An improved implicit time integration algorithm: The generalized composite time integration algorithm

•The algorithm can be applied to nonlinear structural dynamics in a consistent manner.•The algorithm includes one free parameter which controls algorithmic dissipation.•The effective stiffness matrices of the first and second sub-steps become identical in linear analyses.•The algorithm provided impr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & structures Ročník 196; s. 341 - 354
Hlavní autoři: Kim, Wooram, Choi, Su Yeon
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 01.02.2018
Elsevier BV
Témata:
ISSN:0045-7949, 1879-2243
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The algorithm can be applied to nonlinear structural dynamics in a consistent manner.•The algorithm includes one free parameter which controls algorithmic dissipation.•The effective stiffness matrices of the first and second sub-steps become identical in linear analyses.•The algorithm provided improved solutions compared with those obtained from the Bathe method. The weighted residual method is employed to develop one- and two-step time integration schemes. Newly developed time integration schemes are combined to obtain a new second-order accurate implicit time integration algorithm whose computational structure is similar to the Bathe method (Bathe and Noh, 2012). The newly developed algorithm can control algorithmic dissipation in the high frequency limit through the optimized weighting parameters. It contains only one free parameter, and always provides an identical effective stiffness matrix to the first and second sub-steps in linear analyses, which is not provided in the algorithm proposed by Kim and Reddy (2016). Various nonlinear test problems are used to investigate performance of the new algorithm in nonlinear analyses.
AbstractList The weighted residual method is employed to develop one- and two-step time integration schemes. Newly developed time integration schemes are combined to obtain a new second-order accurate implicit time integration algorithm whose computational structure is similar to the Bathe method (Bathe and Noh, 2012). The newly developed algorithm can control algorithmic dissipation in the high frequency limit through the optimized weighting parameters. It contains only one free parameter, and always provides an identical effective stiffness matrix to the first and second sub-steps in linear analyses, which is not provided in the algorithm proposed by Kim and Reddy (2016). Various nonlinear test problems are used to investigate performance of the new algorithm in nonlinear analyses.
•The algorithm can be applied to nonlinear structural dynamics in a consistent manner.•The algorithm includes one free parameter which controls algorithmic dissipation.•The effective stiffness matrices of the first and second sub-steps become identical in linear analyses.•The algorithm provided improved solutions compared with those obtained from the Bathe method. The weighted residual method is employed to develop one- and two-step time integration schemes. Newly developed time integration schemes are combined to obtain a new second-order accurate implicit time integration algorithm whose computational structure is similar to the Bathe method (Bathe and Noh, 2012). The newly developed algorithm can control algorithmic dissipation in the high frequency limit through the optimized weighting parameters. It contains only one free parameter, and always provides an identical effective stiffness matrix to the first and second sub-steps in linear analyses, which is not provided in the algorithm proposed by Kim and Reddy (2016). Various nonlinear test problems are used to investigate performance of the new algorithm in nonlinear analyses.
Author Choi, Su Yeon
Kim, Wooram
Author_xml – sequence: 1
  givenname: Wooram
  surname: Kim
  fullname: Kim, Wooram
  email: c14445@naver.com
– sequence: 2
  givenname: Su Yeon
  orcidid: 0000-0003-3385-6967
  surname: Choi
  fullname: Choi, Su Yeon
BookMark eNqNkE1LAzEQhoNUsK3-Bhc875rPjSt4KMUvELzUc0izs23K7qYmaUF_vVkrHjyop4Rknpl5nwka9a4HhM4JLggm5eWmMK7bhuh3pqCYyPRaYEyP0JhcySqnlLMRGmPMRS4rXp2gSQgbjHHJMR4jmPWZ7bbe7aEeLq01NmbRdpDZPsLK62hdn-l25byN6-46W6whW0EPXrf2PUHDdBdshF-oU3Tc6DbA2dc5RS93t4v5Q_70fP84nz3lhnEWcyOEFIJp0aQAuBRGg5Ga8ZIRAbrRuiJEskbWzCxJZaimNV-KhtU6mdC0YlN0ceibAr3uIES1cTvfp5GKYk5kWUouU9XNocp4F4KHRqXMnxtHr22rCFaDWbVR32bVYHb4SIslXv7gt9522r_9g5wdSEgS9ha8CsZCb6C2HkxUtbN_9vgAuQCdcg
CitedBy_id crossref_primary_10_1007_s11071_023_09065_7
crossref_primary_10_1016_j_compstruc_2019_05_019
crossref_primary_10_1016_j_compstruc_2019_05_018
crossref_primary_10_1002_nme_6623
crossref_primary_10_1016_j_cma_2021_114274
crossref_primary_10_3390_math10142375
crossref_primary_10_1016_j_apm_2020_01_043
crossref_primary_10_1016_j_compstruc_2019_05_015
crossref_primary_10_1016_j_apm_2019_11_033
crossref_primary_10_1016_j_oceaneng_2024_117842
crossref_primary_10_1016_j_ijmecsci_2020_105429
crossref_primary_10_32604_cmes_2021_014244
crossref_primary_10_1016_j_compstruc_2018_11_001
crossref_primary_10_1007_s11831_021_09536_3
crossref_primary_10_1016_j_compstruc_2019_03_002
crossref_primary_10_1016_j_compstruc_2021_106559
crossref_primary_10_1002_tal_1885
crossref_primary_10_1016_j_apm_2020_08_068
crossref_primary_10_1016_j_cma_2024_116966
crossref_primary_10_1155_2022_2582165
crossref_primary_10_1007_s10409_021_09078_3
crossref_primary_10_1007_s11071_020_05836_8
crossref_primary_10_1007_s00419_021_01989_z
crossref_primary_10_1016_j_cma_2025_117831
crossref_primary_10_1002_nme_6859
crossref_primary_10_1016_j_compstruc_2024_107294
crossref_primary_10_1016_j_finel_2018_06_003
crossref_primary_10_1016_j_cnsns_2023_107301
crossref_primary_10_1016_j_compstruc_2023_107071
crossref_primary_10_3390_app11041932
crossref_primary_10_1007_s11071_024_09475_1
crossref_primary_10_1134_S0020441222020191
crossref_primary_10_1016_j_compstruc_2018_10_008
crossref_primary_10_1016_j_finel_2023_103917
crossref_primary_10_1002_tal_1690
crossref_primary_10_1016_j_compstruc_2018_06_005
crossref_primary_10_1007_s11071_020_06020_8
crossref_primary_10_1016_j_enganabound_2024_105799
crossref_primary_10_1016_j_euromechsol_2021_104407
crossref_primary_10_1109_ACCESS_2020_3034326
crossref_primary_10_1002_nme_6543
crossref_primary_10_1016_j_cma_2021_114436
crossref_primary_10_1016_j_apm_2024_115790
crossref_primary_10_1016_j_compstruc_2022_106921
crossref_primary_10_1016_j_cma_2023_116473
crossref_primary_10_1016_j_jcp_2024_113032
crossref_primary_10_1007_s11831_023_09924_x
crossref_primary_10_1007_s00419_019_01637_7
crossref_primary_10_1007_s11071_019_04936_4
crossref_primary_10_1016_j_apm_2018_12_027
crossref_primary_10_1016_j_euromechsol_2022_104811
crossref_primary_10_1016_j_compstruc_2020_106210
crossref_primary_10_1016_j_compstruc_2022_106814
crossref_primary_10_1155_2021_6442260
crossref_primary_10_1615_IntJMultCompEng_2025054525
crossref_primary_10_1002_nme_6574
crossref_primary_10_1007_s11071_023_09101_6
crossref_primary_10_1016_j_istruc_2021_08_129
crossref_primary_10_1016_j_cma_2023_116503
crossref_primary_10_1016_j_compstruc_2024_107587
crossref_primary_10_1002_nme_6054
crossref_primary_10_1002_nme_6098
crossref_primary_10_1002_nme_7660
crossref_primary_10_1016_j_compstruc_2021_106699
crossref_primary_10_1007_s00419_021_02075_0
crossref_primary_10_3390_app112412109
crossref_primary_10_1016_j_compstruc_2019_106188
crossref_primary_10_1016_j_compstruc_2024_107350
crossref_primary_10_1108_EC_07_2020_0377
crossref_primary_10_1016_j_engstruct_2019_05_095
crossref_primary_10_1007_s11071_021_06720_9
crossref_primary_10_1007_s00466_020_01933_y
crossref_primary_10_1016_j_cma_2021_113920
crossref_primary_10_1016_j_compstruc_2022_106901
crossref_primary_10_1016_j_ymssp_2023_110195
crossref_primary_10_3390_math11030593
crossref_primary_10_1016_j_cma_2020_113509
crossref_primary_10_1016_j_compgeo_2025_107366
crossref_primary_10_1016_j_amc_2021_126609
crossref_primary_10_1016_j_engstruct_2021_112490
crossref_primary_10_1016_j_cma_2019_05_040
crossref_primary_10_1016_j_compstruc_2022_106789
Cites_doi 10.1002/(SICI)1097-0207(19990620)45:5<569::AID-NME595>3.0.CO;2-A
10.1590/S1679-78252010000200006
10.1016/0045-7825(95)00963-9
10.1016/0045-7825(94)90208-9
10.1006/jsvi.1996.0190
10.1016/S0045-7825(96)01243-1
10.1006/jsvi.1996.0445
10.1007/s00466-001-0273-z
10.1002/(SICI)1097-0207(19961030)39:20<3475::AID-NME10>3.0.CO;2-H
10.1006/jsvi.2001.3750
10.1002/1097-0207(20010228)50:6<1429::AID-NME79>3.0.CO;2-A
10.1115/1.2900803
10.1016/j.compstruc.2012.01.009
10.1002/nme.283
10.1115/1.4036822
10.1061/JMCEA3.0000098
10.1016/0022-247X(71)90110-7
10.1016/j.compstruc.2006.09.004
10.1093/acprof:oso/9780199641758.001.0001
10.1002/nme.1620372303
10.1115/1.4036821
10.1016/j.compstruc.2005.08.001
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Feb 2018
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 2018
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.compstruc.2017.10.002
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2243
EndPage 354
ExternalDocumentID 10_1016_j_compstruc_2017_10_002
S0045794917303413
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSV
SSW
SSZ
T5K
T9H
TAE
TN5
UAO
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c343t-c557553a5f002065caec7a346315eafaa91173f7d3cb19c2a2d4b5f3da101a293
ISICitedReferencesCount 100
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425075800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7949
IngestDate Sun Nov 09 08:25:06 EST 2025
Tue Nov 18 20:40:36 EST 2025
Sat Nov 29 04:10:42 EST 2025
Fri Feb 23 02:26:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Linear and non-linear structural dynamics
Composite time integration
Bathe method
Time finite element method
Step-by-step implicit time integration method
Weighted residual method
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-c557553a5f002065caec7a346315eafaa91173f7d3cb19c2a2d4b5f3da101a293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3385-6967
PQID 2041766747
PQPubID 2045492
PageCount 14
ParticipantIDs proquest_journals_2041766747
crossref_citationtrail_10_1016_j_compstruc_2017_10_002
crossref_primary_10_1016_j_compstruc_2017_10_002
elsevier_sciencedirect_doi_10_1016_j_compstruc_2017_10_002
PublicationCentury 2000
PublicationDate February 2018
2018-02-00
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & structures
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Fung (b0125) 1997; 147
Fung (b0130) 2001; 247
Fung (b0120) 1996; 39
Fung (b0150) 2002; 53
Bellman, Casti (b0070) 1971; 34
Semler, Gentleman, Paidoussis (b0020) 1996; 195
Erlicher, Bonaventura, Bursi (b0055) 2002; 28
Kim, Reddy (b0100) 2010; 7
Bathe (b0135) 2007; 85
Chung J. Numerically dissipative time integration algorithms for structural dynamics [Ph.D. thesis].University of Michigan; 1992.
Kim W. Unconventional finite element models for nonlinear analysis of beams and plates [Master’s thesis]. Texas A&M University; 2008.
Fung (b0145) 2001; 50
Hughes (b0045) 1983; 1
Wood, Oduor (b0155) 1988; 4
Hulbert (b0065) 1994; 113
Kuhl, Crisfield (b0110) 1999; 45
Kuhl, Ramm (b0105) 1996; 136
Chung, Lee (b0090) 1994; 37
Chung, Hulbert (b0050) 1993; 60
Hughes (b0080) 2012
Hilber HM. Analysis and design of numerical integration methods in structural dynamics [Ph.D. thesis]. University of California Berkely; 1976.
Kim, Reddy (b0030) 2017; 84
Zienkiewicz OC, Taylor RL. The finite element method; 1991.
Kim, Reddy (b0010) 2016; 16
Newmark (b0035) 1959; 85
Kim, Reddy (b0025) 2017; 84
Zienkiewicz, Taylor (b0075) 2005
Bathe, Baig (b0060) 2005; 83
Xie (b0085) 1996; 192
Reddy JN. An introduction to nonlinear finite element analysis: with applications to heat transfer, fluid mechanics, and solid mechanics. 2nd ed., Oxford; 2015.
Bathe, Noh (b0005) 2012; 98
Kim (10.1016/j.compstruc.2017.10.002_b0010) 2016; 16
10.1016/j.compstruc.2017.10.002_b0095
Kuhl (10.1016/j.compstruc.2017.10.002_b0105) 1996; 136
Wood (10.1016/j.compstruc.2017.10.002_b0155) 1988; 4
Kim (10.1016/j.compstruc.2017.10.002_b0100) 2010; 7
Kim (10.1016/j.compstruc.2017.10.002_b0025) 2017; 84
Bathe (10.1016/j.compstruc.2017.10.002_b0060) 2005; 83
Hulbert (10.1016/j.compstruc.2017.10.002_b0065) 1994; 113
Fung (10.1016/j.compstruc.2017.10.002_b0120) 1996; 39
Bathe (10.1016/j.compstruc.2017.10.002_b0005) 2012; 98
Erlicher (10.1016/j.compstruc.2017.10.002_b0055) 2002; 28
Kuhl (10.1016/j.compstruc.2017.10.002_b0110) 1999; 45
Zienkiewicz (10.1016/j.compstruc.2017.10.002_b0075) 2005
Fung (10.1016/j.compstruc.2017.10.002_b0130) 2001; 247
Fung (10.1016/j.compstruc.2017.10.002_b0150) 2002; 53
10.1016/j.compstruc.2017.10.002_b0015
10.1016/j.compstruc.2017.10.002_b0115
Chung (10.1016/j.compstruc.2017.10.002_b0050) 1993; 60
10.1016/j.compstruc.2017.10.002_b0040
10.1016/j.compstruc.2017.10.002_b0140
Kim (10.1016/j.compstruc.2017.10.002_b0030) 2017; 84
Bellman (10.1016/j.compstruc.2017.10.002_b0070) 1971; 34
Chung (10.1016/j.compstruc.2017.10.002_b0090) 1994; 37
Newmark (10.1016/j.compstruc.2017.10.002_b0035) 1959; 85
Semler (10.1016/j.compstruc.2017.10.002_b0020) 1996; 195
Fung (10.1016/j.compstruc.2017.10.002_b0125) 1997; 147
Xie (10.1016/j.compstruc.2017.10.002_b0085) 1996; 192
Hughes (10.1016/j.compstruc.2017.10.002_b0045) 1983; 1
Hughes (10.1016/j.compstruc.2017.10.002_b0080) 2012
Bathe (10.1016/j.compstruc.2017.10.002_b0135) 2007; 85
Fung (10.1016/j.compstruc.2017.10.002_b0145) 2001; 50
References_xml – year: 2005
  ident: b0075
  article-title: The finite element method for solid and structural mechanics
– reference: Reddy JN. An introduction to nonlinear finite element analysis: with applications to heat transfer, fluid mechanics, and solid mechanics. 2nd ed., Oxford; 2015.
– volume: 85
  start-page: 437
  year: 2007
  end-page: 445
  ident: b0135
  article-title: Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme
  publication-title: Comput Struct
– volume: 60
  start-page: 271
  year: 1993
  end-page: 275
  ident: b0050
  article-title: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha method
  publication-title: J Appl Mech
– volume: 1
  start-page: 67
  year: 1983
  end-page: 155
  ident: b0045
  article-title: Analysis of transient algorithms with particular reference to stability behavior
  publication-title: Comput Methr Transient Anal
– volume: 7
  start-page: 201
  year: 2010
  end-page: 226
  ident: b0100
  article-title: Novel mixed finite element models for nonlinear analysis of plates
  publication-title: Latin Am J Solids Struct
– volume: 53
  start-page: 409
  year: 2002
  end-page: 431
  ident: b0150
  article-title: On the equivalence of the time domain differential quadrature method and the dissipative runge–kutta collocation method
  publication-title: Int J Numer Meth Eng
– volume: 98
  start-page: 1
  year: 2012
  end-page: 6
  ident: b0005
  article-title: Insight into an implicit time integration scheme for structural dynamics
  publication-title: Comput Struct
– volume: 113
  start-page: 1
  year: 1994
  end-page: 9
  ident: b0065
  article-title: A unified set of single-step asymptotic annihilation algorithms for structural dynamics
  publication-title: Comput Meth Appl Mech Eng
– volume: 4
  start-page: 205
  year: 1988
  end-page: 212
  ident: b0155
  article-title: Stability properties of some algorithms for the solution of nonlinear dynamic vibration equations
  publication-title: Int J Numer Meth Biomed Eng
– volume: 50
  start-page: 1429
  year: 2001
  end-page: 1454
  ident: b0145
  article-title: Solving initial value problems by differential quadrature method-part 2: second-and higher-order equations
  publication-title: Int J Numer Meth Eng
– volume: 195
  start-page: 553
  year: 1996
  end-page: 574
  ident: b0020
  article-title: Numerical solutions of second order implicit non-linear ordinary differential equations
  publication-title: J Sound Vib
– volume: 85
  start-page: 67
  year: 1959
  end-page: 94
  ident: b0035
  article-title: A method of computation for structural dynamics
  publication-title: J Eng Mech Division
– volume: 37
  start-page: 3961
  year: 1994
  end-page: 3976
  ident: b0090
  article-title: A new family of explicit time integration method for linear and nonlinear structural dynamics
  publication-title: Int J Numer Meth Eng
– volume: 84
  start-page: 071008
  year: 2017
  ident: b0025
  article-title: A new family of higher-order time integration algorithms for the analysis of structural dynamics
  publication-title: J Appl Mech
– volume: 136
  start-page: 293
  year: 1996
  end-page: 315
  ident: b0105
  article-title: Constraint energy momentum algorithm and its application to non-linear dynamics of shells
  publication-title: Comput Meth Appl Mech Eng
– volume: 247
  start-page: 343
  year: 2001
  end-page: 365
  ident: b0130
  article-title: Unconditionally stable collocation algorithms for second order initial value problems
  publication-title: J Sound Vib
– volume: 28
  start-page: 83
  year: 2002
  end-page: 104
  ident: b0055
  article-title: The analysis of the generalized-
  publication-title: Comput Mech
– reference: Zienkiewicz OC, Taylor RL. The finite element method; 1991.
– volume: 34
  start-page: 235
  year: 1971
  end-page: 238
  ident: b0070
  article-title: Differential quadrature and long-term integration
  publication-title: J Math Anal Appl
– reference: Chung J. Numerically dissipative time integration algorithms for structural dynamics [Ph.D. thesis].University of Michigan; 1992.
– volume: 39
  start-page: 3475
  year: 1996
  end-page: 3495
  ident: b0120
  article-title: Unconditionally stable higher-order accurate hermitian time finite elements
  publication-title: Int J Numer Meth Eng
– volume: 83
  start-page: 2513
  year: 2005
  end-page: 2524
  ident: b0060
  article-title: On a composite implicit time integration procedure for nonlinear dynamics
  publication-title: Comput Struct
– year: 2012
  ident: b0080
  article-title: The finite element method: linear static and dynamic finite element analysis
– volume: 147
  start-page: 61
  year: 1997
  end-page: 84
  ident: b0125
  article-title: Unconditionally stable higher-order Newmark methods by sub-stepping procedure
  publication-title: Comput Meth Appl Mech Eng
– volume: 192
  start-page: 321
  year: 1996
  end-page: 331
  ident: b0085
  article-title: An assessment of time integration schemes for non-linear dynamic equations
  publication-title: J Sound Vib
– volume: 84
  start-page: 071009
  year: 2017
  ident: b0030
  article-title: Effective higher-order time integration algorithms for the analysis of linear structural dynamics
  publication-title: J Appl Mech
– volume: 45
  start-page: 569
  year: 1999
  end-page: 599
  ident: b0110
  article-title: Energy-conserving and decaying algorithms in non-linear structural dynamics
  publication-title: Int J Numer Meth Eng
– reference: Kim W. Unconventional finite element models for nonlinear analysis of beams and plates [Master’s thesis]. Texas A&M University; 2008.
– reference: Hilber HM. Analysis and design of numerical integration methods in structural dynamics [Ph.D. thesis]. University of California Berkely; 1976.
– volume: 16
  start-page: 1750024
  year: 2016
  ident: b0010
  article-title: An improved time integration algorithm: a collocation time finite element approach
  publication-title: Int J Struct Stab Dyn
– ident: 10.1016/j.compstruc.2017.10.002_b0115
– volume: 45
  start-page: 569
  issue: 5
  year: 1999
  ident: 10.1016/j.compstruc.2017.10.002_b0110
  article-title: Energy-conserving and decaying algorithms in non-linear structural dynamics
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/(SICI)1097-0207(19990620)45:5<569::AID-NME595>3.0.CO;2-A
– volume: 7
  start-page: 201
  issue: 2
  year: 2010
  ident: 10.1016/j.compstruc.2017.10.002_b0100
  article-title: Novel mixed finite element models for nonlinear analysis of plates
  publication-title: Latin Am J Solids Struct
  doi: 10.1590/S1679-78252010000200006
– volume: 136
  start-page: 293
  issue: 3
  year: 1996
  ident: 10.1016/j.compstruc.2017.10.002_b0105
  article-title: Constraint energy momentum algorithm and its application to non-linear dynamics of shells
  publication-title: Comput Meth Appl Mech Eng
  doi: 10.1016/0045-7825(95)00963-9
– volume: 113
  start-page: 1
  issue: 1
  year: 1994
  ident: 10.1016/j.compstruc.2017.10.002_b0065
  article-title: A unified set of single-step asymptotic annihilation algorithms for structural dynamics
  publication-title: Comput Meth Appl Mech Eng
  doi: 10.1016/0045-7825(94)90208-9
– ident: 10.1016/j.compstruc.2017.10.002_b0015
– volume: 192
  start-page: 321
  issue: 1
  year: 1996
  ident: 10.1016/j.compstruc.2017.10.002_b0085
  article-title: An assessment of time integration schemes for non-linear dynamic equations
  publication-title: J Sound Vib
  doi: 10.1006/jsvi.1996.0190
– volume: 147
  start-page: 61
  issue: 1
  year: 1997
  ident: 10.1016/j.compstruc.2017.10.002_b0125
  article-title: Unconditionally stable higher-order Newmark methods by sub-stepping procedure
  publication-title: Comput Meth Appl Mech Eng
  doi: 10.1016/S0045-7825(96)01243-1
– volume: 195
  start-page: 553
  issue: 4
  year: 1996
  ident: 10.1016/j.compstruc.2017.10.002_b0020
  article-title: Numerical solutions of second order implicit non-linear ordinary differential equations
  publication-title: J Sound Vib
  doi: 10.1006/jsvi.1996.0445
– volume: 28
  start-page: 83
  issue: 2
  year: 2002
  ident: 10.1016/j.compstruc.2017.10.002_b0055
  article-title: The analysis of the generalized-α method for non-linear dynamic problems
  publication-title: Comput Mech
  doi: 10.1007/s00466-001-0273-z
– ident: 10.1016/j.compstruc.2017.10.002_b0095
– volume: 39
  start-page: 3475
  issue: 20
  year: 1996
  ident: 10.1016/j.compstruc.2017.10.002_b0120
  article-title: Unconditionally stable higher-order accurate hermitian time finite elements
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/(SICI)1097-0207(19961030)39:20<3475::AID-NME10>3.0.CO;2-H
– volume: 247
  start-page: 343
  issue: 2
  year: 2001
  ident: 10.1016/j.compstruc.2017.10.002_b0130
  article-title: Unconditionally stable collocation algorithms for second order initial value problems
  publication-title: J Sound Vib
  doi: 10.1006/jsvi.2001.3750
– volume: 1
  start-page: 67
  year: 1983
  ident: 10.1016/j.compstruc.2017.10.002_b0045
  article-title: Analysis of transient algorithms with particular reference to stability behavior
  publication-title: Comput Methr Transient Anal
– volume: 50
  start-page: 1429
  issue: 6
  year: 2001
  ident: 10.1016/j.compstruc.2017.10.002_b0145
  article-title: Solving initial value problems by differential quadrature method-part 2: second-and higher-order equations
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/1097-0207(20010228)50:6<1429::AID-NME79>3.0.CO;2-A
– volume: 60
  start-page: 271
  year: 1993
  ident: 10.1016/j.compstruc.2017.10.002_b0050
  article-title: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha method
  publication-title: J Appl Mech
  doi: 10.1115/1.2900803
– volume: 98
  start-page: 1
  year: 2012
  ident: 10.1016/j.compstruc.2017.10.002_b0005
  article-title: Insight into an implicit time integration scheme for structural dynamics
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2012.01.009
– volume: 53
  start-page: 409
  issue: 2
  year: 2002
  ident: 10.1016/j.compstruc.2017.10.002_b0150
  article-title: On the equivalence of the time domain differential quadrature method and the dissipative runge–kutta collocation method
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.283
– volume: 4
  start-page: 205
  issue: 2
  year: 1988
  ident: 10.1016/j.compstruc.2017.10.002_b0155
  article-title: Stability properties of some algorithms for the solution of nonlinear dynamic vibration equations
  publication-title: Int J Numer Meth Biomed Eng
– volume: 16
  start-page: 1750024
  issue: 10
  year: 2016
  ident: 10.1016/j.compstruc.2017.10.002_b0010
  article-title: An improved time integration algorithm: a collocation time finite element approach
  publication-title: Int J Struct Stab Dyn
– volume: 84
  start-page: 071009
  issue: 7
  year: 2017
  ident: 10.1016/j.compstruc.2017.10.002_b0030
  article-title: Effective higher-order time integration algorithms for the analysis of linear structural dynamics
  publication-title: J Appl Mech
  doi: 10.1115/1.4036822
– volume: 85
  start-page: 67
  issue: 3
  year: 1959
  ident: 10.1016/j.compstruc.2017.10.002_b0035
  article-title: A method of computation for structural dynamics
  publication-title: J Eng Mech Division
  doi: 10.1061/JMCEA3.0000098
– volume: 34
  start-page: 235
  issue: 2
  year: 1971
  ident: 10.1016/j.compstruc.2017.10.002_b0070
  article-title: Differential quadrature and long-term integration
  publication-title: J Math Anal Appl
  doi: 10.1016/0022-247X(71)90110-7
– year: 2012
  ident: 10.1016/j.compstruc.2017.10.002_b0080
– ident: 10.1016/j.compstruc.2017.10.002_b0040
– volume: 85
  start-page: 437
  issue: 7
  year: 2007
  ident: 10.1016/j.compstruc.2017.10.002_b0135
  article-title: Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2006.09.004
– year: 2005
  ident: 10.1016/j.compstruc.2017.10.002_b0075
– ident: 10.1016/j.compstruc.2017.10.002_b0140
  doi: 10.1093/acprof:oso/9780199641758.001.0001
– volume: 37
  start-page: 3961
  issue: 1
  year: 1994
  ident: 10.1016/j.compstruc.2017.10.002_b0090
  article-title: A new family of explicit time integration method for linear and nonlinear structural dynamics
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.1620372303
– volume: 84
  start-page: 071008
  issue: 7
  year: 2017
  ident: 10.1016/j.compstruc.2017.10.002_b0025
  article-title: A new family of higher-order time integration algorithms for the analysis of structural dynamics
  publication-title: J Appl Mech
  doi: 10.1115/1.4036821
– volume: 83
  start-page: 2513
  issue: 31
  year: 2005
  ident: 10.1016/j.compstruc.2017.10.002_b0060
  article-title: On a composite implicit time integration procedure for nonlinear dynamics
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2005.08.001
SSID ssj0006400
Score 2.5230045
Snippet •The algorithm can be applied to nonlinear structural dynamics in a consistent manner.•The algorithm includes one free parameter which controls algorithmic...
The weighted residual method is employed to develop one- and two-step time integration schemes. Newly developed time integration schemes are combined to obtain...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 341
SubjectTerms Accuracy
Algorithms
Bathe method
Composite time integration
Linear and non-linear structural dynamics
Mathematical analysis
Matrix
Matrix methods
Nonlinear analysis
Optimization
Parameters
Step-by-step implicit time integration method
Stiffness matrix
Time finite element method
Time integration
Weighted residual method
Title An improved implicit time integration algorithm: The generalized composite time integration algorithm
URI https://dx.doi.org/10.1016/j.compstruc.2017.10.002
https://www.proquest.com/docview/2041766747
Volume 196
WOSCitedRecordID wos000425075800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2243
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006400
  issn: 0045-7949
  databaseCode: AIEXJ
  dateStart: 19950103
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKywEOiPIhCgX5wA2lSmInjntboSLaQ1WpRSynyGs7JVVJVrtLVfHrGX8mLdBSIaRVtIrlrNdvMjO2nt8g9FammVBFJRM2UzSh0pAASsUTqhShKWFMssYWm2CHh9V0yo88rWhpywmwrqsuL_n8v0IN9wBsc3T2DnDHh8IN-A6gwxVgh-tfAT_pzNHHRX8BqWRr-eLtypaQj9IQloF8ftov2tXXSLs4dfrT7Q9tz7lZMpe-od84qw2lIZbWkJwk7ffFwE70JZs_92Bv3wZCQd86XtC7L9obh99-yKrAWA57YuFczEBCsn6WGiFMJ0a6o51rrRhPIGEgV3wvH3tP4jSwfCAmTl36Fx_vthvODERz-48MQY_tWI5ePoS1SDY8NqMxg8nAm5mgfQ9t5Kzg4MY3Jvt704MYuUsajiy50V_hA_725_6UzVyL6zZZOXmMHvlVBp4469hEa7p7gh6OtCefIj3pcLATHOwEG7zxCG8c8d7FYCV4ZCU4WskNvZ6hTx_2Tt5_THzNjUQSSlaJLCB_L4goGrOQKAsptGSC0JJkhRaNEBAcGWmYInKWcZmLXNFZ0RAlYJoE5I7P0XrXd_oFwrkQTLBSZxUvKZcpfBhNFU3ZrJK8yrZQGeaull6Q3tRFOa8D8_CsjpNem0k3DTCsLZTGjnOnyXJ7l90ATu1TS5cy1mBVt3feDnDW_kVfQjs12qqwGn_5L89-hR4Mb9U2Wod2_Rrdlxerdrl44w30J-z9sKs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+implicit+time+integration+algorithm%3A+The+generalized+composite+time+integration+algorithm&rft.jtitle=Computers+%26+structures&rft.au=Kim%2C+Wooram&rft.au=Choi%2C+Su+Yeon&rft.date=2018-02-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7949&rft.eissn=1879-2243&rft.volume=196&rft.spage=341&rft.epage=354&rft_id=info:doi/10.1016%2Fj.compstruc.2017.10.002&rft.externalDocID=S0045794917303413
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7949&client=summon