1016/j.compstruc.2019.05.015 10.1590/S1806-11172007000400024 10.1002/eqe.4290210701 10.1016/j.compstruc.2021.106559 10.1016/j.apm.2018.12.027 10.1016/j.ijmecsci.2020.105429 10.1016/j.compstruc.2020.106433 10.1002/eqe.4290200907 10.1002/cnm.1640090402 10.1061/JMCEA3.0000098 10.1016/j.compstruc.2019.106188 10.1002/eqe.4290050306 10.1016/j.jcp.2020.110097 10.1016/j.compstruc.2021.106531 10.1016/j.compstruc.2006.08.072 10.1115/1.3423600 10.1016/j.cma.2021.113920 10.1016/j.cma.2020.113604 10.1002/nme.873 10.1016/j.compstruc.2013.06.007 10.1002/nme.688 10.1016/j.compfluid.2018.07.013 10.1016/j.compstruc.2005.08.001 10.1016/j.ijheatmasstransfer.2019.07.010 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jul 1, 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jul 1, 2022 |
| DBID | AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.compstruc.2022.106789 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2243 |
| ExternalDocumentID | 10_1016_j_compstruc_2022_106789 S0045794922000499 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SPD SST SSV SSW SSZ T5K TN5 XPP ZMT ~02 ~G- 29F 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABJNI ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ OHT R2- SBC SET SEW T9H TAE VH1 WUQ ZY4 ~HD 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c343t-cfd55e378362c69b0d91d31cd3a213887d260a4f573734beec3d9c630176249d3 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793520400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7949 |
| IngestDate | Sun Nov 09 06:35:21 EST 2025 Tue Nov 18 22:51:09 EST 2025 Sat Nov 29 07:29:45 EST 2025 Fri Feb 23 02:41:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Composite time integration Error estimation Adaptive time stepping Second-order transient systems |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c343t-cfd55e378362c69b0d91d31cd3a213887d260a4f573734beec3d9c630176249d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2672768194 |
| PQPubID | 2045492 |
| ParticipantIDs | proquest_journals_2672768194 crossref_citationtrail_10_1016_j_compstruc_2022_106789 crossref_primary_10_1016_j_compstruc_2022_106789 elsevier_sciencedirect_doi_10_1016_j_compstruc_2022_106789 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Computers & structures |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Li, Yu (b0070) 2019; 69 Noh, Bathe (b0080) 2019; 212 Kim (b0125) 2019; 195 Li, Zeng, Wiberg (b0145) 1993; 9 Hilber, Hughes, Taylor (b0020) 1977; 5 Malakiyeh, Shojaee, Hamzehei-Javaran, Bathe (b0085) 2021; 245 Zakian, Bathe (b0185) 2021; 254 Romero, Lacoma (b0155) 2006; 66 Shao H. The studying on the direct time integration algorithms for structural dynamics response, Master’s thesis, Zhe Jiang University; 1987. Bathe (b0065) 2007; 85 Wang, Xue, Tamma, Maxam, Qin (b0170) 2021; 374 Zhou, Tamma (b0040) 2004; 59 Baig MMI, Bathe KJ. On direct time integration in large deformation dynamic analysis. In: 3rd MIT conference on computational fluid and solid mechanics; 2005. p. 1044–7. Wang, Tamma, Maxam, Xue, Qin (b0175) 2021 Wang, Tamma, Xue, Maxam, Qin (b0195) 2021; 430 Chung, Cho, Choi (b0150) 2003; 57 Park (b0015) 1975; 42 Li, Yu, Li (b0110) 2019; 96 Zienkiewicz, Xie (b0135) 1991; 20 Zhou, Tamma (b0045) 2006; 66 Kwon, Bathe, Noh (b0100) 2021; 254 Wilson EL. A computer program for the dynamic stress analysis of underground structures, Technical Report, California Univ Berkeley Structural Engineering Lab; 1968. Newmark (b0005) 1959; 85 Kim, Reddy (b0120) 2020; 172 Bank, Coughran, Fichtner, Grosse, Rose, Smith (b0050) 1985; 4 Lacoma, Romero (b0160) 2007; 85 Noh, Bathe (b0115) 2013; 129 Noh, Bathe (b0090) 2019; 225 Shao, Cai (b0035) 1988 Kim, Choi (b0105) 2018; 196 Zeng, Wiberg, Li, Xie (b0140) 1992; 21 Malakiyeh, Shojaee, Bathe (b0075) 2019; 212 Wang, Xue, Tamma, Maxam, Qin (b0130) 2021; 384 Wang, Qin, He, Ye (b0200) 2019; 141 Li, Yu, Li (b0205) 2018; 13 Bathe, Baig (b0060) 2005; 83 Wood, Bossak, Zienkiewicz (b0025) 1980; 15 Wang, Qin (b0190) 2018; 174 Deokar, Maxam, Tamma (b0165) 2018; 334 Kwon, Bathe, Noh (b0095) 2020; 230 Beléndez, Pascual, Méndez, Beléndez, Neipp (b0180) 2007; 29 Hilber (10.1016/j.compstruc.2022.106789_b0020) 1977; 5 Wang (10.1016/j.compstruc.2022.106789_b0170) 2021; 374 Kim (10.1016/j.compstruc.2022.106789_b0120) 2020; 172 Li (10.1016/j.compstruc.2022.106789_b0070) 2019; 69 Li (10.1016/j.compstruc.2022.106789_b0205) 2018; 13 Wang (10.1016/j.compstruc.2022.106789_b0190) 2018; 174 Deokar (10.1016/j.compstruc.2022.106789_b0165) 2018; 334 Malakiyeh (10.1016/j.compstruc.2022.106789_b0075) 2019; 212 Bathe (10.1016/j.compstruc.2022.106789_b0065) 2007; 85 Li (10.1016/j.compstruc.2022.106789_b0110) 2019; 96 Wang (10.1016/j.compstruc.2022.106789_b0175) 2021 Noh (10.1016/j.compstruc.2022.106789_b0080) 2019; 212 Kwon (10.1016/j.compstruc.2022.106789_b0095) 2020; 230 Li (10.1016/j.compstruc.2022.106789_b0145) 1993; 9 Park (10.1016/j.compstruc.2022.106789_b0015) 1975; 42 Malakiyeh (10.1016/j.compstruc.2022.106789_b0085) 2021; 245 Wood (10.1016/j.compstruc.2022.106789_b0025) 1980; 15 10.1016/j.compstruc.2022.106789_b0010 10.1016/j.compstruc.2022.106789_b0055 Bathe (10.1016/j.compstruc.2022.106789_b0060) 2005; 83 Wang (10.1016/j.compstruc.2022.106789_b0200) 2019; 141 10.1016/j.compstruc.2022.106789_b0030 Wang (10.1016/j.compstruc.2022.106789_b0130) 2021; 384 Zhou (10.1016/j.compstruc.2022.106789_b0040) 2004; 59 Beléndez (10.1016/j.compstruc.2022.106789_b0180) 2007; 29 Kim (10.1016/j.compstruc.2022.106789_b0105) 2018; 196 Zeng (10.1016/j.compstruc.2022.106789_b0140) 1992; 21 Zienkiewicz (10.1016/j.compstruc.2022.106789_b0135) 1991; 20 Chung (10.1016/j.compstruc.2022.106789_b0150) 2003; 57 Lacoma (10.1016/j.compstruc.2022.106789_b0160) 2007; 85 Kwon (10.1016/j.compstruc.2022.106789_b0100) 2021; 254 Bank (10.1016/j.compstruc.2022.106789_b0050) 1985; 4 Kim (10.1016/j.compstruc.2022.106789_b0125) 2019; 195 Newmark (10.1016/j.compstruc.2022.106789_b0005) 1959; 85 Noh (10.1016/j.compstruc.2022.106789_b0115) 2013; 129 Zhou (10.1016/j.compstruc.2022.106789_b0045) 2006; 66 Zakian (10.1016/j.compstruc.2022.106789_b0185) 2021; 254 Shao (10.1016/j.compstruc.2022.106789_b0035) 1988 Noh (10.1016/j.compstruc.2022.106789_b0090) 2019; 225 Romero (10.1016/j.compstruc.2022.106789_b0155) 2006; 66 Wang (10.1016/j.compstruc.2022.106789_b0195) 2021; 430 |
| References_xml | – volume: 374 start-page: 113604 year: 2021 ident: b0170 article-title: An accurate and simple universal a posteriori error estimator for GS4-1 framework: Adaptive time stepping in first-order transient systems publication-title: Comput Methods Appl Mech Eng – start-page: 1 year: 2021 end-page: 27 ident: b0175 article-title: An overview of high-order implicit algorithms for first-/second-order systems and novel explicit algorithm designs for first-order system representations publication-title: Arch Comput Methods Eng – reference: Wilson EL. A computer program for the dynamic stress analysis of underground structures, Technical Report, California Univ Berkeley Structural Engineering Lab; 1968. – volume: 85 start-page: 67 year: 1959 end-page: 94 ident: b0005 article-title: A method of computation for structural dynamics publication-title: J Eng Mech Divis – volume: 334 start-page: 414 year: 2018 end-page: 439 ident: b0165 article-title: A novel and simple a posteriori error estimator for LMS methods under the umbrella of GSSSS framework: Adaptive time stepping in second-order dynamical systems publication-title: Comput Methods Appl Mech Eng – volume: 42 start-page: 464 year: 1975 end-page: 470 ident: b0015 article-title: An improved stiffly stable method for direct integration of nonlinear structural dynamic equations publication-title: J Appl Mech – volume: 9 start-page: 273 year: 1993 end-page: 292 ident: b0145 article-title: A simple local error estimator and an adaptive time-stepping procedure for direct integration method in dynamic analysis publication-title: Commun Numer Methods Eng – volume: 4 start-page: 436 year: 1985 end-page: 451 ident: b0050 article-title: Transient simulation of silicon devices and circuits publication-title: IEEE Trans Comput Aided Des Integr Circ Syst – volume: 196 start-page: 341 year: 2018 end-page: 354 ident: b0105 article-title: An improved implicit time integration algorithm: The generalized composite time integration algorithm publication-title: Comput Struct – volume: 66 start-page: 635 year: 2006 end-page: 660 ident: b0155 article-title: A methodology for the formulation of error estimators for time integration in linear solid and structural dynamics publication-title: Int J Numer Meth Eng – volume: 174 start-page: 122 year: 2018 end-page: 134 ident: b0190 article-title: An improved time-splitting method for simulating natural convection heat transfer in a square cavity by Legendre spectral element approximation publication-title: Comput Fluids – reference: Shao H. The studying on the direct time integration algorithms for structural dynamics response, Master’s thesis, Zhe Jiang University; 1987. – volume: 141 start-page: 949 year: 2019 end-page: 963 ident: b0200 article-title: Spectral element method for numerical simulation of ETHD enhanced heat transfer in an enclosure with uniform and sinusoidal temperature boundary conditions publication-title: Int J Heat Mass Transf – volume: 59 start-page: 597 year: 2004 end-page: 668 ident: b0040 article-title: Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics publication-title: Int J Numer Meth Eng – volume: 13 year: 2018 ident: b0205 article-title: A generalized structure-dependent semi-explicit method for structural dynamics publication-title: J Comput Nonlinear Dyn – volume: 21 start-page: 555 year: 1992 end-page: 571 ident: b0140 article-title: A posteriori local error estimation and adaptive time-stepping for Newmark integration in dynamic analysis publication-title: Earthquake Eng Struct Dynam – volume: 20 start-page: 871 year: 1991 end-page: 887 ident: b0135 article-title: A simple error estimator and adaptive time stepping procedure for dynamic analysis publication-title: Earthquake Eng Struct Dynam – volume: 15 start-page: 1562 year: 1980 end-page: 1566 ident: b0025 article-title: An alpha modification of Newmark’s method publication-title: Int J Numer Meth Eng – volume: 129 start-page: 178 year: 2013 end-page: 193 ident: b0115 article-title: An explicit time integration scheme for the analysis of wave propagations publication-title: Comput Struct – volume: 85 start-page: 158 year: 2007 end-page: 169 ident: b0160 article-title: Error estimation for the HHT method in non-linear solid dynamics publication-title: Comput Struct – start-page: C16 year: 1988 end-page: C20 ident: b0035 article-title: The direct integration three-parameters optimal schemes for structural dynamics publication-title: Proceeding of the International Conference: Machine Dynamics and Engineering Applications – volume: 254 start-page: 106531 year: 2021 ident: b0185 article-title: Transient wave propagations with the Noh-Bathe scheme and the spectral element method publication-title: Comput Struct – volume: 212 start-page: 289 year: 2019 end-page: 298 ident: b0075 article-title: The Bathe time integration method revisited for prescribing desired numerical dissipation publication-title: Comput Struct – volume: 245 start-page: 106433 year: 2021 ident: b0085 article-title: New insights into the publication-title: Comput Struct – volume: 96 start-page: 2475 year: 2019 end-page: 2507 ident: b0110 article-title: A novel family of controllably dissipative composite integration algorithms for structural dynamic analysis publication-title: Nonlinear Dyn – volume: 57 start-page: 537 year: 2003 end-page: 554 ident: b0150 article-title: A priori error estimator of the generalized- publication-title: Int J Numer Meth Eng – volume: 5 start-page: 283 year: 1977 end-page: 292 ident: b0020 article-title: Improved numerical dissipation for time integration algorithms in structural dynamics publication-title: Earthq Eng Struct Dynam – volume: 212 start-page: 299 year: 2019 end-page: 310 ident: b0080 article-title: The Bathe time integration method with controllable spectral radius: The publication-title: Comput Struct – volume: 384 start-page: 113920 year: 2021 ident: b0130 article-title: A three-time-level a posteriori error estimator for GS4-2 framework: Adaptive time stepping for second-order transient systems publication-title: Comput Methods Appl Mech Eng – volume: 69 start-page: 255 year: 2019 end-page: 272 ident: b0070 article-title: An alternative to the Bathe algorithm publication-title: Appl Math Model – volume: 254 start-page: 106559 year: 2021 ident: b0100 article-title: Selecting the load at the intermediate time point of the publication-title: Comput Struct – volume: 83 start-page: 2513 year: 2005 end-page: 2524 ident: b0060 article-title: On a composite implicit time integration procedure for nonlinear dynamics publication-title: Comput Struct – volume: 225 start-page: 106079 year: 2019 ident: b0090 article-title: For direct time integrations: A comparison of the Newmark and publication-title: Comput Struct – volume: 230 start-page: 106188 year: 2020 ident: b0095 article-title: An analysis of implicit time integration schemes for wave propagations publication-title: Comput Struct – volume: 29 start-page: 645 year: 2007 end-page: 648 ident: b0180 article-title: Exact solution for the nonlinear pendulum publication-title: Revista brasileira de ensino de física – volume: 430 start-page: 110097 year: 2021 ident: b0195 article-title: Generalized Petrov-Galerkin time finite element weighted residual methodology for designing high-order unconditionally stable algorithms with controllable numerical dissipation publication-title: J Comput Phys – volume: 66 start-page: 1738 year: 2006 end-page: 1790 ident: b0045 article-title: Algorithms by design with illustrations to solid and structural mechanics/dynamics publication-title: Int J Numer Meth Eng – volume: 195 start-page: 358 year: 2019 end-page: 372 ident: b0125 article-title: A new family of two-stage explicit time integration methods with dissipation control capability for structural dynamics publication-title: Eng Struct – volume: 85 start-page: 437 year: 2007 end-page: 445 ident: b0065 article-title: Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme publication-title: Comput Struct – volume: 172 start-page: 105429 year: 2020 ident: b0120 article-title: Novel explicit time integration schemes for efficient transient analyses of structural problems publication-title: Int J Mech Sci – reference: Baig MMI, Bathe KJ. On direct time integration in large deformation dynamic analysis. In: 3rd MIT conference on computational fluid and solid mechanics; 2005. p. 1044–7. – volume: 334 start-page: 414 year: 2018 ident: 10.1016/j.compstruc.2022.106789_b0165 article-title: A novel and simple a posteriori error estimator for LMS methods under the umbrella of GSSSS framework: Adaptive time stepping in second-order dynamical systems publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.02.007 – volume: 212 start-page: 299 year: 2019 ident: 10.1016/j.compstruc.2022.106789_b0080 article-title: The Bathe time integration method with controllable spectral radius: The ρ∞-Bathe method publication-title: Comput Struct doi: 10.1016/j.compstruc.2018.11.001 – ident: 10.1016/j.compstruc.2022.106789_b0010 – volume: 96 start-page: 2475 year: 2019 ident: 10.1016/j.compstruc.2022.106789_b0110 article-title: A novel family of controllably dissipative composite integration algorithms for structural dynamic analysis publication-title: Nonlinear Dyn doi: 10.1007/s11071-019-04936-4 – volume: 212 start-page: 289 year: 2019 ident: 10.1016/j.compstruc.2022.106789_b0075 article-title: The Bathe time integration method revisited for prescribing desired numerical dissipation publication-title: Comput Struct doi: 10.1016/j.compstruc.2018.10.008 – volume: 85 start-page: 437 year: 2007 ident: 10.1016/j.compstruc.2022.106789_b0065 article-title: Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme publication-title: Comput Struct doi: 10.1016/j.compstruc.2006.09.004 – start-page: C16 year: 1988 ident: 10.1016/j.compstruc.2022.106789_b0035 article-title: The direct integration three-parameters optimal schemes for structural dynamics – volume: 195 start-page: 358 year: 2019 ident: 10.1016/j.compstruc.2022.106789_b0125 article-title: A new family of two-stage explicit time integration methods with dissipation control capability for structural dynamics publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.05.095 – volume: 66 start-page: 635 year: 2006 ident: 10.1016/j.compstruc.2022.106789_b0155 article-title: A methodology for the formulation of error estimators for time integration in linear solid and structural dynamics publication-title: Int J Numer Meth Eng doi: 10.1002/nme.1568 – volume: 196 start-page: 341 year: 2018 ident: 10.1016/j.compstruc.2022.106789_b0105 article-title: An improved implicit time integration algorithm: The generalized composite time integration algorithm publication-title: Comput Struct doi: 10.1016/j.compstruc.2017.10.002 – volume: 4 start-page: 436 year: 1985 ident: 10.1016/j.compstruc.2022.106789_b0050 article-title: Transient simulation of silicon devices and circuits publication-title: IEEE Trans Comput Aided Des Integr Circ Syst doi: 10.1109/TCAD.1985.1270142 – volume: 13 year: 2018 ident: 10.1016/j.compstruc.2022.106789_b0205 article-title: A generalized structure-dependent semi-explicit method for structural dynamics publication-title: J Comput Nonlinear Dyn – volume: 66 start-page: 1738 year: 2006 ident: 10.1016/j.compstruc.2022.106789_b0045 article-title: Algorithms by design with illustrations to solid and structural mechanics/dynamics publication-title: Int J Numer Meth Eng doi: 10.1002/nme.1559 – volume: 15 start-page: 1562 year: 1980 ident: 10.1016/j.compstruc.2022.106789_b0025 article-title: An alpha modification of Newmark’s method publication-title: Int J Numer Meth Eng doi: 10.1002/nme.1620151011 – volume: 225 start-page: 106079 year: 2019 ident: 10.1016/j.compstruc.2022.106789_b0090 article-title: For direct time integrations: A comparison of the Newmark and ρ∞ -Bathe schemes publication-title: Comput Struct doi: 10.1016/j.compstruc.2019.05.015 – volume: 29 start-page: 645 year: 2007 ident: 10.1016/j.compstruc.2022.106789_b0180 article-title: Exact solution for the nonlinear pendulum publication-title: Revista brasileira de ensino de física doi: 10.1590/S1806-11172007000400024 – volume: 21 start-page: 555 year: 1992 ident: 10.1016/j.compstruc.2022.106789_b0140 article-title: A posteriori local error estimation and adaptive time-stepping for Newmark integration in dynamic analysis publication-title: Earthquake Eng Struct Dynam doi: 10.1002/eqe.4290210701 – volume: 254 start-page: 106559 year: 2021 ident: 10.1016/j.compstruc.2022.106789_b0100 article-title: Selecting the load at the intermediate time point of the ρ∞ -Bathe time integration scheme publication-title: Comput Struct doi: 10.1016/j.compstruc.2021.106559 – ident: 10.1016/j.compstruc.2022.106789_b0030 – volume: 69 start-page: 255 year: 2019 ident: 10.1016/j.compstruc.2022.106789_b0070 article-title: An alternative to the Bathe algorithm publication-title: Appl Math Model doi: 10.1016/j.apm.2018.12.027 – volume: 172 start-page: 105429 year: 2020 ident: 10.1016/j.compstruc.2022.106789_b0120 article-title: Novel explicit time integration schemes for efficient transient analyses of structural problems publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2020.105429 – ident: 10.1016/j.compstruc.2022.106789_b0055 – volume: 245 start-page: 106433 year: 2021 ident: 10.1016/j.compstruc.2022.106789_b0085 article-title: New insights into the β1/β2-Bathe time integration scheme when L-stable publication-title: Comput Struct doi: 10.1016/j.compstruc.2020.106433 – volume: 20 start-page: 871 year: 1991 ident: 10.1016/j.compstruc.2022.106789_b0135 article-title: A simple error estimator and adaptive time stepping procedure for dynamic analysis publication-title: Earthquake Eng Struct Dynam doi: 10.1002/eqe.4290200907 – volume: 9 start-page: 273 year: 1993 ident: 10.1016/j.compstruc.2022.106789_b0145 article-title: A simple local error estimator and an adaptive time-stepping procedure for direct integration method in dynamic analysis publication-title: Commun Numer Methods Eng doi: 10.1002/cnm.1640090402 – volume: 85 start-page: 67 year: 1959 ident: 10.1016/j.compstruc.2022.106789_b0005 article-title: A method of computation for structural dynamics publication-title: J Eng Mech Divis doi: 10.1061/JMCEA3.0000098 – volume: 230 start-page: 106188 year: 2020 ident: 10.1016/j.compstruc.2022.106789_b0095 article-title: An analysis of implicit time integration schemes for wave propagations publication-title: Comput Struct doi: 10.1016/j.compstruc.2019.106188 – volume: 5 start-page: 283 year: 1977 ident: 10.1016/j.compstruc.2022.106789_b0020 article-title: Improved numerical dissipation for time integration algorithms in structural dynamics publication-title: Earthq Eng Struct Dynam doi: 10.1002/eqe.4290050306 – volume: 430 start-page: 110097 year: 2021 ident: 10.1016/j.compstruc.2022.106789_b0195 article-title: Generalized Petrov-Galerkin time finite element weighted residual methodology for designing high-order unconditionally stable algorithms with controllable numerical dissipation publication-title: J Comput Phys doi: 10.1016/j.jcp.2020.110097 – volume: 254 start-page: 106531 year: 2021 ident: 10.1016/j.compstruc.2022.106789_b0185 article-title: Transient wave propagations with the Noh-Bathe scheme and the spectral element method publication-title: Comput Struct doi: 10.1016/j.compstruc.2021.106531 – volume: 85 start-page: 158 year: 2007 ident: 10.1016/j.compstruc.2022.106789_b0160 article-title: Error estimation for the HHT method in non-linear solid dynamics publication-title: Comput Struct doi: 10.1016/j.compstruc.2006.08.072 – volume: 42 start-page: 464 year: 1975 ident: 10.1016/j.compstruc.2022.106789_b0015 article-title: An improved stiffly stable method for direct integration of nonlinear structural dynamic equations publication-title: J Appl Mech doi: 10.1115/1.3423600 – volume: 384 start-page: 113920 year: 2021 ident: 10.1016/j.compstruc.2022.106789_b0130 article-title: A three-time-level a posteriori error estimator for GS4-2 framework: Adaptive time stepping for second-order transient systems publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2021.113920 – volume: 374 start-page: 113604 year: 2021 ident: 10.1016/j.compstruc.2022.106789_b0170 article-title: An accurate and simple universal a posteriori error estimator for GS4-1 framework: Adaptive time stepping in first-order transient systems publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113604 – volume: 59 start-page: 597 year: 2004 ident: 10.1016/j.compstruc.2022.106789_b0040 article-title: Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics publication-title: Int J Numer Meth Eng doi: 10.1002/nme.873 – volume: 129 start-page: 178 year: 2013 ident: 10.1016/j.compstruc.2022.106789_b0115 article-title: An explicit time integration scheme for the analysis of wave propagations publication-title: Comput Struct doi: 10.1016/j.compstruc.2013.06.007 – volume: 57 start-page: 537 year: 2003 ident: 10.1016/j.compstruc.2022.106789_b0150 article-title: A priori error estimator of the generalized-αmethod for structural dynamics publication-title: Int J Numer Meth Eng doi: 10.1002/nme.688 – start-page: 1 year: 2021 ident: 10.1016/j.compstruc.2022.106789_b0175 article-title: An overview of high-order implicit algorithms for first-/second-order systems and novel explicit algorithm designs for first-order system representations publication-title: Arch Comput Methods Eng – volume: 174 start-page: 122 year: 2018 ident: 10.1016/j.compstruc.2022.106789_b0190 article-title: An improved time-splitting method for simulating natural convection heat transfer in a square cavity by Legendre spectral element approximation publication-title: Comput Fluids doi: 10.1016/j.compfluid.2018.07.013 – volume: 83 start-page: 2513 year: 2005 ident: 10.1016/j.compstruc.2022.106789_b0060 article-title: On a composite implicit time integration procedure for nonlinear dynamics publication-title: Comput Struct doi: 10.1016/j.compstruc.2005.08.001 – volume: 141 start-page: 949 year: 2019 ident: 10.1016/j.compstruc.2022.106789_b0200 article-title: Spectral element method for numerical simulation of ETHD enhanced heat transfer in an enclosure with uniform and sinusoidal temperature boundary conditions publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2019.07.010 |
| SSID | ssj0006400 |
| Score | 2.4114296 |
| Snippet | •The novel design of A-posteriori error estimator based on the generalized polynomial is demonstrated for composite time integration methods.•The proposed... This paper focuses on the design of an accurate and versatile A-posteriori error estimation and adaptive time stepping for general composite schemes and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106789 |
| SubjectTerms | Adaptive time stepping Algorithms Composite time integration Dissipation Error estimation Errors Mass-spring systems Polynomials Second-order transient systems Time integration Wave propagation |
| Title | On an accurate A-posteriori error estimator and adaptive time stepping for the implicit and explicit composite time integration algorithms |
| URI | https://dx.doi.org/10.1016/j.compstruc.2022.106789 https://www.proquest.com/docview/2672768194 |
| Volume | 266 |
| WOSCitedRecordID | wos000793520400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2243 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006400 issn: 0045-7949 databaseCode: AIEXJ dateStart: 19950103 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLVKxwM8ID7FYCA_8FZ1amM3afZWoSHgYUOiiPIUObazZipplLZbxU_gv_AfudcfSbaByh6Qqqhxc52k99j32jo-JuRNlmoRZhlOuuNsFY8UNCk-6OtMYHxPmcoGZrOJ6ORkPJvFnzqdX34tzMUiKorxdhuX_9XVUAbOxqWzt3B3XSkUwHdwOhzB7XD8J8efIr24J6TcoApEb9IvcR1HlS-rvKerChW-oVl_x8G2VWpVojT8IdxmvgeXlqVnV2JSmhvKeW6J6HrrTpCJjnQvZ-VFJwy3eXEGt1rPnQy6V0Fwu0esDNasau2magiMX9289TfxY77c3JjOni5dhG0Xzja4mL6GjDbEhM9zXZxd6rw9nRE01Ne6i-aooWl1TH0XHYTtThZV7-y-Qzf6fzsVcY7uK82rHOI9DhuLq4rb1yJhzU_01LfzpK4owYoSW9EdshdEMBLrkr3Jh-PZxzr0h9yvebLvcIVQ-Mdn-ls6dC0xMNnO9CF54IYpdGLh9Yh0dPGY3G-JVz4hP08LKuDjgEbbQKMGaLQGGlyoqAcaRchQDzQKQKMANOqBZq71QKM10KxVC2i0AdpT8uXd8fTt-77b2aMvGWfrvszUaKQZriAKZBinAxUPFRtKxUQwZBD3FAyzBc9GEYsYT7WWTMUyhGAEsZvHij0j3WJZ6OeEhvEogzFKyiRUnWVSRGKMef0QRsJRKvk-Cf0fnEgne4-7ryySHU7eJ4PasLTKL7tNjrwHE5fA2sQ0AXzuNj7wPk9cd7JKAiRKhJC18xe3f5yX5F7Twg5IF37Xr8hdebHOV9Vrh93f4hHTzQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+an+accurate+A-posteriori+error+estimator+and+adaptive+time+stepping+for+the+implicit+and+explicit+composite+time+integration+algorithms&rft.jtitle=Computers+%26+structures&rft.au=Wang%2C+Yazhou&rft.au=Zhang%2C+Tong&rft.au=Zhang%2C+Xuelin&rft.au=Mei%2C+Shengwei&rft.date=2022-07-01&rft.issn=0045-7949&rft.volume=266&rft.spage=106789&rft_id=info:doi/10.1016%2Fj.compstruc.2022.106789&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compstruc_2022_106789 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7949&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7949&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7949&client=summon |