Parameter estimation algorithms for Hammerstein output error systems using Levenberg–Marquardt optimization method with varying interval measurements
This paper studies the parameter estimation problem of Hammerstein output error autoregressive (OEAR) systems. According to the maximum likelihood principle and the Levenberg–Marquardt optimization method, a maximum likelihood Levenberg–Marquardt recursive (ML-LM-R) algorithm using the varying inter...
Saved in:
| Published in: | Journal of the Franklin Institute Vol. 354; no. 1; pp. 316 - 331 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elmsford
Elsevier Ltd
01.01.2017
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0016-0032, 1879-2693, 0016-0032 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper studies the parameter estimation problem of Hammerstein output error autoregressive (OEAR) systems. According to the maximum likelihood principle and the Levenberg–Marquardt optimization method, a maximum likelihood Levenberg–Marquardt recursive (ML-LM-R) algorithm using the varying interval input–output data is proposed. Furthermore, a stochastic gradient algorithm is also derived in order to compare it with the proposed ML-LM-R algorithm. Two numerical examples are provided to verify the effectiveness of the proposed algorithms. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0016-0032 1879-2693 0016-0032 |
| DOI: | 10.1016/j.jfranklin.2016.10.002 |