Parameter estimation algorithms for Hammerstein output error systems using Levenberg–Marquardt optimization method with varying interval measurements

This paper studies the parameter estimation problem of Hammerstein output error autoregressive (OEAR) systems. According to the maximum likelihood principle and the Levenberg–Marquardt optimization method, a maximum likelihood Levenberg–Marquardt recursive (ML-LM-R) algorithm using the varying inter...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Franklin Institute Vol. 354; no. 1; pp. 316 - 331
Main Authors: Li, Junhong, Zheng, Wei Xing, Gu, Juping, Hua, Liang
Format: Journal Article
Language:English
Published: Elmsford Elsevier Ltd 01.01.2017
Elsevier Science Ltd
Subjects:
ISSN:0016-0032, 1879-2693, 0016-0032
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper studies the parameter estimation problem of Hammerstein output error autoregressive (OEAR) systems. According to the maximum likelihood principle and the Levenberg–Marquardt optimization method, a maximum likelihood Levenberg–Marquardt recursive (ML-LM-R) algorithm using the varying interval input–output data is proposed. Furthermore, a stochastic gradient algorithm is also derived in order to compare it with the proposed ML-LM-R algorithm. Two numerical examples are provided to verify the effectiveness of the proposed algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0016-0032
1879-2693
0016-0032
DOI:10.1016/j.jfranklin.2016.10.002