Intrinsic feature revelation of phase-to-height mapping in phase measuring profilometry
•A more universal phase-to-height mapping is derived.•The derived mapping are dependent on both structure and phase of reference plane.•The traditional mapping is just a special case of it.•It provides a way to improve the accuracy of PMP. In traditional phase measuring profilometry (PMP) setup, the...
Uloženo v:
| Vydáno v: | Optics and laser technology Ročník 108; s. 46 - 52 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier Ltd
01.12.2018
Elsevier BV |
| Témata: | |
| ISSN: | 0030-3992, 1879-2545 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A more universal phase-to-height mapping is derived.•The derived mapping are dependent on both structure and phase of reference plane.•The traditional mapping is just a special case of it.•It provides a way to improve the accuracy of PMP.
In traditional phase measuring profilometry (PMP) setup, the connecting line between the exit pupil center of projector and entrance pupil center of CCD camera must parallel to the reference plane and the optical axes of projector and CCD camera must intersect at the same point on the reference plane. At this condition, the coefficients of phase-to-height mapping are constants because they are proved to be only dependent on the structural parameters. But lots of experimental results show that some of coefficients are not constants. Further analyzing this phenomenon, it is found that the above two restricted conditions can hardly to be guaranteed due to the invisible of the exit pupil, the entrance pupil and the optical axes. The more popular situation is that the above connecting line may not parallel to the reference plane and the above optical axes do not intersect on the reference plane. So a new universal mapping algorithm is derived at this situation. It reveals some of coefficients of the mapping really remain constants which are dependent on only the structural parameters, while some of coefficients are really not constants which are dependent on not only the structural parameters but also the phase distribution of the reference plane. It also reveals that the traditional mapping algorithm is just a special case of the derived mapping algorithm. Furthermore, it reveals that the accuracy of PMP can be improved distinctly by calibrating the phase of the reference plane. Experimental results have shown the feasibility and validity of the derived phase-to-height mapping algorithm. |
|---|---|
| AbstractList | •A more universal phase-to-height mapping is derived.•The derived mapping are dependent on both structure and phase of reference plane.•The traditional mapping is just a special case of it.•It provides a way to improve the accuracy of PMP.
In traditional phase measuring profilometry (PMP) setup, the connecting line between the exit pupil center of projector and entrance pupil center of CCD camera must parallel to the reference plane and the optical axes of projector and CCD camera must intersect at the same point on the reference plane. At this condition, the coefficients of phase-to-height mapping are constants because they are proved to be only dependent on the structural parameters. But lots of experimental results show that some of coefficients are not constants. Further analyzing this phenomenon, it is found that the above two restricted conditions can hardly to be guaranteed due to the invisible of the exit pupil, the entrance pupil and the optical axes. The more popular situation is that the above connecting line may not parallel to the reference plane and the above optical axes do not intersect on the reference plane. So a new universal mapping algorithm is derived at this situation. It reveals some of coefficients of the mapping really remain constants which are dependent on only the structural parameters, while some of coefficients are really not constants which are dependent on not only the structural parameters but also the phase distribution of the reference plane. It also reveals that the traditional mapping algorithm is just a special case of the derived mapping algorithm. Furthermore, it reveals that the accuracy of PMP can be improved distinctly by calibrating the phase of the reference plane. Experimental results have shown the feasibility and validity of the derived phase-to-height mapping algorithm. In traditional phase measuring profilometry (PMP) setup, the connecting line between the exit pupil center of projector and entrance pupil center of CCD camera must parallel to the reference plane and the optical axes of projector and CCD camera must intersect at the same point on the reference plane. At this condition, the coefficients of phase-to-height mapping are constants because they are proved to be only dependent on the structural parameters. But lots of experimental results show that some of coefficients are not constants. Further analyzing this phenomenon, it is found that the above two restricted conditions can hardly to be guaranteed due to the invisible of the exit pupil, the entrance pupil and the optical axes. The more popular situation is that the above connecting line may not parallel to the reference plane and the above optical axes do not intersect on the reference plane. So a new universal mapping algorithm is derived at this situation. It reveals some of coefficients of the mapping really remain constants which are dependent on only the structural parameters, while some of coefficients are really not constants which are dependent on not only the structural parameters but also the phase distribution of the reference plane. It also reveals that the traditional mapping algorithm is just a special case of the derived mapping algorithm. Furthermore, it reveals that the accuracy of PMP can be improved distinctly by calibrating the phase of the reference plane. Experimental results have shown the feasibility and validity of the derived phase-to-height mapping algorithm. |
| Author | Wang, Yapin Ma, Qiuna Wan, Yingying Fu, Guangkai Cao, Yiping Chen, Cheng |
| Author_xml | – sequence: 1 givenname: Qiuna surname: Ma fullname: Ma, Qiuna – sequence: 2 givenname: Yiping surname: Cao fullname: Cao, Yiping email: ypcao@scu.edu.cn – sequence: 3 givenname: Cheng surname: Chen fullname: Chen, Cheng – sequence: 4 givenname: Yingying surname: Wan fullname: Wan, Yingying – sequence: 5 givenname: Guangkai surname: Fu fullname: Fu, Guangkai – sequence: 6 givenname: Yapin surname: Wang fullname: Wang, Yapin |
| BookMark | eNqNkE1LAzEQhoMo2FZ_gwued50km3Rz8CDiFxS8KB5DzM7alG2yJmnBf-_WigcvehqYeT-YZ0oOffBIyBmFigKVF6sqDLk3KaOtGNCmAllBrQ7IhDZzVTJRi0MyAeBQcqXYMZmmtAKAWgo-IS8PPkfnk7NFhyZvIhYRt9ib7IIvQlcMS5OwzKFcontb5mJthsH5t8L5_alYo0mbuFsNMXSuD2vM8eOEHHWmT3j6PWfk-fbm6fq-XDzePVxfLUrLa55LCwKpVapR0jIqQEqBhim00M5Fy5C12BiLqkbZKMuZYmCpbUF09bzjrx2fkfN97lj-vsGU9Spsoh8rNaNUNlw1Qoyqy73KxpBSxE5bl79ezNG4XlPQO5Z6pX9Y6h1LDVKPLEf__Jd_iG5t4sc_nFd7J44Qtg6jTtaht9i6iDbrNrg_Mz4BBKSYQw |
| CitedBy_id | crossref_primary_10_1109_TIM_2023_3252627 crossref_primary_10_1016_j_optcom_2025_131591 crossref_primary_10_1109_TIM_2024_3415794 crossref_primary_10_1117_1_OE_63_10_104106 crossref_primary_10_1016_j_patcog_2024_110937 crossref_primary_10_1117_1_OE_62_1_014107 crossref_primary_10_1016_j_neucom_2025_129908 crossref_primary_10_1016_j_optlastec_2024_111758 crossref_primary_10_1016_j_optcom_2024_130309 crossref_primary_10_1364_AO_470733 crossref_primary_10_1364_AO_412291 crossref_primary_10_1016_j_optlaseng_2025_108968 crossref_primary_10_1109_TIM_2022_3189639 crossref_primary_10_1016_j_optlaseng_2024_108167 crossref_primary_10_1016_j_optlastec_2023_109989 crossref_primary_10_1007_s10043_021_00686_0 crossref_primary_10_1016_j_sna_2024_115847 crossref_primary_10_3390_s22072498 crossref_primary_10_3390_photonics11080758 crossref_primary_10_1109_TIP_2023_3244650 crossref_primary_10_1109_TIM_2022_3210959 crossref_primary_10_1016_j_autcon_2022_104424 crossref_primary_10_3390_app11062536 crossref_primary_10_3390_app11062805 crossref_primary_10_1016_j_optlaseng_2022_106990 crossref_primary_10_32604_cmc_2023_037254 crossref_primary_10_1016_j_measurement_2025_119017 crossref_primary_10_1038_s41598_020_74167_w crossref_primary_10_1088_1361_6501_adb871 crossref_primary_10_1016_j_optlaseng_2023_107741 crossref_primary_10_1016_j_optlaseng_2025_109289 crossref_primary_10_1016_j_optlaseng_2022_107004 crossref_primary_10_1016_j_optlastec_2023_110248 crossref_primary_10_1016_j_optlastec_2025_113916 crossref_primary_10_1364_AO_478394 crossref_primary_10_1016_j_optlaseng_2021_106638 crossref_primary_10_1016_j_optlastec_2023_109137 crossref_primary_10_3390_app11062522 crossref_primary_10_1364_AO_435462 crossref_primary_10_1016_j_ijleo_2021_167895 crossref_primary_10_1016_j_optcom_2022_128280 crossref_primary_10_1016_j_measurement_2024_114209 crossref_primary_10_1016_j_ijleo_2023_170665 crossref_primary_10_1038_s41598_021_99420_8 crossref_primary_10_1016_j_optcom_2021_127381 crossref_primary_10_1117_1_OE_63_1_014101 crossref_primary_10_1016_j_sna_2024_115054 crossref_primary_10_1016_j_optlastec_2022_107955 crossref_primary_10_1016_j_ijleo_2020_164711 crossref_primary_10_1109_TIM_2024_3378259 crossref_primary_10_1364_AO_59_000092 crossref_primary_10_1364_AO_431257 crossref_primary_10_1016_j_optlastec_2023_109201 crossref_primary_10_1016_j_measurement_2025_117886 crossref_primary_10_1016_j_patcog_2025_112366 crossref_primary_10_1089_3dp_2023_0166 crossref_primary_10_1117_1_OE_62_7_074103 crossref_primary_10_1109_TIM_2025_3565071 crossref_primary_10_1016_j_measurement_2022_111606 crossref_primary_10_1016_j_optcom_2022_128763 crossref_primary_10_1016_j_optlastec_2019_05_014 crossref_primary_10_1109_TIM_2025_3547497 crossref_primary_10_1038_s41598_021_90522_x crossref_primary_10_1016_j_optcom_2023_129276 crossref_primary_10_1016_j_optcom_2019_124565 crossref_primary_10_1016_j_ijleo_2023_170650 crossref_primary_10_1016_j_optcom_2020_126343 crossref_primary_10_1109_TIP_2024_3381773 crossref_primary_10_1016_j_eswa_2023_121067 crossref_primary_10_1016_j_measurement_2024_116182 crossref_primary_10_1109_TIM_2025_3597673 crossref_primary_10_1088_2040_8986_ac0fc0 crossref_primary_10_1109_TIM_2023_3318738 crossref_primary_10_1016_j_measurement_2023_113292 crossref_primary_10_1016_j_optcom_2023_129556 |
| Cites_doi | 10.1117/1.1871832 10.1364/AO.46.000664 10.1117/1.1646178 10.1016/S0143-8166(00)00023-3 10.1080/09500349414550101 10.1364/AO.51.001149 10.1364/AO.22.003977 10.1364/AO.40.003326 10.1364/AO.23.003105 10.1080/09500340600720789 10.1016/j.optcom.2014.09.003 10.1016/j.optcom.2007.02.038 10.1364/AO.24.000185 10.1080/09500340.2016.1240250 10.1364/AO.49.006563 10.1016/j.optlaseng.2011.02.010 10.1117/1.602345 10.1117/1.602438 10.1016/j.optlaseng.2009.03.001 10.1117/1.1477439 10.1016/S0143-8166(01)00023-9 10.1117/1.1355253 10.1364/AO.44.002266 10.1016/j.optlaseng.2006.10.006 10.1364/AO.47.000377 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Dec 2018 |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Dec 2018 |
| DBID | AAYXX CITATION 7SP 7U5 8FD F28 FR3 H8D L7M |
| DOI | 10.1016/j.optlastec.2018.06.049 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1879-2545 |
| EndPage | 52 |
| ExternalDocumentID | 10_1016_j_optlastec_2018_06_049 S0030399217309325 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K TN5 UHS WH7 WUQ XFK ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 7U5 8FD F28 FR3 H8D L7M |
| ID | FETCH-LOGICAL-c343t-c05e1c99896c2150665ea29ec0d75d2e2de8ace94e689c32920c1cd05f47f3bf3 |
| ISICitedReferencesCount | 92 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443664100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0030-3992 |
| IngestDate | Sun Nov 09 06:33:06 EST 2025 Sat Nov 29 07:28:43 EST 2025 Tue Nov 18 22:12:51 EST 2025 Fri Feb 23 02:29:35 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Tra Three-dimensional measurement Phase measuring profilometry SP2 SP1 Prop Phase-to-height mapping algorithm Phases shifting |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c343t-c05e1c99896c2150665ea29ec0d75d2e2de8ace94e689c32920c1cd05f47f3bf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2116839855 |
| PQPubID | 2045422 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_2116839855 crossref_citationtrail_10_1016_j_optlastec_2018_06_049 crossref_primary_10_1016_j_optlastec_2018_06_049 elsevier_sciencedirect_doi_10_1016_j_optlastec_2018_06_049 |
| PublicationCentury | 2000 |
| PublicationDate | December 2018 2018-12-00 20181201 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Optics and laser technology |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Zhou, Su (b0095) 1994; 41 Peng, Cao, Wu (b0145) 2016; 64 Chen, Cao, Zhong (b0150) 2015; 336 Hung, Lin, Shang, Park (b0040) 2000; 39 Zhao, Su, Chen (b0155) 2017; 56 Spagnolo, Guattari, Sapia, Ambrosini (b0135) 2000; 33 Li, Su, Liu (b0090) 2001; 40 Burke, Bothe, Osten, Hess (b0010) 2002; 4778 Zhu, Cao, He (b0140) 2017; 64 Xu, Xi, Zhang, Gao, Shi (b0015) 2011; 49 Guo, He, Yu, Chen (b0045) 2005; 44 Mao, Chen, Su (b0105) 2007; 46 Bi, Du, Wang (b0085) 2007; 14 Xiao, Cao, Wu (b0100) 2012; 51 Zappa, Busca (b0065) 2009; 47 Su, Chen (b0110) 2001; 35 Tavares, Vaz (b0070) 2007; 274 Srinivasan, Liu, Halioua (b0035) 1985; 24 Yu, Peng (b0130) 2007; 45 Mei, Zhou, Zhou (b0020) 2010; 141 Wen, Li, Cheng, Su (b0075) 2010; 49 Srinivasan, Liu, Halioua (b0030) 1984; 23 Hanafi, Gharbi, Cornu (b0005) 2005; 44 Chen, Brown, Song (b0025) 2000; 39 Su, Song, Cao (b0050) 2004; 43 Da, Gai (b0080) 2008; 47 Li, Su, Wu (b0055) 2006; 53 Li, Su (b0125) 2002; 41 Su, Xue (b0120) 2001; 40 Cusack, Huntley, Goldrein (b0115) 1995; 28 Takeda, Mutoh (b0060) 1983; 22 Hung (10.1016/j.optlastec.2018.06.049_b0040) 2000; 39 Chen (10.1016/j.optlastec.2018.06.049_b0025) 2000; 39 Peng (10.1016/j.optlastec.2018.06.049_b0145) 2016; 64 Burke (10.1016/j.optlastec.2018.06.049_b0010) 2002; 4778 Zhu (10.1016/j.optlastec.2018.06.049_b0140) 2017; 64 Li (10.1016/j.optlastec.2018.06.049_b0055) 2006; 53 Zhao (10.1016/j.optlastec.2018.06.049_b0155) 2017; 56 Zhou (10.1016/j.optlastec.2018.06.049_b0095) 1994; 41 Su (10.1016/j.optlastec.2018.06.049_b0110) 2001; 35 Li (10.1016/j.optlastec.2018.06.049_b0125) 2002; 41 Takeda (10.1016/j.optlastec.2018.06.049_b0060) 1983; 22 Wen (10.1016/j.optlastec.2018.06.049_b0075) 2010; 49 Cusack (10.1016/j.optlastec.2018.06.049_b0115) 1995; 28 Su (10.1016/j.optlastec.2018.06.049_b0050) 2004; 43 Su (10.1016/j.optlastec.2018.06.049_b0120) 2001; 40 Xu (10.1016/j.optlastec.2018.06.049_b0015) 2011; 49 Mei (10.1016/j.optlastec.2018.06.049_b0020) 2010; 141 Spagnolo (10.1016/j.optlastec.2018.06.049_b0135) 2000; 33 Tavares (10.1016/j.optlastec.2018.06.049_b0070) 2007; 274 Xiao (10.1016/j.optlastec.2018.06.049_b0100) 2012; 51 Bi (10.1016/j.optlastec.2018.06.049_b0085) 2007; 14 Yu (10.1016/j.optlastec.2018.06.049_b0130) 2007; 45 Hanafi (10.1016/j.optlastec.2018.06.049_b0005) 2005; 44 Srinivasan (10.1016/j.optlastec.2018.06.049_b0035) 1985; 24 Da (10.1016/j.optlastec.2018.06.049_b0080) 2008; 47 Chen (10.1016/j.optlastec.2018.06.049_b0150) 2015; 336 Mao (10.1016/j.optlastec.2018.06.049_b0105) 2007; 46 Srinivasan (10.1016/j.optlastec.2018.06.049_b0030) 1984; 23 Guo (10.1016/j.optlastec.2018.06.049_b0045) 2005; 44 Li (10.1016/j.optlastec.2018.06.049_b0090) 2001; 40 Zappa (10.1016/j.optlastec.2018.06.049_b0065) 2009; 47 |
| References_xml | – volume: 141 start-page: 558 year: 2010 end-page: 576 ident: b0020 article-title: Fine topographic mapping based on ground three-dimensional laser scanning publication-title: Bullet. Surv. Map. – volume: 46 start-page: 664 year: 2007 end-page: 668 ident: b0105 article-title: Improved Fourier-transform profilometry publication-title: Appl. Opt. – volume: 56 start-page: 1 year: 2017 ident: b0155 article-title: Discussion on accurate phase–height mapping in fringe projection profilometry publication-title: Opt. Eng. – volume: 47 start-page: 377 year: 2008 end-page: 385 ident: b0080 article-title: Flexible three-dimensional measurement technique based on a digital light processing projector publication-title: Appl. Opt. – volume: 64 start-page: 379 year: 2016 end-page: 387 ident: b0145 article-title: A new method using orthogonal two-frequency grating in online 3D measurement publication-title: Opt. Laser Technol. – volume: 40 start-page: 637 year: 2001 end-page: 643 ident: b0120 article-title: Phase unwrapping algorithm based on fringe frequency analysis in Fourier-transform profilometry publication-title: Opt. Eng. – volume: 53 start-page: 1955 year: 2006 end-page: 1964 ident: b0055 article-title: Accurate phase-to-height mapping algorithm for PMP publication-title: J. Mod. Opt. – volume: 64 start-page: 379 year: 2017 end-page: 387 ident: b0140 article-title: Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration publication-title: J. Mod. Opt. – volume: 28 start-page: 3268 year: 1995 end-page: 3270 ident: b0115 article-title: Improved noise-immune phase-unwrapping algorithm publication-title: Appl. Opt. – volume: 14 start-page: 12122 year: 2007 end-page: 12133 ident: b0085 article-title: Out-of-plane shape determination in generalized fringe projection profilometry publication-title: Opt. Express – volume: 40 start-page: 3326 year: 2001 end-page: 3333 ident: b0090 article-title: Large-scale three-dimensional object measurement: a practical coordinate mapping and image data-patching method publication-title: Appl. Opt. – volume: 44 year: 2005 ident: b0045 article-title: Least-squares calibration method for fringe projection profilometry publication-title: Opt. Eng. – volume: 4778 start-page: 312 year: 2002 end-page: 324 ident: b0010 article-title: Reverse engineering by fringe projection publication-title: Proc. SPIE - Int. Soc. Opt. Eng. – volume: 41 start-page: 89 year: 1994 end-page: 94 ident: b0095 article-title: A direct mapping algorithm for phase-measuring profilometry publication-title: J. Mod. Opt. – volume: 39 start-page: 143 year: 2000 end-page: 149 ident: b0040 article-title: Practical three-dimensional computer vision techniques for full-field surface measurement publication-title: Opt. Eng. – volume: 49 start-page: 6563 year: 2010 end-page: 6569 ident: b0075 article-title: Universial calculation formula and calibration method in Fourier transform profilometry publication-title: Appl. Opt. – volume: 45 start-page: 730 year: 2007 end-page: 736 ident: b0130 article-title: A correlation-based phase unwrapping method for Fourier-transform profilometry publication-title: Opt. Lasers Eng. – volume: 33 start-page: 141 year: 2000 end-page: 156 ident: b0135 article-title: Contouring of artwork surface by fringe projection and FFT analysis publication-title: Opt. Lasers Eng. – volume: 39 start-page: 10 year: 2000 end-page: 22 ident: b0025 article-title: Overview of three-dimensional shape measurement using optical methods publication-title: Opt. Eng. – volume: 51 start-page: 1149 year: 2012 end-page: 1155 ident: b0100 article-title: Improved algorithm for phase-to-height mapping in phase measuring profilometry publication-title: Appl. Opt. – volume: 43 start-page: 708 year: 2004 end-page: 712 ident: b0050 article-title: Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry publication-title: Opt. Eng. – volume: 47 start-page: 754 year: 2009 end-page: 767 ident: b0065 article-title: Fourier-transform profilometry calibration based on an exhaustive geometric model of the system publication-title: Opt. Lasers Eng. – volume: 274 start-page: 307 year: 2007 end-page: 314 ident: b0070 article-title: Linear calibration procedure for the phase-to-height relationship in phase measurement profilometry publication-title: Opt. Commun. – volume: 41 start-page: 1365 year: 2002 end-page: 1372 ident: b0125 article-title: Phase unwrapping algorithm based on phase fitting reliability in structured light projection publication-title: Opt. Eng. – volume: 44 start-page: 2266 year: 2005 end-page: 2273 ident: b0005 article-title: In vivo measurement of lower back deformations with Fourier-transform profilometry publication-title: Appl. Opt. – volume: 49 start-page: 907 year: 2011 end-page: 914 ident: b0015 article-title: Rapid 3D surface profile measurement of industrial parts using two-level structured light patterns publication-title: Opt. Lasers Eng. – volume: 23 start-page: 3105 year: 1984 end-page: 3108 ident: b0030 article-title: Automated phase-measuring profilometry of 3-D diffuse objects publication-title: Appl. Opt. – volume: 35 start-page: 263 year: 2001 end-page: 284 ident: b0110 article-title: Fourier transform profilometry: a review publication-title: Opt. Lasers Eng. – volume: 24 start-page: 185 year: 1985 end-page: 188 ident: b0035 article-title: Automated phase-measuring profilometry: a phase mapping approach publication-title: Appl. Opt. – volume: 22 start-page: 3977 year: 1983 end-page: 3982 ident: b0060 article-title: Fourier transform profilmetry for the automatic measurement of 3-D object shapes publication-title: Appl. Opt. – volume: 336 start-page: 301 year: 2015 end-page: 305 ident: b0150 article-title: An on-line phase measuring profilometry for objects moving with straight-line motion publication-title: Opt. Commun. – volume: 44 issue: 3 year: 2005 ident: 10.1016/j.optlastec.2018.06.049_b0045 article-title: Least-squares calibration method for fringe projection profilometry publication-title: Opt. Eng. doi: 10.1117/1.1871832 – volume: 46 start-page: 664 issue: 5 year: 2007 ident: 10.1016/j.optlastec.2018.06.049_b0105 article-title: Improved Fourier-transform profilometry publication-title: Appl. Opt. doi: 10.1364/AO.46.000664 – volume: 43 start-page: 708 issue: 3 year: 2004 ident: 10.1016/j.optlastec.2018.06.049_b0050 article-title: Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry publication-title: Opt. Eng. doi: 10.1117/1.1646178 – volume: 33 start-page: 141 issue: 2 year: 2000 ident: 10.1016/j.optlastec.2018.06.049_b0135 article-title: Contouring of artwork surface by fringe projection and FFT analysis publication-title: Opt. Lasers Eng. doi: 10.1016/S0143-8166(00)00023-3 – volume: 28 start-page: 3268 issue: 16 year: 1995 ident: 10.1016/j.optlastec.2018.06.049_b0115 article-title: Improved noise-immune phase-unwrapping algorithm publication-title: Appl. Opt. – volume: 41 start-page: 89 issue: 1 year: 1994 ident: 10.1016/j.optlastec.2018.06.049_b0095 article-title: A direct mapping algorithm for phase-measuring profilometry publication-title: J. Mod. Opt. doi: 10.1080/09500349414550101 – volume: 14 start-page: 12122 issue: 25 year: 2007 ident: 10.1016/j.optlastec.2018.06.049_b0085 article-title: Out-of-plane shape determination in generalized fringe projection profilometry publication-title: Opt. Express – volume: 51 start-page: 1149 issue: 8 year: 2012 ident: 10.1016/j.optlastec.2018.06.049_b0100 article-title: Improved algorithm for phase-to-height mapping in phase measuring profilometry publication-title: Appl. Opt. doi: 10.1364/AO.51.001149 – volume: 4778 start-page: 312 year: 2002 ident: 10.1016/j.optlastec.2018.06.049_b0010 article-title: Reverse engineering by fringe projection publication-title: Proc. SPIE - Int. Soc. Opt. Eng. – volume: 141 start-page: 558 issue: 3 year: 2010 ident: 10.1016/j.optlastec.2018.06.049_b0020 article-title: Fine topographic mapping based on ground three-dimensional laser scanning publication-title: Bullet. Surv. Map. – volume: 22 start-page: 3977 issue: 24 year: 1983 ident: 10.1016/j.optlastec.2018.06.049_b0060 article-title: Fourier transform profilmetry for the automatic measurement of 3-D object shapes publication-title: Appl. Opt. doi: 10.1364/AO.22.003977 – volume: 40 start-page: 3326 issue: 20 year: 2001 ident: 10.1016/j.optlastec.2018.06.049_b0090 article-title: Large-scale three-dimensional object measurement: a practical coordinate mapping and image data-patching method publication-title: Appl. Opt. doi: 10.1364/AO.40.003326 – volume: 23 start-page: 3105 issue: 18 year: 1984 ident: 10.1016/j.optlastec.2018.06.049_b0030 article-title: Automated phase-measuring profilometry of 3-D diffuse objects publication-title: Appl. Opt. doi: 10.1364/AO.23.003105 – volume: 53 start-page: 1955 issue: 14 year: 2006 ident: 10.1016/j.optlastec.2018.06.049_b0055 article-title: Accurate phase-to-height mapping algorithm for PMP publication-title: J. Mod. Opt. doi: 10.1080/09500340600720789 – volume: 336 start-page: 301 year: 2015 ident: 10.1016/j.optlastec.2018.06.049_b0150 article-title: An on-line phase measuring profilometry for objects moving with straight-line motion publication-title: Opt. Commun. doi: 10.1016/j.optcom.2014.09.003 – volume: 274 start-page: 307 issue: 2 year: 2007 ident: 10.1016/j.optlastec.2018.06.049_b0070 article-title: Linear calibration procedure for the phase-to-height relationship in phase measurement profilometry publication-title: Opt. Commun. doi: 10.1016/j.optcom.2007.02.038 – volume: 24 start-page: 185 issue: 2 year: 1985 ident: 10.1016/j.optlastec.2018.06.049_b0035 article-title: Automated phase-measuring profilometry: a phase mapping approach publication-title: Appl. Opt. doi: 10.1364/AO.24.000185 – volume: 64 start-page: 379 issue: 4 year: 2017 ident: 10.1016/j.optlastec.2018.06.049_b0140 article-title: Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration publication-title: J. Mod. Opt. doi: 10.1080/09500340.2016.1240250 – volume: 56 start-page: 1 issue: 10 year: 2017 ident: 10.1016/j.optlastec.2018.06.049_b0155 article-title: Discussion on accurate phase–height mapping in fringe projection profilometry publication-title: Opt. Eng. – volume: 49 start-page: 6563 issue: 34 year: 2010 ident: 10.1016/j.optlastec.2018.06.049_b0075 article-title: Universial calculation formula and calibration method in Fourier transform profilometry publication-title: Appl. Opt. doi: 10.1364/AO.49.006563 – volume: 64 start-page: 379 issue: 4 year: 2016 ident: 10.1016/j.optlastec.2018.06.049_b0145 article-title: A new method using orthogonal two-frequency grating in online 3D measurement publication-title: Opt. Laser Technol. – volume: 49 start-page: 907 issue: 7 year: 2011 ident: 10.1016/j.optlastec.2018.06.049_b0015 article-title: Rapid 3D surface profile measurement of industrial parts using two-level structured light patterns publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2011.02.010 – volume: 39 start-page: 143 issue: 1 year: 2000 ident: 10.1016/j.optlastec.2018.06.049_b0040 article-title: Practical three-dimensional computer vision techniques for full-field surface measurement publication-title: Opt. Eng. doi: 10.1117/1.602345 – volume: 39 start-page: 10 issue: 1 year: 2000 ident: 10.1016/j.optlastec.2018.06.049_b0025 article-title: Overview of three-dimensional shape measurement using optical methods publication-title: Opt. Eng. doi: 10.1117/1.602438 – volume: 47 start-page: 754 issue: 7 year: 2009 ident: 10.1016/j.optlastec.2018.06.049_b0065 article-title: Fourier-transform profilometry calibration based on an exhaustive geometric model of the system publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2009.03.001 – volume: 41 start-page: 1365 issue: 6 year: 2002 ident: 10.1016/j.optlastec.2018.06.049_b0125 article-title: Phase unwrapping algorithm based on phase fitting reliability in structured light projection publication-title: Opt. Eng. doi: 10.1117/1.1477439 – volume: 35 start-page: 263 issue: 5 year: 2001 ident: 10.1016/j.optlastec.2018.06.049_b0110 article-title: Fourier transform profilometry: a review publication-title: Opt. Lasers Eng. doi: 10.1016/S0143-8166(01)00023-9 – volume: 40 start-page: 637 issue: 4 year: 2001 ident: 10.1016/j.optlastec.2018.06.049_b0120 article-title: Phase unwrapping algorithm based on fringe frequency analysis in Fourier-transform profilometry publication-title: Opt. Eng. doi: 10.1117/1.1355253 – volume: 44 start-page: 2266 issue: 12 year: 2005 ident: 10.1016/j.optlastec.2018.06.049_b0005 article-title: In vivo measurement of lower back deformations with Fourier-transform profilometry publication-title: Appl. Opt. doi: 10.1364/AO.44.002266 – volume: 45 start-page: 730 issue: 6 year: 2007 ident: 10.1016/j.optlastec.2018.06.049_b0130 article-title: A correlation-based phase unwrapping method for Fourier-transform profilometry publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2006.10.006 – volume: 47 start-page: 377 issue: 3 year: 2008 ident: 10.1016/j.optlastec.2018.06.049_b0080 article-title: Flexible three-dimensional measurement technique based on a digital light processing projector publication-title: Appl. Opt. doi: 10.1364/AO.47.000377 |
| SSID | ssj0004653 |
| Score | 2.4896235 |
| Snippet | •A more universal phase-to-height mapping is derived.•The derived mapping are dependent on both structure and phase of reference plane.•The traditional mapping... In traditional phase measuring profilometry (PMP) setup, the connecting line between the exit pupil center of projector and entrance pupil center of CCD camera... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 46 |
| SubjectTerms | Algorithms Axes (reference lines) CCD cameras Coefficients Entrances Experiments Mapping Measurement Parameters Phase distribution Phase measuring profilometry Phase-to-height mapping algorithm Phases shifting Three-dimensional measurement Topography |
| Title | Intrinsic feature revelation of phase-to-height mapping in phase measuring profilometry |
| URI | https://dx.doi.org/10.1016/j.optlastec.2018.06.049 https://www.proquest.com/docview/2116839855 |
| Volume | 108 |
| WOSCitedRecordID | wos000443664100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2545 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004653 issn: 0030-3992 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfKBhI8IBggBgP5gbcqU-LEsc3bhIYYEgPE0LqnKHFs1mlNojabxgfge3P-k6TtQAMhXqLKjlPbd7k7X-5-h9CrgqRxmsg4IGWqgqQ0kLcEDitFCeqtUCkTOrTFJtjhIZ9MxKfR6EeXC3N5zqqKX12J5r-SGtqA2CZ19i_I3T8UGuA3EB2uQHa4_hHhD6p2Pq1g88daWdROk57iQ95sfPMpKK6grYNT6xUdz_Km8Ykttms8s25Dl6VuCnrXM9WuJk5_bHpwZzC-1XzcXnPQf7BG6efpRTWEAuXWLXtiqmV_G8IKlP_sr4bGY-eVPYH7vnf3es9ExNeiPPqUmSE-yYrgGAS_cAXwdpWTupyJAE6qdEUsh3xJsHo_pVPRDvP2mvB3foiz3bppYfGwchO55-BZHSzqGrL2FzMXM5WIme_BhN5Cm4RRAfJ9c-9gf_J-KcHWw5n6ua8ECv7y735n5qwpfGvFHD1A9_3xA-85tnmIRqraQveWQCm30B0bFCwXj9Bxz0rYsxIeWAnXGq-xEvashKeV68I9K-FlVnqMvr7dP3rzLvCFOAIZJ3EbyJCqSMLBXKSSGEjKlKqcCCXDktGSKFIqnkslEpVyIWNTAE1GsgypTpiOCx0_QRtVXamnCGuWg0le6iSU0FloTnIdGTORcgn6JNpGabdvmfQo9aZYynnWhSOeZf2GZ2bDMxOYmYhtFPYDGwfUcvOQ1x1hMm9vOjsyA466efBOR8rMv_2LjERRCsvjlD77l2c_R3eH92kHbbTzC_UC3ZaX7XQxf-mZ8ycQcbcJ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+feature+revelation+of+phase-to-height+mapping+in+phase+measuring+profilometry&rft.jtitle=Optics+and+laser+technology&rft.au=Ma%2C+Qiuna&rft.au=Cao%2C+Yiping&rft.au=Chen%2C+Cheng&rft.au=Wan%2C+Yingying&rft.date=2018-12-01&rft.pub=Elsevier+Ltd&rft.issn=0030-3992&rft.eissn=1879-2545&rft.volume=108&rft.spage=46&rft.epage=52&rft_id=info:doi/10.1016%2Fj.optlastec.2018.06.049&rft.externalDocID=S0030399217309325 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon |