Parameter estimation algorithms for Hammerstein output error systems using Levenberg–Marquardt optimization method with varying interval measurements

This paper studies the parameter estimation problem of Hammerstein output error autoregressive (OEAR) systems. According to the maximum likelihood principle and the Levenberg–Marquardt optimization method, a maximum likelihood Levenberg–Marquardt recursive (ML-LM-R) algorithm using the varying inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Franklin Institute Jg. 354; H. 1; S. 316 - 331
Hauptverfasser: Li, Junhong, Zheng, Wei Xing, Gu, Juping, Hua, Liang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elmsford Elsevier Ltd 01.01.2017
Elsevier Science Ltd
Schlagworte:
ISSN:0016-0032, 1879-2693, 0016-0032
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the parameter estimation problem of Hammerstein output error autoregressive (OEAR) systems. According to the maximum likelihood principle and the Levenberg–Marquardt optimization method, a maximum likelihood Levenberg–Marquardt recursive (ML-LM-R) algorithm using the varying interval input–output data is proposed. Furthermore, a stochastic gradient algorithm is also derived in order to compare it with the proposed ML-LM-R algorithm. Two numerical examples are provided to verify the effectiveness of the proposed algorithms.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0016-0032
1879-2693
0016-0032
DOI:10.1016/j.jfranklin.2016.10.002