Intrinsic feature revelation of phase-to-height mapping in phase measuring profilometry

•A more universal phase-to-height mapping is derived.•The derived mapping are dependent on both structure and phase of reference plane.•The traditional mapping is just a special case of it.•It provides a way to improve the accuracy of PMP. In traditional phase measuring profilometry (PMP) setup, the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optics and laser technology Ročník 108; s. 46 - 52
Hlavní autoři: Ma, Qiuna, Cao, Yiping, Chen, Cheng, Wan, Yingying, Fu, Guangkai, Wang, Yapin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.12.2018
Elsevier BV
Témata:
ISSN:0030-3992, 1879-2545
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A more universal phase-to-height mapping is derived.•The derived mapping are dependent on both structure and phase of reference plane.•The traditional mapping is just a special case of it.•It provides a way to improve the accuracy of PMP. In traditional phase measuring profilometry (PMP) setup, the connecting line between the exit pupil center of projector and entrance pupil center of CCD camera must parallel to the reference plane and the optical axes of projector and CCD camera must intersect at the same point on the reference plane. At this condition, the coefficients of phase-to-height mapping are constants because they are proved to be only dependent on the structural parameters. But lots of experimental results show that some of coefficients are not constants. Further analyzing this phenomenon, it is found that the above two restricted conditions can hardly to be guaranteed due to the invisible of the exit pupil, the entrance pupil and the optical axes. The more popular situation is that the above connecting line may not parallel to the reference plane and the above optical axes do not intersect on the reference plane. So a new universal mapping algorithm is derived at this situation. It reveals some of coefficients of the mapping really remain constants which are dependent on only the structural parameters, while some of coefficients are really not constants which are dependent on not only the structural parameters but also the phase distribution of the reference plane. It also reveals that the traditional mapping algorithm is just a special case of the derived mapping algorithm. Furthermore, it reveals that the accuracy of PMP can be improved distinctly by calibrating the phase of the reference plane. Experimental results have shown the feasibility and validity of the derived phase-to-height mapping algorithm.
AbstractList •A more universal phase-to-height mapping is derived.•The derived mapping are dependent on both structure and phase of reference plane.•The traditional mapping is just a special case of it.•It provides a way to improve the accuracy of PMP. In traditional phase measuring profilometry (PMP) setup, the connecting line between the exit pupil center of projector and entrance pupil center of CCD camera must parallel to the reference plane and the optical axes of projector and CCD camera must intersect at the same point on the reference plane. At this condition, the coefficients of phase-to-height mapping are constants because they are proved to be only dependent on the structural parameters. But lots of experimental results show that some of coefficients are not constants. Further analyzing this phenomenon, it is found that the above two restricted conditions can hardly to be guaranteed due to the invisible of the exit pupil, the entrance pupil and the optical axes. The more popular situation is that the above connecting line may not parallel to the reference plane and the above optical axes do not intersect on the reference plane. So a new universal mapping algorithm is derived at this situation. It reveals some of coefficients of the mapping really remain constants which are dependent on only the structural parameters, while some of coefficients are really not constants which are dependent on not only the structural parameters but also the phase distribution of the reference plane. It also reveals that the traditional mapping algorithm is just a special case of the derived mapping algorithm. Furthermore, it reveals that the accuracy of PMP can be improved distinctly by calibrating the phase of the reference plane. Experimental results have shown the feasibility and validity of the derived phase-to-height mapping algorithm.
In traditional phase measuring profilometry (PMP) setup, the connecting line between the exit pupil center of projector and entrance pupil center of CCD camera must parallel to the reference plane and the optical axes of projector and CCD camera must intersect at the same point on the reference plane. At this condition, the coefficients of phase-to-height mapping are constants because they are proved to be only dependent on the structural parameters. But lots of experimental results show that some of coefficients are not constants. Further analyzing this phenomenon, it is found that the above two restricted conditions can hardly to be guaranteed due to the invisible of the exit pupil, the entrance pupil and the optical axes. The more popular situation is that the above connecting line may not parallel to the reference plane and the above optical axes do not intersect on the reference plane. So a new universal mapping algorithm is derived at this situation. It reveals some of coefficients of the mapping really remain constants which are dependent on only the structural parameters, while some of coefficients are really not constants which are dependent on not only the structural parameters but also the phase distribution of the reference plane. It also reveals that the traditional mapping algorithm is just a special case of the derived mapping algorithm. Furthermore, it reveals that the accuracy of PMP can be improved distinctly by calibrating the phase of the reference plane. Experimental results have shown the feasibility and validity of the derived phase-to-height mapping algorithm.
Author Wang, Yapin
Ma, Qiuna
Wan, Yingying
Fu, Guangkai
Cao, Yiping
Chen, Cheng
Author_xml – sequence: 1
  givenname: Qiuna
  surname: Ma
  fullname: Ma, Qiuna
– sequence: 2
  givenname: Yiping
  surname: Cao
  fullname: Cao, Yiping
  email: ypcao@scu.edu.cn
– sequence: 3
  givenname: Cheng
  surname: Chen
  fullname: Chen, Cheng
– sequence: 4
  givenname: Yingying
  surname: Wan
  fullname: Wan, Yingying
– sequence: 5
  givenname: Guangkai
  surname: Fu
  fullname: Fu, Guangkai
– sequence: 6
  givenname: Yapin
  surname: Wang
  fullname: Wang, Yapin
BookMark eNqNkE1LAzEQhoMo2FZ_gwued50km3Rz8CDiFxS8KB5DzM7alG2yJmnBf-_WigcvehqYeT-YZ0oOffBIyBmFigKVF6sqDLk3KaOtGNCmAllBrQ7IhDZzVTJRi0MyAeBQcqXYMZmmtAKAWgo-IS8PPkfnk7NFhyZvIhYRt9ib7IIvQlcMS5OwzKFcontb5mJthsH5t8L5_alYo0mbuFsNMXSuD2vM8eOEHHWmT3j6PWfk-fbm6fq-XDzePVxfLUrLa55LCwKpVapR0jIqQEqBhim00M5Fy5C12BiLqkbZKMuZYmCpbUF09bzjrx2fkfN97lj-vsGU9Spsoh8rNaNUNlw1Qoyqy73KxpBSxE5bl79ezNG4XlPQO5Z6pX9Y6h1LDVKPLEf__Jd_iG5t4sc_nFd7J44Qtg6jTtaht9i6iDbrNrg_Mz4BBKSYQw
CitedBy_id crossref_primary_10_1109_TIM_2023_3252627
crossref_primary_10_1016_j_optcom_2025_131591
crossref_primary_10_1109_TIM_2024_3415794
crossref_primary_10_1117_1_OE_63_10_104106
crossref_primary_10_1016_j_patcog_2024_110937
crossref_primary_10_1117_1_OE_62_1_014107
crossref_primary_10_1016_j_neucom_2025_129908
crossref_primary_10_1016_j_optlastec_2024_111758
crossref_primary_10_1016_j_optcom_2024_130309
crossref_primary_10_1364_AO_470733
crossref_primary_10_1364_AO_412291
crossref_primary_10_1016_j_optlaseng_2025_108968
crossref_primary_10_1109_TIM_2022_3189639
crossref_primary_10_1016_j_optlaseng_2024_108167
crossref_primary_10_1016_j_optlastec_2023_109989
crossref_primary_10_1007_s10043_021_00686_0
crossref_primary_10_1016_j_sna_2024_115847
crossref_primary_10_3390_s22072498
crossref_primary_10_3390_photonics11080758
crossref_primary_10_1109_TIP_2023_3244650
crossref_primary_10_1109_TIM_2022_3210959
crossref_primary_10_1016_j_autcon_2022_104424
crossref_primary_10_3390_app11062536
crossref_primary_10_3390_app11062805
crossref_primary_10_1016_j_optlaseng_2022_106990
crossref_primary_10_32604_cmc_2023_037254
crossref_primary_10_1016_j_measurement_2025_119017
crossref_primary_10_1038_s41598_020_74167_w
crossref_primary_10_1088_1361_6501_adb871
crossref_primary_10_1016_j_optlaseng_2023_107741
crossref_primary_10_1016_j_optlaseng_2025_109289
crossref_primary_10_1016_j_optlaseng_2022_107004
crossref_primary_10_1016_j_optlastec_2023_110248
crossref_primary_10_1016_j_optlastec_2025_113916
crossref_primary_10_1364_AO_478394
crossref_primary_10_1016_j_optlaseng_2021_106638
crossref_primary_10_1016_j_optlastec_2023_109137
crossref_primary_10_3390_app11062522
crossref_primary_10_1364_AO_435462
crossref_primary_10_1016_j_ijleo_2021_167895
crossref_primary_10_1016_j_optcom_2022_128280
crossref_primary_10_1016_j_measurement_2024_114209
crossref_primary_10_1016_j_ijleo_2023_170665
crossref_primary_10_1038_s41598_021_99420_8
crossref_primary_10_1016_j_optcom_2021_127381
crossref_primary_10_1117_1_OE_63_1_014101
crossref_primary_10_1016_j_sna_2024_115054
crossref_primary_10_1016_j_optlastec_2022_107955
crossref_primary_10_1016_j_ijleo_2020_164711
crossref_primary_10_1109_TIM_2024_3378259
crossref_primary_10_1364_AO_59_000092
crossref_primary_10_1364_AO_431257
crossref_primary_10_1016_j_optlastec_2023_109201
crossref_primary_10_1016_j_measurement_2025_117886
crossref_primary_10_1016_j_patcog_2025_112366
crossref_primary_10_1089_3dp_2023_0166
crossref_primary_10_1117_1_OE_62_7_074103
crossref_primary_10_1109_TIM_2025_3565071
crossref_primary_10_1016_j_measurement_2022_111606
crossref_primary_10_1016_j_optcom_2022_128763
crossref_primary_10_1016_j_optlastec_2019_05_014
crossref_primary_10_1109_TIM_2025_3547497
crossref_primary_10_1038_s41598_021_90522_x
crossref_primary_10_1016_j_optcom_2023_129276
crossref_primary_10_1016_j_optcom_2019_124565
crossref_primary_10_1016_j_ijleo_2023_170650
crossref_primary_10_1016_j_optcom_2020_126343
crossref_primary_10_1109_TIP_2024_3381773
crossref_primary_10_1016_j_eswa_2023_121067
crossref_primary_10_1016_j_measurement_2024_116182
crossref_primary_10_1109_TIM_2025_3597673
crossref_primary_10_1088_2040_8986_ac0fc0
crossref_primary_10_1109_TIM_2023_3318738
crossref_primary_10_1016_j_measurement_2023_113292
crossref_primary_10_1016_j_optcom_2023_129556
Cites_doi 10.1117/1.1871832
10.1364/AO.46.000664
10.1117/1.1646178
10.1016/S0143-8166(00)00023-3
10.1080/09500349414550101
10.1364/AO.51.001149
10.1364/AO.22.003977
10.1364/AO.40.003326
10.1364/AO.23.003105
10.1080/09500340600720789
10.1016/j.optcom.2014.09.003
10.1016/j.optcom.2007.02.038
10.1364/AO.24.000185
10.1080/09500340.2016.1240250
10.1364/AO.49.006563
10.1016/j.optlaseng.2011.02.010
10.1117/1.602345
10.1117/1.602438
10.1016/j.optlaseng.2009.03.001
10.1117/1.1477439
10.1016/S0143-8166(01)00023-9
10.1117/1.1355253
10.1364/AO.44.002266
10.1016/j.optlaseng.2006.10.006
10.1364/AO.47.000377
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Dec 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 2018
DBID AAYXX
CITATION
7SP
7U5
8FD
F28
FR3
H8D
L7M
DOI 10.1016/j.optlastec.2018.06.049
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-2545
EndPage 52
ExternalDocumentID 10_1016_j_optlastec_2018_06_049
S0030399217309325
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XFK
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
7U5
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c343t-c05e1c99896c2150665ea29ec0d75d2e2de8ace94e689c32920c1cd05f47f3bf3
ISICitedReferencesCount 92
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443664100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0030-3992
IngestDate Sun Nov 09 06:33:06 EST 2025
Sat Nov 29 07:28:43 EST 2025
Tue Nov 18 22:12:51 EST 2025
Fri Feb 23 02:29:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Tra
Three-dimensional measurement
Phase measuring profilometry
SP2
SP1
Prop
Phase-to-height mapping algorithm
Phases shifting
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-c05e1c99896c2150665ea29ec0d75d2e2de8ace94e689c32920c1cd05f47f3bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2116839855
PQPubID 2045422
PageCount 7
ParticipantIDs proquest_journals_2116839855
crossref_citationtrail_10_1016_j_optlastec_2018_06_049
crossref_primary_10_1016_j_optlastec_2018_06_049
elsevier_sciencedirect_doi_10_1016_j_optlastec_2018_06_049
PublicationCentury 2000
PublicationDate December 2018
2018-12-00
20181201
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Optics and laser technology
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zhou, Su (b0095) 1994; 41
Peng, Cao, Wu (b0145) 2016; 64
Chen, Cao, Zhong (b0150) 2015; 336
Hung, Lin, Shang, Park (b0040) 2000; 39
Zhao, Su, Chen (b0155) 2017; 56
Spagnolo, Guattari, Sapia, Ambrosini (b0135) 2000; 33
Li, Su, Liu (b0090) 2001; 40
Burke, Bothe, Osten, Hess (b0010) 2002; 4778
Zhu, Cao, He (b0140) 2017; 64
Xu, Xi, Zhang, Gao, Shi (b0015) 2011; 49
Guo, He, Yu, Chen (b0045) 2005; 44
Mao, Chen, Su (b0105) 2007; 46
Bi, Du, Wang (b0085) 2007; 14
Xiao, Cao, Wu (b0100) 2012; 51
Zappa, Busca (b0065) 2009; 47
Su, Chen (b0110) 2001; 35
Tavares, Vaz (b0070) 2007; 274
Srinivasan, Liu, Halioua (b0035) 1985; 24
Yu, Peng (b0130) 2007; 45
Mei, Zhou, Zhou (b0020) 2010; 141
Wen, Li, Cheng, Su (b0075) 2010; 49
Srinivasan, Liu, Halioua (b0030) 1984; 23
Hanafi, Gharbi, Cornu (b0005) 2005; 44
Chen, Brown, Song (b0025) 2000; 39
Su, Song, Cao (b0050) 2004; 43
Da, Gai (b0080) 2008; 47
Li, Su, Wu (b0055) 2006; 53
Li, Su (b0125) 2002; 41
Su, Xue (b0120) 2001; 40
Cusack, Huntley, Goldrein (b0115) 1995; 28
Takeda, Mutoh (b0060) 1983; 22
Hung (10.1016/j.optlastec.2018.06.049_b0040) 2000; 39
Chen (10.1016/j.optlastec.2018.06.049_b0025) 2000; 39
Peng (10.1016/j.optlastec.2018.06.049_b0145) 2016; 64
Burke (10.1016/j.optlastec.2018.06.049_b0010) 2002; 4778
Zhu (10.1016/j.optlastec.2018.06.049_b0140) 2017; 64
Li (10.1016/j.optlastec.2018.06.049_b0055) 2006; 53
Zhao (10.1016/j.optlastec.2018.06.049_b0155) 2017; 56
Zhou (10.1016/j.optlastec.2018.06.049_b0095) 1994; 41
Su (10.1016/j.optlastec.2018.06.049_b0110) 2001; 35
Li (10.1016/j.optlastec.2018.06.049_b0125) 2002; 41
Takeda (10.1016/j.optlastec.2018.06.049_b0060) 1983; 22
Wen (10.1016/j.optlastec.2018.06.049_b0075) 2010; 49
Cusack (10.1016/j.optlastec.2018.06.049_b0115) 1995; 28
Su (10.1016/j.optlastec.2018.06.049_b0050) 2004; 43
Su (10.1016/j.optlastec.2018.06.049_b0120) 2001; 40
Xu (10.1016/j.optlastec.2018.06.049_b0015) 2011; 49
Mei (10.1016/j.optlastec.2018.06.049_b0020) 2010; 141
Spagnolo (10.1016/j.optlastec.2018.06.049_b0135) 2000; 33
Tavares (10.1016/j.optlastec.2018.06.049_b0070) 2007; 274
Xiao (10.1016/j.optlastec.2018.06.049_b0100) 2012; 51
Bi (10.1016/j.optlastec.2018.06.049_b0085) 2007; 14
Yu (10.1016/j.optlastec.2018.06.049_b0130) 2007; 45
Hanafi (10.1016/j.optlastec.2018.06.049_b0005) 2005; 44
Srinivasan (10.1016/j.optlastec.2018.06.049_b0035) 1985; 24
Da (10.1016/j.optlastec.2018.06.049_b0080) 2008; 47
Chen (10.1016/j.optlastec.2018.06.049_b0150) 2015; 336
Mao (10.1016/j.optlastec.2018.06.049_b0105) 2007; 46
Srinivasan (10.1016/j.optlastec.2018.06.049_b0030) 1984; 23
Guo (10.1016/j.optlastec.2018.06.049_b0045) 2005; 44
Li (10.1016/j.optlastec.2018.06.049_b0090) 2001; 40
Zappa (10.1016/j.optlastec.2018.06.049_b0065) 2009; 47
References_xml – volume: 141
  start-page: 558
  year: 2010
  end-page: 576
  ident: b0020
  article-title: Fine topographic mapping based on ground three-dimensional laser scanning
  publication-title: Bullet. Surv. Map.
– volume: 46
  start-page: 664
  year: 2007
  end-page: 668
  ident: b0105
  article-title: Improved Fourier-transform profilometry
  publication-title: Appl. Opt.
– volume: 56
  start-page: 1
  year: 2017
  ident: b0155
  article-title: Discussion on accurate phase–height mapping in fringe projection profilometry
  publication-title: Opt. Eng.
– volume: 47
  start-page: 377
  year: 2008
  end-page: 385
  ident: b0080
  article-title: Flexible three-dimensional measurement technique based on a digital light processing projector
  publication-title: Appl. Opt.
– volume: 64
  start-page: 379
  year: 2016
  end-page: 387
  ident: b0145
  article-title: A new method using orthogonal two-frequency grating in online 3D measurement
  publication-title: Opt. Laser Technol.
– volume: 40
  start-page: 637
  year: 2001
  end-page: 643
  ident: b0120
  article-title: Phase unwrapping algorithm based on fringe frequency analysis in Fourier-transform profilometry
  publication-title: Opt. Eng.
– volume: 53
  start-page: 1955
  year: 2006
  end-page: 1964
  ident: b0055
  article-title: Accurate phase-to-height mapping algorithm for PMP
  publication-title: J. Mod. Opt.
– volume: 64
  start-page: 379
  year: 2017
  end-page: 387
  ident: b0140
  article-title: Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration
  publication-title: J. Mod. Opt.
– volume: 28
  start-page: 3268
  year: 1995
  end-page: 3270
  ident: b0115
  article-title: Improved noise-immune phase-unwrapping algorithm
  publication-title: Appl. Opt.
– volume: 14
  start-page: 12122
  year: 2007
  end-page: 12133
  ident: b0085
  article-title: Out-of-plane shape determination in generalized fringe projection profilometry
  publication-title: Opt. Express
– volume: 40
  start-page: 3326
  year: 2001
  end-page: 3333
  ident: b0090
  article-title: Large-scale three-dimensional object measurement: a practical coordinate mapping and image data-patching method
  publication-title: Appl. Opt.
– volume: 44
  year: 2005
  ident: b0045
  article-title: Least-squares calibration method for fringe projection profilometry
  publication-title: Opt. Eng.
– volume: 4778
  start-page: 312
  year: 2002
  end-page: 324
  ident: b0010
  article-title: Reverse engineering by fringe projection
  publication-title: Proc. SPIE - Int. Soc. Opt. Eng.
– volume: 41
  start-page: 89
  year: 1994
  end-page: 94
  ident: b0095
  article-title: A direct mapping algorithm for phase-measuring profilometry
  publication-title: J. Mod. Opt.
– volume: 39
  start-page: 143
  year: 2000
  end-page: 149
  ident: b0040
  article-title: Practical three-dimensional computer vision techniques for full-field surface measurement
  publication-title: Opt. Eng.
– volume: 49
  start-page: 6563
  year: 2010
  end-page: 6569
  ident: b0075
  article-title: Universial calculation formula and calibration method in Fourier transform profilometry
  publication-title: Appl. Opt.
– volume: 45
  start-page: 730
  year: 2007
  end-page: 736
  ident: b0130
  article-title: A correlation-based phase unwrapping method for Fourier-transform profilometry
  publication-title: Opt. Lasers Eng.
– volume: 33
  start-page: 141
  year: 2000
  end-page: 156
  ident: b0135
  article-title: Contouring of artwork surface by fringe projection and FFT analysis
  publication-title: Opt. Lasers Eng.
– volume: 39
  start-page: 10
  year: 2000
  end-page: 22
  ident: b0025
  article-title: Overview of three-dimensional shape measurement using optical methods
  publication-title: Opt. Eng.
– volume: 51
  start-page: 1149
  year: 2012
  end-page: 1155
  ident: b0100
  article-title: Improved algorithm for phase-to-height mapping in phase measuring profilometry
  publication-title: Appl. Opt.
– volume: 43
  start-page: 708
  year: 2004
  end-page: 712
  ident: b0050
  article-title: Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry
  publication-title: Opt. Eng.
– volume: 47
  start-page: 754
  year: 2009
  end-page: 767
  ident: b0065
  article-title: Fourier-transform profilometry calibration based on an exhaustive geometric model of the system
  publication-title: Opt. Lasers Eng.
– volume: 274
  start-page: 307
  year: 2007
  end-page: 314
  ident: b0070
  article-title: Linear calibration procedure for the phase-to-height relationship in phase measurement profilometry
  publication-title: Opt. Commun.
– volume: 41
  start-page: 1365
  year: 2002
  end-page: 1372
  ident: b0125
  article-title: Phase unwrapping algorithm based on phase fitting reliability in structured light projection
  publication-title: Opt. Eng.
– volume: 44
  start-page: 2266
  year: 2005
  end-page: 2273
  ident: b0005
  article-title: In vivo measurement of lower back deformations with Fourier-transform profilometry
  publication-title: Appl. Opt.
– volume: 49
  start-page: 907
  year: 2011
  end-page: 914
  ident: b0015
  article-title: Rapid 3D surface profile measurement of industrial parts using two-level structured light patterns
  publication-title: Opt. Lasers Eng.
– volume: 23
  start-page: 3105
  year: 1984
  end-page: 3108
  ident: b0030
  article-title: Automated phase-measuring profilometry of 3-D diffuse objects
  publication-title: Appl. Opt.
– volume: 35
  start-page: 263
  year: 2001
  end-page: 284
  ident: b0110
  article-title: Fourier transform profilometry: a review
  publication-title: Opt. Lasers Eng.
– volume: 24
  start-page: 185
  year: 1985
  end-page: 188
  ident: b0035
  article-title: Automated phase-measuring profilometry: a phase mapping approach
  publication-title: Appl. Opt.
– volume: 22
  start-page: 3977
  year: 1983
  end-page: 3982
  ident: b0060
  article-title: Fourier transform profilmetry for the automatic measurement of 3-D object shapes
  publication-title: Appl. Opt.
– volume: 336
  start-page: 301
  year: 2015
  end-page: 305
  ident: b0150
  article-title: An on-line phase measuring profilometry for objects moving with straight-line motion
  publication-title: Opt. Commun.
– volume: 44
  issue: 3
  year: 2005
  ident: 10.1016/j.optlastec.2018.06.049_b0045
  article-title: Least-squares calibration method for fringe projection profilometry
  publication-title: Opt. Eng.
  doi: 10.1117/1.1871832
– volume: 46
  start-page: 664
  issue: 5
  year: 2007
  ident: 10.1016/j.optlastec.2018.06.049_b0105
  article-title: Improved Fourier-transform profilometry
  publication-title: Appl. Opt.
  doi: 10.1364/AO.46.000664
– volume: 43
  start-page: 708
  issue: 3
  year: 2004
  ident: 10.1016/j.optlastec.2018.06.049_b0050
  article-title: Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry
  publication-title: Opt. Eng.
  doi: 10.1117/1.1646178
– volume: 33
  start-page: 141
  issue: 2
  year: 2000
  ident: 10.1016/j.optlastec.2018.06.049_b0135
  article-title: Contouring of artwork surface by fringe projection and FFT analysis
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/S0143-8166(00)00023-3
– volume: 28
  start-page: 3268
  issue: 16
  year: 1995
  ident: 10.1016/j.optlastec.2018.06.049_b0115
  article-title: Improved noise-immune phase-unwrapping algorithm
  publication-title: Appl. Opt.
– volume: 41
  start-page: 89
  issue: 1
  year: 1994
  ident: 10.1016/j.optlastec.2018.06.049_b0095
  article-title: A direct mapping algorithm for phase-measuring profilometry
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500349414550101
– volume: 14
  start-page: 12122
  issue: 25
  year: 2007
  ident: 10.1016/j.optlastec.2018.06.049_b0085
  article-title: Out-of-plane shape determination in generalized fringe projection profilometry
  publication-title: Opt. Express
– volume: 51
  start-page: 1149
  issue: 8
  year: 2012
  ident: 10.1016/j.optlastec.2018.06.049_b0100
  article-title: Improved algorithm for phase-to-height mapping in phase measuring profilometry
  publication-title: Appl. Opt.
  doi: 10.1364/AO.51.001149
– volume: 4778
  start-page: 312
  year: 2002
  ident: 10.1016/j.optlastec.2018.06.049_b0010
  article-title: Reverse engineering by fringe projection
  publication-title: Proc. SPIE - Int. Soc. Opt. Eng.
– volume: 141
  start-page: 558
  issue: 3
  year: 2010
  ident: 10.1016/j.optlastec.2018.06.049_b0020
  article-title: Fine topographic mapping based on ground three-dimensional laser scanning
  publication-title: Bullet. Surv. Map.
– volume: 22
  start-page: 3977
  issue: 24
  year: 1983
  ident: 10.1016/j.optlastec.2018.06.049_b0060
  article-title: Fourier transform profilmetry for the automatic measurement of 3-D object shapes
  publication-title: Appl. Opt.
  doi: 10.1364/AO.22.003977
– volume: 40
  start-page: 3326
  issue: 20
  year: 2001
  ident: 10.1016/j.optlastec.2018.06.049_b0090
  article-title: Large-scale three-dimensional object measurement: a practical coordinate mapping and image data-patching method
  publication-title: Appl. Opt.
  doi: 10.1364/AO.40.003326
– volume: 23
  start-page: 3105
  issue: 18
  year: 1984
  ident: 10.1016/j.optlastec.2018.06.049_b0030
  article-title: Automated phase-measuring profilometry of 3-D diffuse objects
  publication-title: Appl. Opt.
  doi: 10.1364/AO.23.003105
– volume: 53
  start-page: 1955
  issue: 14
  year: 2006
  ident: 10.1016/j.optlastec.2018.06.049_b0055
  article-title: Accurate phase-to-height mapping algorithm for PMP
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340600720789
– volume: 336
  start-page: 301
  year: 2015
  ident: 10.1016/j.optlastec.2018.06.049_b0150
  article-title: An on-line phase measuring profilometry for objects moving with straight-line motion
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2014.09.003
– volume: 274
  start-page: 307
  issue: 2
  year: 2007
  ident: 10.1016/j.optlastec.2018.06.049_b0070
  article-title: Linear calibration procedure for the phase-to-height relationship in phase measurement profilometry
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2007.02.038
– volume: 24
  start-page: 185
  issue: 2
  year: 1985
  ident: 10.1016/j.optlastec.2018.06.049_b0035
  article-title: Automated phase-measuring profilometry: a phase mapping approach
  publication-title: Appl. Opt.
  doi: 10.1364/AO.24.000185
– volume: 64
  start-page: 379
  issue: 4
  year: 2017
  ident: 10.1016/j.optlastec.2018.06.049_b0140
  article-title: Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340.2016.1240250
– volume: 56
  start-page: 1
  issue: 10
  year: 2017
  ident: 10.1016/j.optlastec.2018.06.049_b0155
  article-title: Discussion on accurate phase–height mapping in fringe projection profilometry
  publication-title: Opt. Eng.
– volume: 49
  start-page: 6563
  issue: 34
  year: 2010
  ident: 10.1016/j.optlastec.2018.06.049_b0075
  article-title: Universial calculation formula and calibration method in Fourier transform profilometry
  publication-title: Appl. Opt.
  doi: 10.1364/AO.49.006563
– volume: 64
  start-page: 379
  issue: 4
  year: 2016
  ident: 10.1016/j.optlastec.2018.06.049_b0145
  article-title: A new method using orthogonal two-frequency grating in online 3D measurement
  publication-title: Opt. Laser Technol.
– volume: 49
  start-page: 907
  issue: 7
  year: 2011
  ident: 10.1016/j.optlastec.2018.06.049_b0015
  article-title: Rapid 3D surface profile measurement of industrial parts using two-level structured light patterns
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2011.02.010
– volume: 39
  start-page: 143
  issue: 1
  year: 2000
  ident: 10.1016/j.optlastec.2018.06.049_b0040
  article-title: Practical three-dimensional computer vision techniques for full-field surface measurement
  publication-title: Opt. Eng.
  doi: 10.1117/1.602345
– volume: 39
  start-page: 10
  issue: 1
  year: 2000
  ident: 10.1016/j.optlastec.2018.06.049_b0025
  article-title: Overview of three-dimensional shape measurement using optical methods
  publication-title: Opt. Eng.
  doi: 10.1117/1.602438
– volume: 47
  start-page: 754
  issue: 7
  year: 2009
  ident: 10.1016/j.optlastec.2018.06.049_b0065
  article-title: Fourier-transform profilometry calibration based on an exhaustive geometric model of the system
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2009.03.001
– volume: 41
  start-page: 1365
  issue: 6
  year: 2002
  ident: 10.1016/j.optlastec.2018.06.049_b0125
  article-title: Phase unwrapping algorithm based on phase fitting reliability in structured light projection
  publication-title: Opt. Eng.
  doi: 10.1117/1.1477439
– volume: 35
  start-page: 263
  issue: 5
  year: 2001
  ident: 10.1016/j.optlastec.2018.06.049_b0110
  article-title: Fourier transform profilometry: a review
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/S0143-8166(01)00023-9
– volume: 40
  start-page: 637
  issue: 4
  year: 2001
  ident: 10.1016/j.optlastec.2018.06.049_b0120
  article-title: Phase unwrapping algorithm based on fringe frequency analysis in Fourier-transform profilometry
  publication-title: Opt. Eng.
  doi: 10.1117/1.1355253
– volume: 44
  start-page: 2266
  issue: 12
  year: 2005
  ident: 10.1016/j.optlastec.2018.06.049_b0005
  article-title: In vivo measurement of lower back deformations with Fourier-transform profilometry
  publication-title: Appl. Opt.
  doi: 10.1364/AO.44.002266
– volume: 45
  start-page: 730
  issue: 6
  year: 2007
  ident: 10.1016/j.optlastec.2018.06.049_b0130
  article-title: A correlation-based phase unwrapping method for Fourier-transform profilometry
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2006.10.006
– volume: 47
  start-page: 377
  issue: 3
  year: 2008
  ident: 10.1016/j.optlastec.2018.06.049_b0080
  article-title: Flexible three-dimensional measurement technique based on a digital light processing projector
  publication-title: Appl. Opt.
  doi: 10.1364/AO.47.000377
SSID ssj0004653
Score 2.4896235
Snippet •A more universal phase-to-height mapping is derived.•The derived mapping are dependent on both structure and phase of reference plane.•The traditional mapping...
In traditional phase measuring profilometry (PMP) setup, the connecting line between the exit pupil center of projector and entrance pupil center of CCD camera...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 46
SubjectTerms Algorithms
Axes (reference lines)
CCD cameras
Coefficients
Entrances
Experiments
Mapping
Measurement
Parameters
Phase distribution
Phase measuring profilometry
Phase-to-height mapping algorithm
Phases shifting
Three-dimensional measurement
Topography
Title Intrinsic feature revelation of phase-to-height mapping in phase measuring profilometry
URI https://dx.doi.org/10.1016/j.optlastec.2018.06.049
https://www.proquest.com/docview/2116839855
Volume 108
WOSCitedRecordID wos000443664100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2545
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004653
  issn: 0030-3992
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfKBhI8IBggBgP5gbcqU-LEsc3bhIYYEgPE0LqnKHFs1mlNojabxgfge3P-k6TtQAMhXqLKjlPbd7k7X-5-h9CrgqRxmsg4IGWqgqQ0kLcEDitFCeqtUCkTOrTFJtjhIZ9MxKfR6EeXC3N5zqqKX12J5r-SGtqA2CZ19i_I3T8UGuA3EB2uQHa4_hHhD6p2Pq1g88daWdROk57iQ95sfPMpKK6grYNT6xUdz_Km8Ykttms8s25Dl6VuCnrXM9WuJk5_bHpwZzC-1XzcXnPQf7BG6efpRTWEAuXWLXtiqmV_G8IKlP_sr4bGY-eVPYH7vnf3es9ExNeiPPqUmSE-yYrgGAS_cAXwdpWTupyJAE6qdEUsh3xJsHo_pVPRDvP2mvB3foiz3bppYfGwchO55-BZHSzqGrL2FzMXM5WIme_BhN5Cm4RRAfJ9c-9gf_J-KcHWw5n6ua8ECv7y735n5qwpfGvFHD1A9_3xA-85tnmIRqraQveWQCm30B0bFCwXj9Bxz0rYsxIeWAnXGq-xEvashKeV68I9K-FlVnqMvr7dP3rzLvCFOAIZJ3EbyJCqSMLBXKSSGEjKlKqcCCXDktGSKFIqnkslEpVyIWNTAE1GsgypTpiOCx0_QRtVXamnCGuWg0le6iSU0FloTnIdGTORcgn6JNpGabdvmfQo9aZYynnWhSOeZf2GZ2bDMxOYmYhtFPYDGwfUcvOQ1x1hMm9vOjsyA466efBOR8rMv_2LjERRCsvjlD77l2c_R3eH92kHbbTzC_UC3ZaX7XQxf-mZ8ycQcbcJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+feature+revelation+of+phase-to-height+mapping+in+phase+measuring+profilometry&rft.jtitle=Optics+and+laser+technology&rft.au=Ma%2C+Qiuna&rft.au=Cao%2C+Yiping&rft.au=Chen%2C+Cheng&rft.au=Wan%2C+Yingying&rft.date=2018-12-01&rft.pub=Elsevier+Ltd&rft.issn=0030-3992&rft.eissn=1879-2545&rft.volume=108&rft.spage=46&rft.epage=52&rft_id=info:doi/10.1016%2Fj.optlastec.2018.06.049&rft.externalDocID=S0030399217309325
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon