Adaptive guidance and integrated navigation with reinforcement meta-learning

This paper proposes a novel adaptive guidance system developed using reinforcement meta-learning with a recurrent policy and value function approximator. The use of recurrent network layers allows the deployed policy to adapt in real time to environmental forces acting on the agent. We compare the p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta astronautica Ročník 169; s. 180 - 190
Hlavní autoři: Gaudet, Brian, Linares, Richard, Furfaro, Roberto
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elmsford Elsevier Ltd 01.04.2020
Elsevier BV
Témata:
ISSN:0094-5765, 1879-2030
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper proposes a novel adaptive guidance system developed using reinforcement meta-learning with a recurrent policy and value function approximator. The use of recurrent network layers allows the deployed policy to adapt in real time to environmental forces acting on the agent. We compare the performance of the DR/DV guidance law, an RL agent with a non-recurrent policy, and an RL agent with a recurrent policy in four challenging environments with unknown but highly variable dynamics. These tasks include a safe Mars landing with random engine failure and a landing on an asteroid with unknown environmental dynamics. We also demonstrate the ability of a RL meta-learning optimized policy to implement a guidance law using observations consisting of only Doppler radar altimeter readings in a Mars landing environment, and LIDAR altimeter readings in an asteroid landing environment thus integrating guidance and navigation. •Adaptive guidance using meta-reinforcement learning.•Learns to handle engine failures, variations in mass and environmental forces.•Approach learns closed-loop controller.
AbstractList This paper proposes a novel adaptive guidance system developed using reinforcement meta-learning with a recurrent policy and value function approximator. The use of recurrent network layers allows the deployed policy to adapt in real time to environmental forces acting on the agent. We compare the performance of the DR/DV guidance law, an RL agent with a non-recurrent policy, and an RL agent with a recurrent policy in four challenging environments with unknown but highly variable dynamics. These tasks include a safe Mars landing with random engine failure and a landing on an asteroid with unknown environmental dynamics. We also demonstrate the ability of a RL meta-learning optimized policy to implement a guidance law using observations consisting of only Doppler radar altimeter readings in a Mars landing environment, and LIDAR altimeter readings in an asteroid landing environment thus integrating guidance and navigation.
This paper proposes a novel adaptive guidance system developed using reinforcement meta-learning with a recurrent policy and value function approximator. The use of recurrent network layers allows the deployed policy to adapt in real time to environmental forces acting on the agent. We compare the performance of the DR/DV guidance law, an RL agent with a non-recurrent policy, and an RL agent with a recurrent policy in four challenging environments with unknown but highly variable dynamics. These tasks include a safe Mars landing with random engine failure and a landing on an asteroid with unknown environmental dynamics. We also demonstrate the ability of a RL meta-learning optimized policy to implement a guidance law using observations consisting of only Doppler radar altimeter readings in a Mars landing environment, and LIDAR altimeter readings in an asteroid landing environment thus integrating guidance and navigation. •Adaptive guidance using meta-reinforcement learning.•Learns to handle engine failures, variations in mass and environmental forces.•Approach learns closed-loop controller.
Author Linares, Richard
Furfaro, Roberto
Gaudet, Brian
Author_xml – sequence: 1
  givenname: Brian
  orcidid: 0000-0002-0597-538X
  surname: Gaudet
  fullname: Gaudet, Brian
  email: briangaudet@mac.com
  organization: Department of Systems and Industrial Engineering, University of Arizona, 1127 E. James E. Roger Way, Tucson, AZ, 85721, USA
– sequence: 2
  givenname: Richard
  surname: Linares
  fullname: Linares, Richard
  email: linaresr@mit.edu
  organization: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
– sequence: 3
  givenname: Roberto
  orcidid: 0000-0001-6076-8992
  surname: Furfaro
  fullname: Furfaro, Roberto
  email: robertof@email.arizona.edu
  organization: Department of Systems and Industrial Engineering, University of Arizona, 1127 E. James E. Roger Way, Tucson, AZ, 85721, USA
BookMark eNqNkL1OwzAURi1UJNrCMxCJOeHaSRx7YKgq_qRKLDBbjn0THLVOcdwi3p6UIgYWmO5yznelMyMT33sk5JJCRoHy6y7TJmo9xNBnDBhkQDOA6oRMqahkyiCHCZkCyCItK16ekdkwdDASTMgpWS2s3ka3x6TdOau9wUR7mzgfsQ06ok283rtWR9f75N3F1ySg800fDG7Qx2SDUadr1ME7356T00avB7z4vnPycnf7vHxIV0_3j8vFKjV5kcfUCMbKwkophJU15qzmlSmstVwyKI1GySxILjkUvKorU1eibgRrbMO1tCLP5-TquLsN_dsOh6i6fhf8-FKxIqfABBflSFVHyoR-GAI2ahvcRocPRUEd0qlO_aRTh3QKqBrDjObNL9O4-JUgBu3W__AXRx_HCHuHQQ3G4djWuoAmKtu7Pzc-Aeiok3Q
CitedBy_id crossref_primary_10_1002_acs_3921
crossref_primary_10_1016_j_ast_2023_108666
crossref_primary_10_1016_j_engappai_2025_110948
crossref_primary_10_2514_1_G008921
crossref_primary_10_1016_j_actaastro_2021_05_014
crossref_primary_10_1016_j_paerosci_2021_100696
crossref_primary_10_3390_aerospace9100569
crossref_primary_10_1016_j_actaastro_2021_05_018
crossref_primary_10_1016_j_actaastro_2022_05_057
crossref_primary_10_3390_math13060987
crossref_primary_10_1016_j_neucom_2024_127377
crossref_primary_10_1016_j_ast_2022_108053
crossref_primary_10_1134_S0010952524600768
crossref_primary_10_1016_j_ast_2024_109700
crossref_primary_10_1155_2022_2935929
crossref_primary_10_3390_aerospace10020133
crossref_primary_10_34133_space_0297
crossref_primary_10_1016_j_asr_2022_08_002
crossref_primary_10_3390_drones6100270
crossref_primary_10_1177_09544100221138911
crossref_primary_10_1007_s40295_021_00288_7
crossref_primary_10_1016_j_actaastro_2022_03_005
crossref_primary_10_1109_ACCESS_2020_3017480
crossref_primary_10_1007_s13235_024_00576_5
crossref_primary_10_3389_frspt_2023_1263489
crossref_primary_10_1016_j_asr_2023_03_014
crossref_primary_10_1017_aer_2023_4
crossref_primary_10_2514_1_A36100
crossref_primary_10_1007_s42401_022_00152_y
crossref_primary_10_3390_aerospace12090837
crossref_primary_10_1016_j_arcontrol_2022_07_004
crossref_primary_10_1016_j_ast_2023_108604
crossref_primary_10_1016_j_actaastro_2024_10_065
crossref_primary_10_1016_j_ast_2022_107677
crossref_primary_10_3390_math11194211
crossref_primary_10_1109_ACCESS_2021_3076530
crossref_primary_10_2514_1_G005794
crossref_primary_10_1016_j_engappai_2025_110523
crossref_primary_10_1109_TCSI_2022_3163463
crossref_primary_10_1177_01423312211052742
crossref_primary_10_1134_S0010952521060113
crossref_primary_10_23919_JSEE_2024_000111
crossref_primary_10_23919_JSEE_2022_000113
crossref_primary_10_1016_j_cja_2023_05_028
crossref_primary_10_1007_s12217_025_10169_5
crossref_primary_10_1002_msd2_70039
crossref_primary_10_1134_S0010952525601100
crossref_primary_10_1016_j_actaastro_2023_01_017
crossref_primary_10_2514_1_G006656
crossref_primary_10_1038_s41598_024_81377_z
crossref_primary_10_1061__ASCE_AS_1943_5525_0001381
crossref_primary_10_1016_j_asoc_2020_107047
Cites_doi 10.2514/1.G003341
10.1016/j.asr.2018.09.016
10.2514/1.G000921
ContentType Journal Article
Copyright 2020 IAA
Copyright Elsevier BV Apr 2020
Copyright_xml – notice: 2020 IAA
– notice: Copyright Elsevier BV Apr 2020
DBID AAYXX
CITATION
7TB
7TG
8FD
FR3
H8D
KL.
L7M
DOI 10.1016/j.actaastro.2020.01.007
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2030
EndPage 190
ExternalDocumentID 10_1016_j_actaastro_2020_01_007
S0094576520300072
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELOY
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
VH1
VOH
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
7TG
8FD
AGCQF
FR3
H8D
KL.
L7M
ID FETCH-LOGICAL-c343t-c82254d9988d9be32b67c4ddd69205cae92d096960467b7cb78bf82fdf6a9d833
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522098200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-5765
IngestDate Wed Aug 13 10:36:10 EDT 2025
Sat Nov 29 07:24:43 EST 2025
Tue Nov 18 21:51:21 EST 2025
Fri Feb 23 02:48:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Guidance
Reinforcement learning
Landing guidance
Meta learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-c82254d9988d9be32b67c4ddd69205cae92d096960467b7cb78bf82fdf6a9d833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6076-8992
0000-0002-0597-538X
PQID 2431028685
PQPubID 2045287
PageCount 11
ParticipantIDs proquest_journals_2431028685
crossref_primary_10_1016_j_actaastro_2020_01_007
crossref_citationtrail_10_1016_j_actaastro_2020_01_007
elsevier_sciencedirect_doi_10_1016_j_actaastro_2020_01_007
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace Elmsford
PublicationPlace_xml – name: Elmsford
PublicationTitle Acta astronautica
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ng (bib17) 2003
Huang, Li, Sun (bib3) 2019; 63
Peng, Andrychowicz, Zaremba, Abbeel (bib6) 2017
Mishra, Rohaninejad, Chen, Abbeel (bib11) 2018
Udrea, Patel, Anderson (bib18) 2012; 143
Frans, Ho, Chen, Abbeel, Schulman (bib12) 2017
Prabhakar, Painter, Prazenica, Balas (bib2) 2018; 41
Chung, Gulcehre, Cho, Bengio (bib16) 2015
Yu, Tan, Liu, Turk (bib5) 2017
Wang, Kurth-Nelson, Tirumala, Soyer, Leibo, Munos, Blundell, Kumaran, Botvinick (bib13) 2016
Gaudet, Furfaro (bib20) 2014
Guang, Heming, Liang (bib1) 2018
Gaudet, Furfaro (bib19) 2014
Schulman, Wolski, Dhariwal, Radford, Klimov (bib15) 2017
Han, Biggs, Cui (bib4) 2015; 38
D'Souza (bib8) 1997
Rajeswaran, Ghotra, Ravindran, Levine (bib14) 2016
Finn, Abbeel, Levine (bib10) 2017
Gaudet, Linares, Furfaro (bib9) 2018
Battin (bib7) 1999
Gaudet (10.1016/j.actaastro.2020.01.007_bib9) 2018
Prabhakar (10.1016/j.actaastro.2020.01.007_bib2) 2018; 41
Mishra (10.1016/j.actaastro.2020.01.007_bib11) 2018
Battin (10.1016/j.actaastro.2020.01.007_bib7) 1999
Frans (10.1016/j.actaastro.2020.01.007_bib12) 2017
D'Souza (10.1016/j.actaastro.2020.01.007_bib8) 1997
Rajeswaran (10.1016/j.actaastro.2020.01.007_bib14) 2016
Han (10.1016/j.actaastro.2020.01.007_bib4) 2015; 38
Chung (10.1016/j.actaastro.2020.01.007_bib16) 2015
Schulman (10.1016/j.actaastro.2020.01.007_bib15) 2017
Udrea (10.1016/j.actaastro.2020.01.007_bib18) 2012; 143
Finn (10.1016/j.actaastro.2020.01.007_bib10) 2017
Huang (10.1016/j.actaastro.2020.01.007_bib3) 2019; 63
Ng (10.1016/j.actaastro.2020.01.007_bib17) 2003
Yu (10.1016/j.actaastro.2020.01.007_bib5) 2017
Gaudet (10.1016/j.actaastro.2020.01.007_bib20) 2014
Guang (10.1016/j.actaastro.2020.01.007_bib1) 2018
Gaudet (10.1016/j.actaastro.2020.01.007_bib19) 2014
Wang (10.1016/j.actaastro.2020.01.007_bib13) 2016
Peng (10.1016/j.actaastro.2020.01.007_bib6) 2017
References_xml – year: 2016
  ident: bib13
  article-title: Learning to Reinforcement Learn
– year: 2017
  ident: bib10
  article-title: Model-agnostic Meta-Learning for Fast Adaptation of Deep Networks
– start-page: 1
  year: 2018
  end-page: 11
  ident: bib1
  article-title: Attitude dynamics of spacecraft with time-varying inertia during on-orbit refueling
  publication-title: J. Guid. Control Dyn.
– year: 2016
  ident: bib14
  article-title: Epopt: Learning Robust Neural Network Policies Using Model Ensembles
– year: 2017
  ident: bib5
  article-title: Preparing for the Unknown: Learning a Universal Policy with Online System Identification
– volume: 38
  start-page: 2033
  year: 2015
  end-page: 2042
  ident: bib4
  article-title: Adaptive fault-tolerant control of spacecraft attitude dynamics with actuator failures
  publication-title: J. Guid. Control Dyn.
– year: 2014
  ident: bib20
  article-title: Real-time state estimation for asteroid close-proximity operations via lidar altimetry and a particle filter
  publication-title: 2013 AAS/AIAA Astrodynamics Specialist Conference, Astrodynamics 2013
– year: 2018
  ident: bib11
  article-title: A Simple Neural Attentive Meta-Learner
– year: 2017
  ident: bib12
  article-title: Meta Learning Shared Hierarchies
– year: 2003
  ident: bib17
  article-title: Shaping and Policy Search in Reinforcement Learning
– year: 2017
  ident: bib15
  article-title: Proximal Policy Optimization Algorithms
– start-page: 2067
  year: 2015
  end-page: 2075
  ident: bib16
  article-title: Gated feedback recurrent neural networks
  publication-title: International Conference on Machine Learning
– start-page: 3709
  year: 1997
  ident: bib8
  article-title: An Optimal Guidance Law for Planetary Landing
  publication-title: Guidance, Navigation, and Control Conference
– year: 2018
  ident: bib9
  article-title: Deep Reinforcement Learning for Six Degree-Of-Freedom Planetary Powered Descent and Landing
– volume: 143
  year: 2012
  ident: bib18
  article-title: Sensitivity analysis of the touchdown footprint at (101955) 1999 RQ36
  publication-title: Proceedings of the 22nd AAS/AIAA Spaceflight Mechanics Conference
– volume: 41
  start-page: 1976
  year: 2018
  end-page: 1989
  ident: bib2
  article-title: Trajectory-driven adaptive control of autonomous unmanned aerial vehicles with disturbance accommodation
  publication-title: J. Guid. Control Dyn.
– year: 1999
  ident: bib7
  article-title: An Introduction to the Mathematics and Methods of Astrodynamics
– volume: 63
  start-page: 557
  year: 2019
  end-page: 571
  ident: bib3
  article-title: Mars entry fault-tolerant control via neural network and structure adaptive model inversion
  publication-title: Adv. Space Res.
– year: 2017
  ident: bib6
  article-title: Sim-to-real Transfer of Robotic Control with Dynamics Randomization
– year: 2014
  ident: bib19
  article-title: A navigation scheme for pinpoint mars landing using radar altimetry, a digital terrain model, and a particle filter
  publication-title: 2013 AAS/AIAA Astrodynamics Specialist Conference, Astrodynamics 2013
– year: 2018
  ident: 10.1016/j.actaastro.2020.01.007_bib11
– year: 2017
  ident: 10.1016/j.actaastro.2020.01.007_bib15
– year: 2017
  ident: 10.1016/j.actaastro.2020.01.007_bib6
– year: 2014
  ident: 10.1016/j.actaastro.2020.01.007_bib20
  article-title: Real-time state estimation for asteroid close-proximity operations via lidar altimetry and a particle filter
– volume: 41
  start-page: 1976
  issue: 9
  year: 2018
  ident: 10.1016/j.actaastro.2020.01.007_bib2
  article-title: Trajectory-driven adaptive control of autonomous unmanned aerial vehicles with disturbance accommodation
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G003341
– year: 2014
  ident: 10.1016/j.actaastro.2020.01.007_bib19
  article-title: A navigation scheme for pinpoint mars landing using radar altimetry, a digital terrain model, and a particle filter
– year: 1999
  ident: 10.1016/j.actaastro.2020.01.007_bib7
– year: 2016
  ident: 10.1016/j.actaastro.2020.01.007_bib14
– volume: 63
  start-page: 557
  issue: 1
  year: 2019
  ident: 10.1016/j.actaastro.2020.01.007_bib3
  article-title: Mars entry fault-tolerant control via neural network and structure adaptive model inversion
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2018.09.016
– volume: 38
  start-page: 2033
  issue: 10
  year: 2015
  ident: 10.1016/j.actaastro.2020.01.007_bib4
  article-title: Adaptive fault-tolerant control of spacecraft attitude dynamics with actuator failures
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G000921
– year: 2017
  ident: 10.1016/j.actaastro.2020.01.007_bib12
– year: 2016
  ident: 10.1016/j.actaastro.2020.01.007_bib13
– year: 2018
  ident: 10.1016/j.actaastro.2020.01.007_bib9
– year: 2017
  ident: 10.1016/j.actaastro.2020.01.007_bib10
– start-page: 2067
  year: 2015
  ident: 10.1016/j.actaastro.2020.01.007_bib16
  article-title: Gated feedback recurrent neural networks
– start-page: 1
  year: 2018
  ident: 10.1016/j.actaastro.2020.01.007_bib1
  article-title: Attitude dynamics of spacecraft with time-varying inertia during on-orbit refueling
  publication-title: J. Guid. Control Dyn.
– volume: 143
  year: 2012
  ident: 10.1016/j.actaastro.2020.01.007_bib18
  article-title: Sensitivity analysis of the touchdown footprint at (101955) 1999 RQ36
– start-page: 3709
  year: 1997
  ident: 10.1016/j.actaastro.2020.01.007_bib8
  article-title: An Optimal Guidance Law for Planetary Landing
– year: 2017
  ident: 10.1016/j.actaastro.2020.01.007_bib5
– year: 2003
  ident: 10.1016/j.actaastro.2020.01.007_bib17
SSID ssj0007289
Score 2.540819
Snippet This paper proposes a novel adaptive guidance system developed using reinforcement meta-learning with a recurrent policy and value function approximator. The...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 180
SubjectTerms Adaptive systems
Asteroids
Doppler radar
Engine failure
Guidance
Guidance (motion)
Landing guidance
Learning
Lidar
Mars
Mars environment
Mars landing
Meta learning
Navigation
Radio altimeters
Reinforcement learning
Title Adaptive guidance and integrated navigation with reinforcement meta-learning
URI https://dx.doi.org/10.1016/j.actaastro.2020.01.007
https://www.proquest.com/docview/2431028685
Volume 169
WOSCitedRecordID wos000522098200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-2030
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007289
  issn: 0094-5765
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELUQcKCHirZUpaWVD72tgvJtm9sWUbUIoR6otDfLGScIVGVX2Szi5zP-SDahrRYOXKJVJHuTnefxeHbmPUK-AtNFotMswIUGQQoa_aBSYVBBbmS4DUmXtmIT7PKSz2bil69VXVo5AVbX_P5eLF7U1HgPjW1aZ59h7n5SvIGf0eh4RbPj9UmGn2q1sPVA16sb3TcE9LQQelKrO8urMXcd3JOmtOypYBOFRlJaBV5L4noYuk6hVRO1NKlzZTPgfemOWmn3l8a3ZgC2C9Pp65zQoHvfYmXVVMr117jC7vkw9xCHg5IV709FGuCJJRv5U6e94j1i5ISa_OYaOW3Qv_y2SyHcIoZaZd_k2HydJVR1orhjpuxHO1hfV9iVrN3KfiJpJpJhJC3nwE7MMoHOb2f682x23m_ZLObunORfZ1QI-M9n-l8Y82hDt1HK1T557Y8XdOpg8YZslfVb8mpAOvmOXHQAoR1AKAKErgFC1wChBiB0BBA6AsgB-f397Or0R-A1NQJI0qQNAAPCLNV4yOZaFGUSFzmDVGudizjMQJUi1qFhTApxBy0YFIwXFY8rXeVKaJ4k78l2Pa_LD4RGABgOFryEJEo1E9ywEaZlBVGOQa1ihyTvfiIJnnDe6J78kRvMdEjCfuDCca5sHnLS2UD60NGFhBIRtnnwUWc16RfyUsYYWWPsnfPs4_Mf5xPZWy-XI7LdNqvyM9mFu_Zm2Xzx6HsAWamhcQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+guidance+and+integrated+navigation+with+reinforcement+meta-learning&rft.jtitle=Acta+astronautica&rft.au=Gaudet%2C+Brian&rft.au=Linares%2C+Richard&rft.au=Furfaro%2C+Roberto&rft.date=2020-04-01&rft.issn=0094-5765&rft.volume=169&rft.spage=180&rft.epage=190&rft_id=info:doi/10.1016%2Fj.actaastro.2020.01.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actaastro_2020_01_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon