Selected fundamentals of catalysis and electrocatalysis in energy conversion reactions—A tutorial

•Upscaling power density requires downscaling transport distances to minimize loss.•Energy intensive reactions are driven by electricity instead of heat.•Anode-cathode separation may prevent the back-reaction of high energy products.•Electrode surfaces are akin to surfaces of conventional heterogene...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Catalysis today Ročník 309; s. 263 - 268
Hlavný autor: Roduner, Emil
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.07.2018
Predmet:
ISSN:0920-5861, 1873-4308
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Upscaling power density requires downscaling transport distances to minimize loss.•Energy intensive reactions are driven by electricity instead of heat.•Anode-cathode separation may prevent the back-reaction of high energy products.•Electrode surfaces are akin to surfaces of conventional heterogeneous catalysts.•Catalysis/electrocatalysis research is empirical, based on experience and intuition. [Display omitted] Electrochemical devices for energy conversion and storage applications have little in common with conventional electrochemistry. A significant advantage is the conversion of chemical into electrical energy and vice-versa, minimizing the amount of waste heat. Upscaling power density to values reaching up to 1Wcm−2 at current densities exceeding 1Acm−2 goes along with downscaling transport distances of reaction partners inside and between electrodes. Substrates undergo structure- and element-specific interactions with electrode surfaces which are therefore not only interfaces for the exchange of electrons, rather they should be regarded as specific catalytic surfaces which together with the applied electrical bias potential determine the spectrum of available products. An understanding of these interactions is still in its infancy for many of the relevant systems, and therefore the developments are largely empirical and driven by intuition, supported by quantum-chemical calculations and spectroscopic methods. The manuscript is of tutorial nature and addresses the differences between electrocatalysis in energy conversion reactions and conventional electrochemistry, and it reveals what catalytic transformations at electrode surfaces have in common with traditional heterogeneous catalysis.
AbstractList •Upscaling power density requires downscaling transport distances to minimize loss.•Energy intensive reactions are driven by electricity instead of heat.•Anode-cathode separation may prevent the back-reaction of high energy products.•Electrode surfaces are akin to surfaces of conventional heterogeneous catalysts.•Catalysis/electrocatalysis research is empirical, based on experience and intuition. [Display omitted] Electrochemical devices for energy conversion and storage applications have little in common with conventional electrochemistry. A significant advantage is the conversion of chemical into electrical energy and vice-versa, minimizing the amount of waste heat. Upscaling power density to values reaching up to 1Wcm−2 at current densities exceeding 1Acm−2 goes along with downscaling transport distances of reaction partners inside and between electrodes. Substrates undergo structure- and element-specific interactions with electrode surfaces which are therefore not only interfaces for the exchange of electrons, rather they should be regarded as specific catalytic surfaces which together with the applied electrical bias potential determine the spectrum of available products. An understanding of these interactions is still in its infancy for many of the relevant systems, and therefore the developments are largely empirical and driven by intuition, supported by quantum-chemical calculations and spectroscopic methods. The manuscript is of tutorial nature and addresses the differences between electrocatalysis in energy conversion reactions and conventional electrochemistry, and it reveals what catalytic transformations at electrode surfaces have in common with traditional heterogeneous catalysis.
Author Roduner, Emil
Author_xml – sequence: 1
  givenname: Emil
  surname: Roduner
  fullname: Roduner, Emil
  email: emil.roduner@up.ac.za, e.roduner@ipc.uni-stuttgart.de
  organization: Department of Chemistry, University of Pretoria, Pretoria 0002, South Africa
BookMark eNqFkM9KAzEQh4MoWKtv4CEvsOsk291NPQil-A8ED-o5TJNZSdkmksRCbz6ET-iTuLWC4EFPM0zy_Zj5jti-D54YOxVQChDN2bI0mHOwpQTRllCXMBV7bCRUWxWTCtQ-G8FUQlGrRhyyo5SWAKDURI6YeaCeTCbLu1dvcUU-Y5946PgQif0mucTRW_71K4afofOcPMXnDTfBrykmFzyPhCYPTfp4e5_x_JpDdNgfs4NuCKWT7zpmT1eXj_Ob4u7--nY-uytMNalyYepOKmksgLTCQkvYNHJhVDVFbEA27aKrVWuwXlR2oYZ3AUioamWUxHZqqjE73-WaGFKK1GnjMm73yRFdrwXorS691DtdeqtLQ60HXQM8-QW_RLfCuPkPu9hhNBy2dhR1Mo68IeviYEzb4P4O-ARHZY0F
CitedBy_id crossref_primary_10_1007_s41742_024_00597_3
crossref_primary_10_1016_j_ijhydene_2022_03_277
crossref_primary_10_1002_nadc_20254148993
crossref_primary_10_1007_s40820_021_00681_9
crossref_primary_10_1016_j_rser_2025_116001
crossref_primary_10_1080_03067319_2019_1643462
crossref_primary_10_1002_adfm_202108843
crossref_primary_10_1002_EXP_20240010
crossref_primary_10_1007_s11244_023_01799_3
crossref_primary_10_1016_j_synthmet_2020_116566
crossref_primary_10_1016_j_cis_2025_103429
crossref_primary_10_1039_D3SC06784J
crossref_primary_10_1016_j_jcou_2024_102887
crossref_primary_10_1016_j_ijhydene_2024_04_150
crossref_primary_10_1021_acs_chemmater_5c00455
crossref_primary_10_1002_celc_201801225
crossref_primary_10_1038_s41578_020_00241_4
crossref_primary_10_1002_adma_202211054
crossref_primary_10_1002_tcr_202500014
crossref_primary_10_1016_S1872_2067_24_60156_7
Cites_doi 10.1039/c2ee21234j
10.1038/ncomms13869
10.1021/jp064467t
10.1039/C3CS60323G
10.1039/f19898502309
10.1039/C6CS00115G
10.1021/jp9533178
10.1038/nchem.1595
10.1021/acs.jpclett.6b00382
10.1039/c0ee00071j
10.1021/acs.jpclett.5b01043
10.1039/C6CY00720A
10.1038/ncomms4783
10.1039/c3ee41272e
10.1039/C4CS00210E
10.1002/fuce.201300206
10.1149/1.1856988
10.1038/nature11891
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cattod.2017.05.091
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-4308
EndPage 268
ExternalDocumentID 10_1016_j_cattod_2017_05_091
S0920586117304236
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSZ
T5K
ZMT
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
VH1
WUQ
XPP
~HD
ID FETCH-LOGICAL-c343t-c5f282cd002d1d07ea662bc839aa60267bf587ca5b3db807e10aea858c82a79c3
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430237200033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5861
IngestDate Sat Nov 29 04:11:29 EST 2025
Tue Nov 18 21:38:55 EST 2025
Fri Feb 23 02:35:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nanostructurization
Electrocatalysis vs. thermal catalysis
Electrical activation
Energy efficiency
Electro-reforming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-c5f282cd002d1d07ea662bc839aa60267bf587ca5b3db807e10aea858c82a79c3
PageCount 6
ParticipantIDs crossref_citationtrail_10_1016_j_cattod_2017_05_091
crossref_primary_10_1016_j_cattod_2017_05_091
elsevier_sciencedirect_doi_10_1016_j_cattod_2017_05_091
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Catalysis today
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chan, Nørskov (bib0030) 2015; 6
Wu, Ma, Sun, Gold, Tiwary, Kim, Zhu, Chopra, Odeh, Vajtai, Yu, Luo, Lou, Ding, Kenis, Ajayan (bib0055) 2016; 7
Rodrıíguez-Lugo, Trincado, Vogt, Tewes, Santiso-Quinones, Grützmacher (bib0080) 2013; 5
Roduner, Radhakrishnan (bib0005) 2016; 45
Poetzsch, Bach, Zerpa Unda, Roduner (bib0085) 2014; 14
Roduner (bib0060) 2014; 43
Zhen, Jiao, Zhu, Li, Han, Chen, Du, Jaroniec, Qiao (bib0070) 2014; 5
Qiao, Liu, Hong, Zhang (bib0050) 2014; 43
Chan, Nørskov (bib0025) 2016; 7
Hori, Murata, Takahashi (bib0035) 1989; 1
Peterson, Abild-Pedersen, Studt, Rossmeisl, Nørskov (bib0020) 2010; 3
Kondratenko, Mul, Baltrusaitis, Larrazábal, Pérez-Ramírez (bib0045) 2013; 6
Kuhl, Cave, Abramc, Jaramillo (bib0040) 2012; 5
Miller, Bellini, Hasenöhrl, Tilley (bib0090) 2016; 6
Zhou, Weaver (bib0010) 1996; 100
Schultz, Gherman, Cramer, Truhlar (bib0015) 2006; 110
Nielsen, Alberico, Baumann, Drexler, Junge, Gladiali, Beller (bib0075) 2013; 495
Nørskov, Bligaard, Logadottir, Kitchin, Chen, Pendelov, Stimming (bib0065) 2005; 152
Zhou (10.1016/j.cattod.2017.05.091_bib0010) 1996; 100
Schultz (10.1016/j.cattod.2017.05.091_bib0015) 2006; 110
Zhen (10.1016/j.cattod.2017.05.091_bib0070) 2014; 5
Poetzsch (10.1016/j.cattod.2017.05.091_bib0085) 2014; 14
Wu (10.1016/j.cattod.2017.05.091_bib0055) 2016; 7
Rodrıíguez-Lugo (10.1016/j.cattod.2017.05.091_bib0080) 2013; 5
Chan (10.1016/j.cattod.2017.05.091_bib0030) 2015; 6
Roduner (10.1016/j.cattod.2017.05.091_bib0005) 2016; 45
Qiao (10.1016/j.cattod.2017.05.091_bib0050) 2014; 43
Hori (10.1016/j.cattod.2017.05.091_bib0035) 1989; 1
Kondratenko (10.1016/j.cattod.2017.05.091_bib0045) 2013; 6
Peterson (10.1016/j.cattod.2017.05.091_bib0020) 2010; 3
Roduner (10.1016/j.cattod.2017.05.091_bib0060) 2014; 43
Nielsen (10.1016/j.cattod.2017.05.091_bib0075) 2013; 495
Kuhl (10.1016/j.cattod.2017.05.091_bib0040) 2012; 5
Chan (10.1016/j.cattod.2017.05.091_bib0025) 2016; 7
Nørskov (10.1016/j.cattod.2017.05.091_bib0065) 2005; 152
Miller (10.1016/j.cattod.2017.05.091_bib0090) 2016; 6
References_xml – volume: 110
  start-page: 24030
  year: 2006
  end-page: 24046
  ident: bib0015
  article-title: Pd
  publication-title: J. Phys. Chem. B
– volume: 7
  start-page: 13869
  year: 2016
  ident: bib0055
  article-title: A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates
  publication-title: Nature Commun.
– volume: 6
  start-page: 3112
  year: 2013
  end-page: 3135
  ident: bib0045
  article-title: Status and perspectives of CO
  publication-title: Energy Environ. Sci
– volume: 43
  start-page: 631
  year: 2014
  end-page: 675
  ident: bib0050
  article-title: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels
  publication-title: Chem. Soc. Rev.
– volume: 45
  start-page: 2768
  year: 2016
  end-page: 2784
  ident: bib0005
  article-title: In command of non-equilibrium
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 1686
  year: 2016
  end-page: 1690
  ident: bib0025
  article-title: Potential dependence of electrochemical barriers from ab initio calculations
  publication-title: J. Phys. Chem. Lett.
– volume: 495
  start-page: 85
  year: 2013
  end-page: 89
  ident: bib0075
  article-title: Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide
  publication-title: Nature
– volume: 1
  start-page: 2309
  year: 1989
  end-page: 2326
  ident: bib0035
  article-title: Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 6
  start-page: 6870
  year: 2016
  end-page: 6878
  ident: bib0090
  article-title: Carbon supported Au–Pd core–shell nanoparticles for hydrogen production by alcohol electroreforming
  publication-title: Catal. Sci. Technol.
– volume: 14
  start-page: 508
  year: 2014
  end-page: 516
  ident: bib0085
  article-title: Novel options limitations of methanol-based production and storage for mobile applications
  publication-title: Fuel Cells
– volume: 3
  start-page: 1311
  year: 2010
  end-page: 1315
  ident: bib0020
  article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
  publication-title: Energ. Environ. Sci.
– volume: 5
  start-page: 342
  year: 2013
  end-page: 347
  ident: bib0080
  article-title: A homogeneous transition metal complex for clean hydrogen production from methanol–water mixtures
  publication-title: Nature Chem
– volume: 43
  start-page: 8226
  year: 2014
  end-page: 8239
  ident: bib0060
  article-title: Understanding catalysis
  publication-title: Chem. Soc. Rev
– volume: 100
  start-page: 4237
  year: 1996
  end-page: 4242
  ident: bib0010
  article-title: Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes: chemical bonding versus electrostatic field effects
  publication-title: J. Phys. Chem.
– volume: 5
  start-page: 7050
  year: 2012
  end-page: 7059
  ident: bib0040
  article-title: New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 3783
  year: 2014
  ident: bib0070
  article-title: Hydrogen evolution by a metal-free electrocatalyst
  publication-title: Nature Commun.
– volume: 6
  start-page: 2663
  year: 2015
  end-page: 2668
  ident: bib0030
  article-title: Electrochemical barriers made simple
  publication-title: J. Phys. Chem. Lett.
– volume: 152
  start-page: J23
  year: 2005
  end-page: J26
  ident: bib0065
  article-title: Trends in the exchange current for hydrogen evolution
  publication-title: J. Elchem. Soc.
– volume: 5
  start-page: 7050
  year: 2012
  ident: 10.1016/j.cattod.2017.05.091_bib0040
  article-title: New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21234j
– volume: 7
  start-page: 13869
  year: 2016
  ident: 10.1016/j.cattod.2017.05.091_bib0055
  article-title: A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates
  publication-title: Nature Commun.
  doi: 10.1038/ncomms13869
– volume: 110
  start-page: 24030
  year: 2006
  ident: 10.1016/j.cattod.2017.05.091_bib0015
  article-title: PdnCO (n=1,2): accurate ab-initio bond energies geometries, and dipole moments and the applicability of density functional theory for fuel cell modeling
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp064467t
– volume: 43
  start-page: 631
  year: 2014
  ident: 10.1016/j.cattod.2017.05.091_bib0050
  article-title: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60323G
– volume: 1
  start-page: 2309
  issue: 85
  year: 1989
  ident: 10.1016/j.cattod.2017.05.091_bib0035
  article-title: Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution
  publication-title: J. Chem. Soc. Faraday Trans.
  doi: 10.1039/f19898502309
– volume: 45
  start-page: 2768
  year: 2016
  ident: 10.1016/j.cattod.2017.05.091_bib0005
  article-title: In command of non-equilibrium
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00115G
– volume: 100
  start-page: 4237
  year: 1996
  ident: 10.1016/j.cattod.2017.05.091_bib0010
  article-title: Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes: chemical bonding versus electrostatic field effects
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp9533178
– volume: 5
  start-page: 342
  year: 2013
  ident: 10.1016/j.cattod.2017.05.091_bib0080
  article-title: A homogeneous transition metal complex for clean hydrogen production from methanol–water mixtures
  publication-title: Nature Chem
  doi: 10.1038/nchem.1595
– volume: 7
  start-page: 1686
  year: 2016
  ident: 10.1016/j.cattod.2017.05.091_bib0025
  article-title: Potential dependence of electrochemical barriers from ab initio calculations
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00382
– volume: 3
  start-page: 1311
  year: 2010
  ident: 10.1016/j.cattod.2017.05.091_bib0020
  article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/c0ee00071j
– volume: 6
  start-page: 2663
  year: 2015
  ident: 10.1016/j.cattod.2017.05.091_bib0030
  article-title: Electrochemical barriers made simple
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01043
– volume: 6
  start-page: 6870
  year: 2016
  ident: 10.1016/j.cattod.2017.05.091_bib0090
  article-title: Carbon supported Au–Pd core–shell nanoparticles for hydrogen production by alcohol electroreforming
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY00720A
– volume: 5
  start-page: 3783
  year: 2014
  ident: 10.1016/j.cattod.2017.05.091_bib0070
  article-title: Hydrogen evolution by a metal-free electrocatalyst
  publication-title: Nature Commun.
  doi: 10.1038/ncomms4783
– volume: 6
  start-page: 3112
  year: 2013
  ident: 10.1016/j.cattod.2017.05.091_bib0045
  article-title: Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes
  publication-title: Energy Environ. Sci
  doi: 10.1039/c3ee41272e
– volume: 43
  start-page: 8226
  year: 2014
  ident: 10.1016/j.cattod.2017.05.091_bib0060
  article-title: Understanding catalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00210E
– volume: 14
  start-page: 508
  year: 2014
  ident: 10.1016/j.cattod.2017.05.091_bib0085
  article-title: Novel options limitations of methanol-based production and storage for mobile applications
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201300206
– volume: 152
  start-page: J23
  year: 2005
  ident: 10.1016/j.cattod.2017.05.091_bib0065
  article-title: Trends in the exchange current for hydrogen evolution
  publication-title: J. Elchem. Soc.
  doi: 10.1149/1.1856988
– volume: 495
  start-page: 85
  year: 2013
  ident: 10.1016/j.cattod.2017.05.091_bib0075
  article-title: Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide
  publication-title: Nature
  doi: 10.1038/nature11891
SSID ssj0008842
Score 2.4148135
Snippet •Upscaling power density requires downscaling transport distances to minimize loss.•Energy intensive reactions are driven by electricity instead of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 263
SubjectTerms Electrical activation
Electro-reforming
Electrocatalysis vs. thermal catalysis
Energy efficiency
Nanostructurization
Title Selected fundamentals of catalysis and electrocatalysis in energy conversion reactions—A tutorial
URI https://dx.doi.org/10.1016/j.cattod.2017.05.091
Volume 309
WOSCitedRecordID wos000430237200033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4308
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008842
  issn: 0920-5861
  databaseCode: AIEXJ
  dateStart: 19950125
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEF0hglQ4VECLCP3QHrghS3bsze4eI5SqrRCqgFa5Weu1VwpqnShxEEd-BL-QX8LsZwxEtDn0YjnreLPJc2ZmRzPvIXQc94VIwPNE4Gphg1ImPIItmIp6SaZkImVq8x2_zuj5ORuN-A-n3zk3cgK0rtntLZ_-V6hhDMDWrbNrwB0mhQE4B9DhCLDD8Z-AvzTKNhBHKt3kYbn7Tb2GydQYAhKdLHf6N8tBzR1iGwFNJbpJo51ASGkaH-a-KCIbnDSa9mDslhFIDvw0Tbsu52JSLnxHzR9XzOFSDAkL5aghVwh7TMIsa7o3m2nM24bPmanKvWIrzbPNFFxrck5YjS6ss7ypVrDrKRv2My8Vagd9Wdp1bmfJ9Sx5TPJYkxh0epRwMNCdwbfh6HvwyYwZGaXwRXwTpan0e7ma1UFKK_C42kVv3Y4BDyzSe2ijqvfRm1Mv1LePdlqcku-Q9PjjNv54onCAGgP--Dn-eFxjiz9e4o8D_g939wPskX-Pfn4ZXp1-jZySRiTTLG0iSRRsrWUJ7q9MyphWot_vFRKCYyGMBlmhCKNSkCItCwbXk1hUghEmWU9QLtMDtFlP6uoQYZplRFJCZCz6meIFJ6TgRQFhIaOKqaSLUv_T5dLRzGu1k9_5a8B1URTumlqalb-8n3pUchcq2hAwh0ft1TuP1vykD2h7-Zf4iDab2aL6hLbkTTOezz675-wRe66PmQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selected+fundamentals+of+catalysis+and+electrocatalysis+in+energy+conversion+reactions%E2%80%94A+tutorial&rft.jtitle=Catalysis+today&rft.au=Roduner%2C+Emil&rft.date=2018-07-01&rft.issn=0920-5861&rft.volume=309&rft.spage=263&rft.epage=268&rft_id=info:doi/10.1016%2Fj.cattod.2017.05.091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cattod_2017_05_091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5861&client=summon