Adaptive guidance and integrated navigation with reinforcement meta-learning
This paper proposes a novel adaptive guidance system developed using reinforcement meta-learning with a recurrent policy and value function approximator. The use of recurrent network layers allows the deployed policy to adapt in real time to environmental forces acting on the agent. We compare the p...
Saved in:
| Published in: | Acta astronautica Vol. 169; pp. 180 - 190 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elmsford
Elsevier Ltd
01.04.2020
Elsevier BV |
| Subjects: | |
| ISSN: | 0094-5765, 1879-2030 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes a novel adaptive guidance system developed using reinforcement meta-learning with a recurrent policy and value function approximator. The use of recurrent network layers allows the deployed policy to adapt in real time to environmental forces acting on the agent. We compare the performance of the DR/DV guidance law, an RL agent with a non-recurrent policy, and an RL agent with a recurrent policy in four challenging environments with unknown but highly variable dynamics. These tasks include a safe Mars landing with random engine failure and a landing on an asteroid with unknown environmental dynamics. We also demonstrate the ability of a RL meta-learning optimized policy to implement a guidance law using observations consisting of only Doppler radar altimeter readings in a Mars landing environment, and LIDAR altimeter readings in an asteroid landing environment thus integrating guidance and navigation.
•Adaptive guidance using meta-reinforcement learning.•Learns to handle engine failures, variations in mass and environmental forces.•Approach learns closed-loop controller. |
|---|---|
| AbstractList | This paper proposes a novel adaptive guidance system developed using reinforcement meta-learning with a recurrent policy and value function approximator. The use of recurrent network layers allows the deployed policy to adapt in real time to environmental forces acting on the agent. We compare the performance of the DR/DV guidance law, an RL agent with a non-recurrent policy, and an RL agent with a recurrent policy in four challenging environments with unknown but highly variable dynamics. These tasks include a safe Mars landing with random engine failure and a landing on an asteroid with unknown environmental dynamics. We also demonstrate the ability of a RL meta-learning optimized policy to implement a guidance law using observations consisting of only Doppler radar altimeter readings in a Mars landing environment, and LIDAR altimeter readings in an asteroid landing environment thus integrating guidance and navigation. This paper proposes a novel adaptive guidance system developed using reinforcement meta-learning with a recurrent policy and value function approximator. The use of recurrent network layers allows the deployed policy to adapt in real time to environmental forces acting on the agent. We compare the performance of the DR/DV guidance law, an RL agent with a non-recurrent policy, and an RL agent with a recurrent policy in four challenging environments with unknown but highly variable dynamics. These tasks include a safe Mars landing with random engine failure and a landing on an asteroid with unknown environmental dynamics. We also demonstrate the ability of a RL meta-learning optimized policy to implement a guidance law using observations consisting of only Doppler radar altimeter readings in a Mars landing environment, and LIDAR altimeter readings in an asteroid landing environment thus integrating guidance and navigation. •Adaptive guidance using meta-reinforcement learning.•Learns to handle engine failures, variations in mass and environmental forces.•Approach learns closed-loop controller. |
| Author | Linares, Richard Furfaro, Roberto Gaudet, Brian |
| Author_xml | – sequence: 1 givenname: Brian orcidid: 0000-0002-0597-538X surname: Gaudet fullname: Gaudet, Brian email: briangaudet@mac.com organization: Department of Systems and Industrial Engineering, University of Arizona, 1127 E. James E. Roger Way, Tucson, AZ, 85721, USA – sequence: 2 givenname: Richard surname: Linares fullname: Linares, Richard email: linaresr@mit.edu organization: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA – sequence: 3 givenname: Roberto orcidid: 0000-0001-6076-8992 surname: Furfaro fullname: Furfaro, Roberto email: robertof@email.arizona.edu organization: Department of Systems and Industrial Engineering, University of Arizona, 1127 E. James E. Roger Way, Tucson, AZ, 85721, USA |
| BookMark | eNqNkL1OwzAURi1UJNrCMxCJOeHaSRx7YKgq_qRKLDBbjn0THLVOcdwi3p6UIgYWmO5yznelMyMT33sk5JJCRoHy6y7TJmo9xNBnDBhkQDOA6oRMqahkyiCHCZkCyCItK16ekdkwdDASTMgpWS2s3ka3x6TdOau9wUR7mzgfsQ06ok283rtWR9f75N3F1ySg800fDG7Qx2SDUadr1ME7356T00avB7z4vnPycnf7vHxIV0_3j8vFKjV5kcfUCMbKwkophJU15qzmlSmstVwyKI1GySxILjkUvKorU1eibgRrbMO1tCLP5-TquLsN_dsOh6i6fhf8-FKxIqfABBflSFVHyoR-GAI2ahvcRocPRUEd0qlO_aRTh3QKqBrDjObNL9O4-JUgBu3W__AXRx_HCHuHQQ3G4djWuoAmKtu7Pzc-Aeiok3Q |
| CitedBy_id | crossref_primary_10_1002_acs_3921 crossref_primary_10_1016_j_ast_2023_108666 crossref_primary_10_1016_j_engappai_2025_110948 crossref_primary_10_2514_1_G008921 crossref_primary_10_1016_j_actaastro_2021_05_014 crossref_primary_10_1016_j_paerosci_2021_100696 crossref_primary_10_3390_aerospace9100569 crossref_primary_10_1016_j_actaastro_2021_05_018 crossref_primary_10_1016_j_actaastro_2022_05_057 crossref_primary_10_3390_math13060987 crossref_primary_10_1016_j_neucom_2024_127377 crossref_primary_10_1016_j_ast_2022_108053 crossref_primary_10_1134_S0010952524600768 crossref_primary_10_1016_j_ast_2024_109700 crossref_primary_10_1155_2022_2935929 crossref_primary_10_3390_aerospace10020133 crossref_primary_10_34133_space_0297 crossref_primary_10_1016_j_asr_2022_08_002 crossref_primary_10_3390_drones6100270 crossref_primary_10_1177_09544100221138911 crossref_primary_10_1007_s40295_021_00288_7 crossref_primary_10_1016_j_actaastro_2022_03_005 crossref_primary_10_1109_ACCESS_2020_3017480 crossref_primary_10_1007_s13235_024_00576_5 crossref_primary_10_3389_frspt_2023_1263489 crossref_primary_10_1016_j_asr_2023_03_014 crossref_primary_10_1017_aer_2023_4 crossref_primary_10_2514_1_A36100 crossref_primary_10_1007_s42401_022_00152_y crossref_primary_10_3390_aerospace12090837 crossref_primary_10_1016_j_arcontrol_2022_07_004 crossref_primary_10_1016_j_ast_2023_108604 crossref_primary_10_1016_j_actaastro_2024_10_065 crossref_primary_10_1016_j_ast_2022_107677 crossref_primary_10_3390_math11194211 crossref_primary_10_1109_ACCESS_2021_3076530 crossref_primary_10_2514_1_G005794 crossref_primary_10_1016_j_engappai_2025_110523 crossref_primary_10_1109_TCSI_2022_3163463 crossref_primary_10_1177_01423312211052742 crossref_primary_10_1134_S0010952521060113 crossref_primary_10_23919_JSEE_2024_000111 crossref_primary_10_23919_JSEE_2022_000113 crossref_primary_10_1016_j_cja_2023_05_028 crossref_primary_10_1007_s12217_025_10169_5 crossref_primary_10_1002_msd2_70039 crossref_primary_10_1134_S0010952525601100 crossref_primary_10_1016_j_actaastro_2023_01_017 crossref_primary_10_2514_1_G006656 crossref_primary_10_1038_s41598_024_81377_z crossref_primary_10_1061__ASCE_AS_1943_5525_0001381 crossref_primary_10_1016_j_asoc_2020_107047 |
| Cites_doi | 10.2514/1.G003341 10.1016/j.asr.2018.09.016 10.2514/1.G000921 |
| ContentType | Journal Article |
| Copyright | 2020 IAA Copyright Elsevier BV Apr 2020 |
| Copyright_xml | – notice: 2020 IAA – notice: Copyright Elsevier BV Apr 2020 |
| DBID | AAYXX CITATION 7TB 7TG 8FD FR3 H8D KL. L7M |
| DOI | 10.1016/j.actaastro.2020.01.007 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database Engineering Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2030 |
| EndPage | 190 |
| ExternalDocumentID | 10_1016_j_actaastro_2020_01_007 S0094576520300072 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELOY BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H VH1 VOH WUQ ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 7TG 8FD AGCQF FR3 H8D KL. L7M |
| ID | FETCH-LOGICAL-c343t-c82254d9988d9be32b67c4ddd69205cae92d096960467b7cb78bf82fdf6a9d833 |
| ISICitedReferencesCount | 70 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522098200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-5765 |
| IngestDate | Wed Aug 13 10:36:10 EDT 2025 Sat Nov 29 07:24:43 EST 2025 Tue Nov 18 21:51:21 EST 2025 Fri Feb 23 02:48:08 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Guidance Reinforcement learning Landing guidance Meta learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c343t-c82254d9988d9be32b67c4ddd69205cae92d096960467b7cb78bf82fdf6a9d833 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6076-8992 0000-0002-0597-538X |
| PQID | 2431028685 |
| PQPubID | 2045287 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2431028685 crossref_primary_10_1016_j_actaastro_2020_01_007 crossref_citationtrail_10_1016_j_actaastro_2020_01_007 elsevier_sciencedirect_doi_10_1016_j_actaastro_2020_01_007 |
| PublicationCentury | 2000 |
| PublicationDate | April 2020 2020-04-00 20200401 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Elmsford |
| PublicationPlace_xml | – name: Elmsford |
| PublicationTitle | Acta astronautica |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Ng (bib17) 2003 Huang, Li, Sun (bib3) 2019; 63 Peng, Andrychowicz, Zaremba, Abbeel (bib6) 2017 Mishra, Rohaninejad, Chen, Abbeel (bib11) 2018 Udrea, Patel, Anderson (bib18) 2012; 143 Frans, Ho, Chen, Abbeel, Schulman (bib12) 2017 Prabhakar, Painter, Prazenica, Balas (bib2) 2018; 41 Chung, Gulcehre, Cho, Bengio (bib16) 2015 Yu, Tan, Liu, Turk (bib5) 2017 Wang, Kurth-Nelson, Tirumala, Soyer, Leibo, Munos, Blundell, Kumaran, Botvinick (bib13) 2016 Gaudet, Furfaro (bib20) 2014 Guang, Heming, Liang (bib1) 2018 Gaudet, Furfaro (bib19) 2014 Schulman, Wolski, Dhariwal, Radford, Klimov (bib15) 2017 Han, Biggs, Cui (bib4) 2015; 38 D'Souza (bib8) 1997 Rajeswaran, Ghotra, Ravindran, Levine (bib14) 2016 Finn, Abbeel, Levine (bib10) 2017 Gaudet, Linares, Furfaro (bib9) 2018 Battin (bib7) 1999 Gaudet (10.1016/j.actaastro.2020.01.007_bib9) 2018 Prabhakar (10.1016/j.actaastro.2020.01.007_bib2) 2018; 41 Mishra (10.1016/j.actaastro.2020.01.007_bib11) 2018 Battin (10.1016/j.actaastro.2020.01.007_bib7) 1999 Frans (10.1016/j.actaastro.2020.01.007_bib12) 2017 D'Souza (10.1016/j.actaastro.2020.01.007_bib8) 1997 Rajeswaran (10.1016/j.actaastro.2020.01.007_bib14) 2016 Han (10.1016/j.actaastro.2020.01.007_bib4) 2015; 38 Chung (10.1016/j.actaastro.2020.01.007_bib16) 2015 Schulman (10.1016/j.actaastro.2020.01.007_bib15) 2017 Udrea (10.1016/j.actaastro.2020.01.007_bib18) 2012; 143 Finn (10.1016/j.actaastro.2020.01.007_bib10) 2017 Huang (10.1016/j.actaastro.2020.01.007_bib3) 2019; 63 Ng (10.1016/j.actaastro.2020.01.007_bib17) 2003 Yu (10.1016/j.actaastro.2020.01.007_bib5) 2017 Gaudet (10.1016/j.actaastro.2020.01.007_bib20) 2014 Guang (10.1016/j.actaastro.2020.01.007_bib1) 2018 Gaudet (10.1016/j.actaastro.2020.01.007_bib19) 2014 Wang (10.1016/j.actaastro.2020.01.007_bib13) 2016 Peng (10.1016/j.actaastro.2020.01.007_bib6) 2017 |
| References_xml | – year: 2016 ident: bib13 article-title: Learning to Reinforcement Learn – year: 2017 ident: bib10 article-title: Model-agnostic Meta-Learning for Fast Adaptation of Deep Networks – start-page: 1 year: 2018 end-page: 11 ident: bib1 article-title: Attitude dynamics of spacecraft with time-varying inertia during on-orbit refueling publication-title: J. Guid. Control Dyn. – year: 2016 ident: bib14 article-title: Epopt: Learning Robust Neural Network Policies Using Model Ensembles – year: 2017 ident: bib5 article-title: Preparing for the Unknown: Learning a Universal Policy with Online System Identification – volume: 38 start-page: 2033 year: 2015 end-page: 2042 ident: bib4 article-title: Adaptive fault-tolerant control of spacecraft attitude dynamics with actuator failures publication-title: J. Guid. Control Dyn. – year: 2014 ident: bib20 article-title: Real-time state estimation for asteroid close-proximity operations via lidar altimetry and a particle filter publication-title: 2013 AAS/AIAA Astrodynamics Specialist Conference, Astrodynamics 2013 – year: 2018 ident: bib11 article-title: A Simple Neural Attentive Meta-Learner – year: 2017 ident: bib12 article-title: Meta Learning Shared Hierarchies – year: 2003 ident: bib17 article-title: Shaping and Policy Search in Reinforcement Learning – year: 2017 ident: bib15 article-title: Proximal Policy Optimization Algorithms – start-page: 2067 year: 2015 end-page: 2075 ident: bib16 article-title: Gated feedback recurrent neural networks publication-title: International Conference on Machine Learning – start-page: 3709 year: 1997 ident: bib8 article-title: An Optimal Guidance Law for Planetary Landing publication-title: Guidance, Navigation, and Control Conference – year: 2018 ident: bib9 article-title: Deep Reinforcement Learning for Six Degree-Of-Freedom Planetary Powered Descent and Landing – volume: 143 year: 2012 ident: bib18 article-title: Sensitivity analysis of the touchdown footprint at (101955) 1999 RQ36 publication-title: Proceedings of the 22nd AAS/AIAA Spaceflight Mechanics Conference – volume: 41 start-page: 1976 year: 2018 end-page: 1989 ident: bib2 article-title: Trajectory-driven adaptive control of autonomous unmanned aerial vehicles with disturbance accommodation publication-title: J. Guid. Control Dyn. – year: 1999 ident: bib7 article-title: An Introduction to the Mathematics and Methods of Astrodynamics – volume: 63 start-page: 557 year: 2019 end-page: 571 ident: bib3 article-title: Mars entry fault-tolerant control via neural network and structure adaptive model inversion publication-title: Adv. Space Res. – year: 2017 ident: bib6 article-title: Sim-to-real Transfer of Robotic Control with Dynamics Randomization – year: 2014 ident: bib19 article-title: A navigation scheme for pinpoint mars landing using radar altimetry, a digital terrain model, and a particle filter publication-title: 2013 AAS/AIAA Astrodynamics Specialist Conference, Astrodynamics 2013 – year: 2018 ident: 10.1016/j.actaastro.2020.01.007_bib11 – year: 2017 ident: 10.1016/j.actaastro.2020.01.007_bib15 – year: 2017 ident: 10.1016/j.actaastro.2020.01.007_bib6 – year: 2014 ident: 10.1016/j.actaastro.2020.01.007_bib20 article-title: Real-time state estimation for asteroid close-proximity operations via lidar altimetry and a particle filter – volume: 41 start-page: 1976 issue: 9 year: 2018 ident: 10.1016/j.actaastro.2020.01.007_bib2 article-title: Trajectory-driven adaptive control of autonomous unmanned aerial vehicles with disturbance accommodation publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G003341 – year: 2014 ident: 10.1016/j.actaastro.2020.01.007_bib19 article-title: A navigation scheme for pinpoint mars landing using radar altimetry, a digital terrain model, and a particle filter – year: 1999 ident: 10.1016/j.actaastro.2020.01.007_bib7 – year: 2016 ident: 10.1016/j.actaastro.2020.01.007_bib14 – volume: 63 start-page: 557 issue: 1 year: 2019 ident: 10.1016/j.actaastro.2020.01.007_bib3 article-title: Mars entry fault-tolerant control via neural network and structure adaptive model inversion publication-title: Adv. Space Res. doi: 10.1016/j.asr.2018.09.016 – volume: 38 start-page: 2033 issue: 10 year: 2015 ident: 10.1016/j.actaastro.2020.01.007_bib4 article-title: Adaptive fault-tolerant control of spacecraft attitude dynamics with actuator failures publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G000921 – year: 2017 ident: 10.1016/j.actaastro.2020.01.007_bib12 – year: 2016 ident: 10.1016/j.actaastro.2020.01.007_bib13 – year: 2018 ident: 10.1016/j.actaastro.2020.01.007_bib9 – year: 2017 ident: 10.1016/j.actaastro.2020.01.007_bib10 – start-page: 2067 year: 2015 ident: 10.1016/j.actaastro.2020.01.007_bib16 article-title: Gated feedback recurrent neural networks – start-page: 1 year: 2018 ident: 10.1016/j.actaastro.2020.01.007_bib1 article-title: Attitude dynamics of spacecraft with time-varying inertia during on-orbit refueling publication-title: J. Guid. Control Dyn. – volume: 143 year: 2012 ident: 10.1016/j.actaastro.2020.01.007_bib18 article-title: Sensitivity analysis of the touchdown footprint at (101955) 1999 RQ36 – start-page: 3709 year: 1997 ident: 10.1016/j.actaastro.2020.01.007_bib8 article-title: An Optimal Guidance Law for Planetary Landing – year: 2017 ident: 10.1016/j.actaastro.2020.01.007_bib5 – year: 2003 ident: 10.1016/j.actaastro.2020.01.007_bib17 |
| SSID | ssj0007289 |
| Score | 2.540819 |
| Snippet | This paper proposes a novel adaptive guidance system developed using reinforcement meta-learning with a recurrent policy and value function approximator. The... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 180 |
| SubjectTerms | Adaptive systems Asteroids Doppler radar Engine failure Guidance Guidance (motion) Landing guidance Learning Lidar Mars Mars environment Mars landing Meta learning Navigation Radio altimeters Reinforcement learning |
| Title | Adaptive guidance and integrated navigation with reinforcement meta-learning |
| URI | https://dx.doi.org/10.1016/j.actaastro.2020.01.007 https://www.proquest.com/docview/2431028685 |
| Volume | 169 |
| WOSCitedRecordID | wos000522098200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-2030 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007289 issn: 0094-5765 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZglwMcEE-xsKAcEJfKKHUetrkV1BWgqnDoot4sv7LaFUpLmq725zN-JE15LRy4RFUqp6nn83hmPDMfQi-1KYilqsSEVAbnPJeYSaqwMnqc6jSnMjWebILO52y55J9jKHvj6QRoXbOrK77-r6KGeyBsVzr7D-LuHwo34DMIHa4gdrj-leAnRq59PtDZ9tz0BQF9WwgzquWl76uxChXco8b67qnaBwodpbTEkUvibGi6TnQrR3LjQufSR8D71B25NeFI420zANvMVfoGJTSo3vdY2TaVDPU1IbF7NYw9kHSQsuIDYn1RzJehjuU5Bi8mnFXboFYZ5SCkeALT6d3A0RI15zgQOv2k0UNw4QLQ1Ur_H1-7F_GtVgNd7n4P7fkncXI6m4nFdLl4tf6GHb2YO4aPXCs30SGhBQf1dzj5MF1-7DdtSljwlOLL76UC_vK3f2fI_LCleztlcQ_djQ5GMgnAuI9u2PoBujNoO_kQzTqIJB1EEoBIsoNIsoNI4iCS7EEk2YPII3R6Ml28e48jqwbWWZ61WINJWOQG3GxmuLIZUSXVuTGm5CQttLScmNT1TEphD1VUK8pUxWAlV6XkhmXZY3RQr2r7BCWqtLTKrGJVAVYiPFFJpYkGH9mACij0ESq7KRI6tpx3zCdfRZdbeCH6uRVubkU6FjC3RyjtB65D15Xrh7zpZCCi8RiMQgFIun7wcSc1EZfyRhCwrcH6Llnx9M9fP0O3d4vjGB20zdY-R7f0ZXu-aV5EpH0HdtieGA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+guidance+and+integrated+navigation+with+reinforcement+meta-learning&rft.jtitle=Acta+astronautica&rft.au=Gaudet%2C+Brian&rft.au=Linares%2C+Richard&rft.au=Furfaro%2C+Roberto&rft.date=2020-04-01&rft.pub=Elsevier+BV&rft.issn=0094-5765&rft.eissn=1879-2030&rft.volume=169&rft.spage=180&rft_id=info:doi/10.1016%2Fj.actaastro.2020.01.007&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon |