Selected fundamentals of catalysis and electrocatalysis in energy conversion reactions—A tutorial
•Upscaling power density requires downscaling transport distances to minimize loss.•Energy intensive reactions are driven by electricity instead of heat.•Anode-cathode separation may prevent the back-reaction of high energy products.•Electrode surfaces are akin to surfaces of conventional heterogene...
Uložené v:
| Vydané v: | Catalysis today Ročník 309; s. 263 - 268 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.07.2018
|
| Predmet: | |
| ISSN: | 0920-5861, 1873-4308 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Upscaling power density requires downscaling transport distances to minimize loss.•Energy intensive reactions are driven by electricity instead of heat.•Anode-cathode separation may prevent the back-reaction of high energy products.•Electrode surfaces are akin to surfaces of conventional heterogeneous catalysts.•Catalysis/electrocatalysis research is empirical, based on experience and intuition.
[Display omitted]
Electrochemical devices for energy conversion and storage applications have little in common with conventional electrochemistry. A significant advantage is the conversion of chemical into electrical energy and vice-versa, minimizing the amount of waste heat. Upscaling power density to values reaching up to 1Wcm−2 at current densities exceeding 1Acm−2 goes along with downscaling transport distances of reaction partners inside and between electrodes. Substrates undergo structure- and element-specific interactions with electrode surfaces which are therefore not only interfaces for the exchange of electrons, rather they should be regarded as specific catalytic surfaces which together with the applied electrical bias potential determine the spectrum of available products. An understanding of these interactions is still in its infancy for many of the relevant systems, and therefore the developments are largely empirical and driven by intuition, supported by quantum-chemical calculations and spectroscopic methods. The manuscript is of tutorial nature and addresses the differences between electrocatalysis in energy conversion reactions and conventional electrochemistry, and it reveals what catalytic transformations at electrode surfaces have in common with traditional heterogeneous catalysis. |
|---|---|
| AbstractList | •Upscaling power density requires downscaling transport distances to minimize loss.•Energy intensive reactions are driven by electricity instead of heat.•Anode-cathode separation may prevent the back-reaction of high energy products.•Electrode surfaces are akin to surfaces of conventional heterogeneous catalysts.•Catalysis/electrocatalysis research is empirical, based on experience and intuition.
[Display omitted]
Electrochemical devices for energy conversion and storage applications have little in common with conventional electrochemistry. A significant advantage is the conversion of chemical into electrical energy and vice-versa, minimizing the amount of waste heat. Upscaling power density to values reaching up to 1Wcm−2 at current densities exceeding 1Acm−2 goes along with downscaling transport distances of reaction partners inside and between electrodes. Substrates undergo structure- and element-specific interactions with electrode surfaces which are therefore not only interfaces for the exchange of electrons, rather they should be regarded as specific catalytic surfaces which together with the applied electrical bias potential determine the spectrum of available products. An understanding of these interactions is still in its infancy for many of the relevant systems, and therefore the developments are largely empirical and driven by intuition, supported by quantum-chemical calculations and spectroscopic methods. The manuscript is of tutorial nature and addresses the differences between electrocatalysis in energy conversion reactions and conventional electrochemistry, and it reveals what catalytic transformations at electrode surfaces have in common with traditional heterogeneous catalysis. |
| Author | Roduner, Emil |
| Author_xml | – sequence: 1 givenname: Emil surname: Roduner fullname: Roduner, Emil email: emil.roduner@up.ac.za, e.roduner@ipc.uni-stuttgart.de organization: Department of Chemistry, University of Pretoria, Pretoria 0002, South Africa |
| BookMark | eNqFkM9KAzEQh4MoWKtv4CEvsOsk291NPQil-A8ED-o5TJNZSdkmksRCbz6ET-iTuLWC4EFPM0zy_Zj5jti-D54YOxVQChDN2bI0mHOwpQTRllCXMBV7bCRUWxWTCtQ-G8FUQlGrRhyyo5SWAKDURI6YeaCeTCbLu1dvcUU-Y5946PgQif0mucTRW_71K4afofOcPMXnDTfBrykmFzyPhCYPTfp4e5_x_JpDdNgfs4NuCKWT7zpmT1eXj_Ob4u7--nY-uytMNalyYepOKmksgLTCQkvYNHJhVDVFbEA27aKrVWuwXlR2oYZ3AUioamWUxHZqqjE73-WaGFKK1GnjMm73yRFdrwXorS691DtdeqtLQ60HXQM8-QW_RLfCuPkPu9hhNBy2dhR1Mo68IeviYEzb4P4O-ARHZY0F |
| CitedBy_id | crossref_primary_10_1007_s41742_024_00597_3 crossref_primary_10_1016_j_ijhydene_2022_03_277 crossref_primary_10_1002_nadc_20254148993 crossref_primary_10_1007_s40820_021_00681_9 crossref_primary_10_1016_j_rser_2025_116001 crossref_primary_10_1080_03067319_2019_1643462 crossref_primary_10_1002_adfm_202108843 crossref_primary_10_1002_EXP_20240010 crossref_primary_10_1007_s11244_023_01799_3 crossref_primary_10_1016_j_synthmet_2020_116566 crossref_primary_10_1016_j_cis_2025_103429 crossref_primary_10_1039_D3SC06784J crossref_primary_10_1016_j_jcou_2024_102887 crossref_primary_10_1016_j_ijhydene_2024_04_150 crossref_primary_10_1021_acs_chemmater_5c00455 crossref_primary_10_1002_celc_201801225 crossref_primary_10_1038_s41578_020_00241_4 crossref_primary_10_1002_adma_202211054 crossref_primary_10_1002_tcr_202500014 crossref_primary_10_1016_S1872_2067_24_60156_7 |
| Cites_doi | 10.1039/c2ee21234j 10.1038/ncomms13869 10.1021/jp064467t 10.1039/C3CS60323G 10.1039/f19898502309 10.1039/C6CS00115G 10.1021/jp9533178 10.1038/nchem.1595 10.1021/acs.jpclett.6b00382 10.1039/c0ee00071j 10.1021/acs.jpclett.5b01043 10.1039/C6CY00720A 10.1038/ncomms4783 10.1039/c3ee41272e 10.1039/C4CS00210E 10.1002/fuce.201300206 10.1149/1.1856988 10.1038/nature11891 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cattod.2017.05.091 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1873-4308 |
| EndPage | 268 |
| ExternalDocumentID | 10_1016_j_cattod_2017_05_091 S0920586117304236 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSZ T5K ZMT ~02 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW VH1 WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c343t-c5f282cd002d1d07ea662bc839aa60267bf587ca5b3db807e10aea858c82a79c3 |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430237200033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-5861 |
| IngestDate | Sat Nov 29 04:11:29 EST 2025 Tue Nov 18 21:38:55 EST 2025 Fri Feb 23 02:35:39 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Nanostructurization Electrocatalysis vs. thermal catalysis Electrical activation Energy efficiency Electro-reforming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c343t-c5f282cd002d1d07ea662bc839aa60267bf587ca5b3db807e10aea858c82a79c3 |
| PageCount | 6 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cattod_2017_05_091 crossref_primary_10_1016_j_cattod_2017_05_091 elsevier_sciencedirect_doi_10_1016_j_cattod_2017_05_091 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-01 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Catalysis today |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Chan, Nørskov (bib0030) 2015; 6 Wu, Ma, Sun, Gold, Tiwary, Kim, Zhu, Chopra, Odeh, Vajtai, Yu, Luo, Lou, Ding, Kenis, Ajayan (bib0055) 2016; 7 Rodrıíguez-Lugo, Trincado, Vogt, Tewes, Santiso-Quinones, Grützmacher (bib0080) 2013; 5 Roduner, Radhakrishnan (bib0005) 2016; 45 Poetzsch, Bach, Zerpa Unda, Roduner (bib0085) 2014; 14 Roduner (bib0060) 2014; 43 Zhen, Jiao, Zhu, Li, Han, Chen, Du, Jaroniec, Qiao (bib0070) 2014; 5 Qiao, Liu, Hong, Zhang (bib0050) 2014; 43 Chan, Nørskov (bib0025) 2016; 7 Hori, Murata, Takahashi (bib0035) 1989; 1 Peterson, Abild-Pedersen, Studt, Rossmeisl, Nørskov (bib0020) 2010; 3 Kondratenko, Mul, Baltrusaitis, Larrazábal, Pérez-Ramírez (bib0045) 2013; 6 Kuhl, Cave, Abramc, Jaramillo (bib0040) 2012; 5 Miller, Bellini, Hasenöhrl, Tilley (bib0090) 2016; 6 Zhou, Weaver (bib0010) 1996; 100 Schultz, Gherman, Cramer, Truhlar (bib0015) 2006; 110 Nielsen, Alberico, Baumann, Drexler, Junge, Gladiali, Beller (bib0075) 2013; 495 Nørskov, Bligaard, Logadottir, Kitchin, Chen, Pendelov, Stimming (bib0065) 2005; 152 Zhou (10.1016/j.cattod.2017.05.091_bib0010) 1996; 100 Schultz (10.1016/j.cattod.2017.05.091_bib0015) 2006; 110 Zhen (10.1016/j.cattod.2017.05.091_bib0070) 2014; 5 Poetzsch (10.1016/j.cattod.2017.05.091_bib0085) 2014; 14 Wu (10.1016/j.cattod.2017.05.091_bib0055) 2016; 7 Rodrıíguez-Lugo (10.1016/j.cattod.2017.05.091_bib0080) 2013; 5 Chan (10.1016/j.cattod.2017.05.091_bib0030) 2015; 6 Roduner (10.1016/j.cattod.2017.05.091_bib0005) 2016; 45 Qiao (10.1016/j.cattod.2017.05.091_bib0050) 2014; 43 Hori (10.1016/j.cattod.2017.05.091_bib0035) 1989; 1 Kondratenko (10.1016/j.cattod.2017.05.091_bib0045) 2013; 6 Peterson (10.1016/j.cattod.2017.05.091_bib0020) 2010; 3 Roduner (10.1016/j.cattod.2017.05.091_bib0060) 2014; 43 Nielsen (10.1016/j.cattod.2017.05.091_bib0075) 2013; 495 Kuhl (10.1016/j.cattod.2017.05.091_bib0040) 2012; 5 Chan (10.1016/j.cattod.2017.05.091_bib0025) 2016; 7 Nørskov (10.1016/j.cattod.2017.05.091_bib0065) 2005; 152 Miller (10.1016/j.cattod.2017.05.091_bib0090) 2016; 6 |
| References_xml | – volume: 110 start-page: 24030 year: 2006 end-page: 24046 ident: bib0015 article-title: Pd publication-title: J. Phys. Chem. B – volume: 7 start-page: 13869 year: 2016 ident: bib0055 article-title: A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates publication-title: Nature Commun. – volume: 6 start-page: 3112 year: 2013 end-page: 3135 ident: bib0045 article-title: Status and perspectives of CO publication-title: Energy Environ. Sci – volume: 43 start-page: 631 year: 2014 end-page: 675 ident: bib0050 article-title: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels publication-title: Chem. Soc. Rev. – volume: 45 start-page: 2768 year: 2016 end-page: 2784 ident: bib0005 article-title: In command of non-equilibrium publication-title: Chem. Soc. Rev. – volume: 7 start-page: 1686 year: 2016 end-page: 1690 ident: bib0025 article-title: Potential dependence of electrochemical barriers from ab initio calculations publication-title: J. Phys. Chem. Lett. – volume: 495 start-page: 85 year: 2013 end-page: 89 ident: bib0075 article-title: Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide publication-title: Nature – volume: 1 start-page: 2309 year: 1989 end-page: 2326 ident: bib0035 article-title: Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution publication-title: J. Chem. Soc. Faraday Trans. – volume: 6 start-page: 6870 year: 2016 end-page: 6878 ident: bib0090 article-title: Carbon supported Au–Pd core–shell nanoparticles for hydrogen production by alcohol electroreforming publication-title: Catal. Sci. Technol. – volume: 14 start-page: 508 year: 2014 end-page: 516 ident: bib0085 article-title: Novel options limitations of methanol-based production and storage for mobile applications publication-title: Fuel Cells – volume: 3 start-page: 1311 year: 2010 end-page: 1315 ident: bib0020 article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels publication-title: Energ. Environ. Sci. – volume: 5 start-page: 342 year: 2013 end-page: 347 ident: bib0080 article-title: A homogeneous transition metal complex for clean hydrogen production from methanol–water mixtures publication-title: Nature Chem – volume: 43 start-page: 8226 year: 2014 end-page: 8239 ident: bib0060 article-title: Understanding catalysis publication-title: Chem. Soc. Rev – volume: 100 start-page: 4237 year: 1996 end-page: 4242 ident: bib0010 article-title: Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes: chemical bonding versus electrostatic field effects publication-title: J. Phys. Chem. – volume: 5 start-page: 7050 year: 2012 end-page: 7059 ident: bib0040 article-title: New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces publication-title: Energy Environ. Sci. – volume: 5 start-page: 3783 year: 2014 ident: bib0070 article-title: Hydrogen evolution by a metal-free electrocatalyst publication-title: Nature Commun. – volume: 6 start-page: 2663 year: 2015 end-page: 2668 ident: bib0030 article-title: Electrochemical barriers made simple publication-title: J. Phys. Chem. Lett. – volume: 152 start-page: J23 year: 2005 end-page: J26 ident: bib0065 article-title: Trends in the exchange current for hydrogen evolution publication-title: J. Elchem. Soc. – volume: 5 start-page: 7050 year: 2012 ident: 10.1016/j.cattod.2017.05.091_bib0040 article-title: New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21234j – volume: 7 start-page: 13869 year: 2016 ident: 10.1016/j.cattod.2017.05.091_bib0055 article-title: A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates publication-title: Nature Commun. doi: 10.1038/ncomms13869 – volume: 110 start-page: 24030 year: 2006 ident: 10.1016/j.cattod.2017.05.091_bib0015 article-title: PdnCO (n=1,2): accurate ab-initio bond energies geometries, and dipole moments and the applicability of density functional theory for fuel cell modeling publication-title: J. Phys. Chem. B doi: 10.1021/jp064467t – volume: 43 start-page: 631 year: 2014 ident: 10.1016/j.cattod.2017.05.091_bib0050 article-title: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60323G – volume: 1 start-page: 2309 issue: 85 year: 1989 ident: 10.1016/j.cattod.2017.05.091_bib0035 article-title: Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution publication-title: J. Chem. Soc. Faraday Trans. doi: 10.1039/f19898502309 – volume: 45 start-page: 2768 year: 2016 ident: 10.1016/j.cattod.2017.05.091_bib0005 article-title: In command of non-equilibrium publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00115G – volume: 100 start-page: 4237 year: 1996 ident: 10.1016/j.cattod.2017.05.091_bib0010 article-title: Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes: chemical bonding versus electrostatic field effects publication-title: J. Phys. Chem. doi: 10.1021/jp9533178 – volume: 5 start-page: 342 year: 2013 ident: 10.1016/j.cattod.2017.05.091_bib0080 article-title: A homogeneous transition metal complex for clean hydrogen production from methanol–water mixtures publication-title: Nature Chem doi: 10.1038/nchem.1595 – volume: 7 start-page: 1686 year: 2016 ident: 10.1016/j.cattod.2017.05.091_bib0025 article-title: Potential dependence of electrochemical barriers from ab initio calculations publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00382 – volume: 3 start-page: 1311 year: 2010 ident: 10.1016/j.cattod.2017.05.091_bib0020 article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels publication-title: Energ. Environ. Sci. doi: 10.1039/c0ee00071j – volume: 6 start-page: 2663 year: 2015 ident: 10.1016/j.cattod.2017.05.091_bib0030 article-title: Electrochemical barriers made simple publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01043 – volume: 6 start-page: 6870 year: 2016 ident: 10.1016/j.cattod.2017.05.091_bib0090 article-title: Carbon supported Au–Pd core–shell nanoparticles for hydrogen production by alcohol electroreforming publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY00720A – volume: 5 start-page: 3783 year: 2014 ident: 10.1016/j.cattod.2017.05.091_bib0070 article-title: Hydrogen evolution by a metal-free electrocatalyst publication-title: Nature Commun. doi: 10.1038/ncomms4783 – volume: 6 start-page: 3112 year: 2013 ident: 10.1016/j.cattod.2017.05.091_bib0045 article-title: Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes publication-title: Energy Environ. Sci doi: 10.1039/c3ee41272e – volume: 43 start-page: 8226 year: 2014 ident: 10.1016/j.cattod.2017.05.091_bib0060 article-title: Understanding catalysis publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00210E – volume: 14 start-page: 508 year: 2014 ident: 10.1016/j.cattod.2017.05.091_bib0085 article-title: Novel options limitations of methanol-based production and storage for mobile applications publication-title: Fuel Cells doi: 10.1002/fuce.201300206 – volume: 152 start-page: J23 year: 2005 ident: 10.1016/j.cattod.2017.05.091_bib0065 article-title: Trends in the exchange current for hydrogen evolution publication-title: J. Elchem. Soc. doi: 10.1149/1.1856988 – volume: 495 start-page: 85 year: 2013 ident: 10.1016/j.cattod.2017.05.091_bib0075 article-title: Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide publication-title: Nature doi: 10.1038/nature11891 |
| SSID | ssj0008842 |
| Score | 2.4148135 |
| Snippet | •Upscaling power density requires downscaling transport distances to minimize loss.•Energy intensive reactions are driven by electricity instead of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 263 |
| SubjectTerms | Electrical activation Electro-reforming Electrocatalysis vs. thermal catalysis Energy efficiency Nanostructurization |
| Title | Selected fundamentals of catalysis and electrocatalysis in energy conversion reactions—A tutorial |
| URI | https://dx.doi.org/10.1016/j.cattod.2017.05.091 |
| Volume | 309 |
| WOSCitedRecordID | wos000430237200033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4308 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008842 issn: 0920-5861 databaseCode: AIEXJ dateStart: 19950125 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEF0hglQ4VECLCP3QHrghS3bsze4eI5SqrRCqgFa5Weu1VwpqnShxEEd-BL-QX8LsZwxEtDn0YjnreLPJc2ZmRzPvIXQc94VIwPNE4Gphg1ImPIItmIp6SaZkImVq8x2_zuj5ORuN-A-n3zk3cgK0rtntLZ_-V6hhDMDWrbNrwB0mhQE4B9DhCLDD8Z-AvzTKNhBHKt3kYbn7Tb2GydQYAhKdLHf6N8tBzR1iGwFNJbpJo51ASGkaH-a-KCIbnDSa9mDslhFIDvw0Tbsu52JSLnxHzR9XzOFSDAkL5aghVwh7TMIsa7o3m2nM24bPmanKvWIrzbPNFFxrck5YjS6ss7ypVrDrKRv2My8Vagd9Wdp1bmfJ9Sx5TPJYkxh0epRwMNCdwbfh6HvwyYwZGaXwRXwTpan0e7ma1UFKK_C42kVv3Y4BDyzSe2ijqvfRm1Mv1LePdlqcku-Q9PjjNv54onCAGgP--Dn-eFxjiz9e4o8D_g939wPskX-Pfn4ZXp1-jZySRiTTLG0iSRRsrWUJ7q9MyphWot_vFRKCYyGMBlmhCKNSkCItCwbXk1hUghEmWU9QLtMDtFlP6uoQYZplRFJCZCz6meIFJ6TgRQFhIaOKqaSLUv_T5dLRzGu1k9_5a8B1URTumlqalb-8n3pUchcq2hAwh0ft1TuP1vykD2h7-Zf4iDab2aL6hLbkTTOezz675-wRe66PmQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selected+fundamentals+of+catalysis+and+electrocatalysis+in+energy+conversion+reactions%E2%80%94A+tutorial&rft.jtitle=Catalysis+today&rft.au=Roduner%2C+Emil&rft.date=2018-07-01&rft.issn=0920-5861&rft.volume=309&rft.spage=263&rft.epage=268&rft_id=info:doi/10.1016%2Fj.cattod.2017.05.091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cattod_2017_05_091 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5861&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5861&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5861&client=summon |