reactingFoam-SCI: An open source CFD platform for reacting flow simulation
•Original OpenFOAM yields unsatisfactory prediction of basic combustion properties.•reactingFoam-SCI incorporates recent advances in computational physics.•Midpoint splitting exhibits enhanced performance compared with existing schemes.•Interface between OpenFOAM and Cantera is developed to evaluate...
Uložené v:
| Vydané v: | Computers & fluids Ročník 190; s. 114 - 127 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier Ltd
15.08.2019
Elsevier BV |
| Predmet: | |
| ISSN: | 0045-7930, 1879-0747 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Original OpenFOAM yields unsatisfactory prediction of basic combustion properties.•reactingFoam-SCI incorporates recent advances in computational physics.•Midpoint splitting exhibits enhanced performance compared with existing schemes.•Interface between OpenFOAM and Cantera is developed to evaluate detailed transport.•The validated platform shows great potential for open source multiphysics modeling.
Computational fluid dynamics (CFD) has become a major tool in understanding and predicting the behavior of reacting flows, which intrinsically involve the complex interaction of chemical kinetics and fluid mechanics. Among various open source CFD packages, the widely used C++ finite volume simulation toolbox OpenFOAM has many advantages such as its object-orientated framework, convenience to add multiphysics module and free availability, however, many weaknesses have been identified regarding its application in chemically reacting flows, especially incomplete splitting schemes, poor ordinary differential equation (ODE) solvers for stiff chemistry and the oversimplified mixture transport models, etc. In this work, an OpenFOAM 5.0 based reacting flow CFD platform reactingFoam-SCI is constructed by further implementing a few state-of-the-art advances in computational combustion, including a robust midpoint operator splitting scheme, and an accurate stable stiff ODE solver with error control. An interface between OpenFOAM 5.0 and the open source package Cantera 2.3.0 is also developed, to allow the evaluation of multicomponent and mixture-averaged transport properties and the call of other Cantera subroutines. The effectiveness and robustness of this new platform have been systematically validated against the analytical solutions and literature reported direct numerical calculation results, including those from a diffusion-convection problem, homogeneous ignition delay, shock tube, one-dimensional spherical flame initiation and propagation, two-dimensional unsteady premixed flame subject to hydrodynamic and diffusional-thermal instabilities, one-dimensional non-premixed counterflow flame and two-dimensional non-premixed co-flow flame. The satisfactory agreement demonstrates the accuracy and robustness of the current platform. |
|---|---|
| AbstractList | •Original OpenFOAM yields unsatisfactory prediction of basic combustion properties.•reactingFoam-SCI incorporates recent advances in computational physics.•Midpoint splitting exhibits enhanced performance compared with existing schemes.•Interface between OpenFOAM and Cantera is developed to evaluate detailed transport.•The validated platform shows great potential for open source multiphysics modeling.
Computational fluid dynamics (CFD) has become a major tool in understanding and predicting the behavior of reacting flows, which intrinsically involve the complex interaction of chemical kinetics and fluid mechanics. Among various open source CFD packages, the widely used C++ finite volume simulation toolbox OpenFOAM has many advantages such as its object-orientated framework, convenience to add multiphysics module and free availability, however, many weaknesses have been identified regarding its application in chemically reacting flows, especially incomplete splitting schemes, poor ordinary differential equation (ODE) solvers for stiff chemistry and the oversimplified mixture transport models, etc. In this work, an OpenFOAM 5.0 based reacting flow CFD platform reactingFoam-SCI is constructed by further implementing a few state-of-the-art advances in computational combustion, including a robust midpoint operator splitting scheme, and an accurate stable stiff ODE solver with error control. An interface between OpenFOAM 5.0 and the open source package Cantera 2.3.0 is also developed, to allow the evaluation of multicomponent and mixture-averaged transport properties and the call of other Cantera subroutines. The effectiveness and robustness of this new platform have been systematically validated against the analytical solutions and literature reported direct numerical calculation results, including those from a diffusion-convection problem, homogeneous ignition delay, shock tube, one-dimensional spherical flame initiation and propagation, two-dimensional unsteady premixed flame subject to hydrodynamic and diffusional-thermal instabilities, one-dimensional non-premixed counterflow flame and two-dimensional non-premixed co-flow flame. The satisfactory agreement demonstrates the accuracy and robustness of the current platform. Computational fluid dynamics (CFD) has become a major tool in understanding and predicting the behavior of reacting flows, which intrinsically involve the complex interaction of chemical kinetics and fluid mechanics. Among various open source CFD packages, the widely used C++ finite volume simulation toolbox OpenFOAM has many advantages such as its object-orientated framework, convenience to add multiphysics module and free availability, however, many weaknesses have been identified regarding its application in chemically reacting flows, especially incomplete splitting schemes, poor ordinary differential equation (ODE) solvers for stiff chemistry and the oversimplified mixture transport models, etc. In this work, an OpenFOAM 5.0 based reacting flow CFD platform reactingFoam-SCI is constructed by further implementing a few state-of-the-art advances in computational combustion, including a robust midpoint operator splitting scheme, and an accurate stable stiff ODE solver with error control. An interface between OpenFOAM 5.0 and the open source package Cantera 2.3.0 is also developed, to allow the evaluation of multicomponent and mixture-averaged transport properties and the call of other Cantera subroutines. The effectiveness and robustness of this new platform have been systematically validated against the analytical solutions and literature reported direct numerical calculation results, including those from a diffusion-convection problem, homogeneous ignition delay, shock tube, one-dimensional spherical flame initiation and propagation, two-dimensional unsteady premixed flame subject to hydrodynamic and diffusional-thermal instabilities, one-dimensional non-premixed counterflow flame and two-dimensional non-premixed co-flow flame. The satisfactory agreement demonstrates the accuracy and robustness of the current platform. |
| Author | Zhao, Peng Ge, Haiwen Yang, Qi |
| Author_xml | – sequence: 1 givenname: Qi surname: Yang fullname: Yang, Qi organization: Department of Mechanical Engineering, Oakland University, Rochester, MI 48309, USA – sequence: 2 givenname: Peng orcidid: 0000-0002-6743-6269 surname: Zhao fullname: Zhao, Peng email: pengzhao@oakland.edu, zhaodbustc@gmail.com organization: Department of Mechanical Engineering, Oakland University, Rochester, MI 48309, USA – sequence: 3 givenname: Haiwen surname: Ge fullname: Ge, Haiwen organization: Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA |
| BookMark | eNqNkMFOwzAMQCM0JLbBNxCJc0uatE2LxGEqDIYmcWD3KE1dlKptStKC-HsyBhy4wMWWZT_begs0600PCJ1HJIxIlF42oTLdULeTrkJKojwkaUhIdoTmUcbzgPCYz9CckDgJeM7ICVo41xBfMxrP0YMFqUbdP6-N7IKnYnOFVz02A_TYmckqwMX6Bg-tHGtjO-wD_iZw3Zo37HQ3-a42_Sk6rmXr4OwrL9Fufbsr7oPt492mWG0DxWI2BjJTUcozYBWXKqFlQoFWCS_LmkqaM1rKHBIASqqKJZKlqaSyUpKVlNSsBLZEF4e1gzUvE7hRNP7R3l8UlPKYsSTzd5bo-jClrHHOQi2UHj_fHK3UrYiI2NsTjfixJ_b2BEmFt-d5_osfrO6kff8HuTqQ4B28arDCKQ29gkpbUKOojP5zxwf7c5IH |
| CitedBy_id | crossref_primary_10_1002_ep_13731 crossref_primary_10_1016_j_apenergy_2020_115320 crossref_primary_10_1016_j_combustflame_2020_09_027 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123401 crossref_primary_10_3390_aerospace9020102 crossref_primary_10_1016_j_combustflame_2024_113788 crossref_primary_10_1088_1361_6595_adfc0b crossref_primary_10_1016_j_proci_2020_08_050 crossref_primary_10_1061__ASCE_EE_1943_7870_0002027 crossref_primary_10_1016_j_applthermaleng_2024_124014 crossref_primary_10_1016_j_jocs_2022_101780 crossref_primary_10_1016_j_combustflame_2021_111765 crossref_primary_10_3389_fmech_2020_00068 crossref_primary_10_1016_j_ast_2024_109240 crossref_primary_10_3390_en17040769 crossref_primary_10_1016_j_compfluid_2023_106012 crossref_primary_10_1016_j_fuel_2024_132173 crossref_primary_10_1515_revce_2022_0021 crossref_primary_10_1016_j_ijhydene_2020_10_024 crossref_primary_10_1016_j_ast_2025_110857 crossref_primary_10_1080_13647830_2022_2153739 crossref_primary_10_1155_2020_9083620 crossref_primary_10_3390_hydrogen4040054 crossref_primary_10_1016_j_anucene_2023_110327 crossref_primary_10_1016_j_rineng_2022_100738 crossref_primary_10_1016_j_nucengdes_2024_112990 crossref_primary_10_1016_j_proci_2020_06_351 crossref_primary_10_1016_j_cpc_2023_108859 crossref_primary_10_1016_j_nucengdes_2021_111361 crossref_primary_10_1063_5_0255969 crossref_primary_10_1016_j_compfluid_2020_104718 crossref_primary_10_1016_j_tsep_2024_102414 crossref_primary_10_1007_s40430_021_03324_7 crossref_primary_10_1016_j_cpc_2023_108842 crossref_primary_10_2514_1_J062809 crossref_primary_10_1016_j_cpc_2021_108264 crossref_primary_10_1016_j_csite_2025_106548 crossref_primary_10_1080_13647830_2020_1820578 crossref_primary_10_1016_j_cpc_2024_109472 crossref_primary_10_1140_epjs_s11734_022_00606_6 crossref_primary_10_1016_j_compfluid_2024_106282 |
| Cites_doi | 10.1016/j.jcp.2008.05.019 10.1016/0010-2180(92)90034-M 10.1016/j.proci.2010.05.005 10.1080/00102202.2016.1211886 10.1007/s10494-015-9666-5 10.1080/713713111 10.1016/j.combustflame.2016.12.023 10.1016/j.jcp.2014.01.016 10.1137/0705041 10.1016/j.fuel.2017.09.077 10.1016/j.combustflame.2010.10.002 10.1021/ef4016334 10.1016/S0082-0784(00)80610-4 10.1063/1.1747319 10.1016/j.ijhydene.2015.06.011 10.1016/j.combustflame.2008.04.025 10.1007/s10494-017-9880-4 10.1016/j.combustflame.2016.07.009 10.1137/120878641 10.1016/j.combustflame.2014.07.019 10.1016/0956-0521(94)90045-0 10.1016/j.combustflame.2016.09.018 10.1080/13647830.2016.1164344 10.1016/j.jcp.2017.01.044 10.1063/1.4822377 10.1016/0021-9991(78)90023-2 10.1080/13647830500307501 10.1016/j.fuel.2018.07.135 10.1088/1364-7830/7/2/310 10.1016/j.proci.2016.05.055 10.1137/100816869 10.1080/00102209308924120 10.1115/1.4034447 10.1017/S0022112094003344 10.1016/j.combustflame.2016.05.028 10.1006/jcph.2000.6495 10.1002/kin.550260408 10.1016/B978-0-12-358502-8.50019-0 10.1016/j.combustflame.2017.08.006 10.1063/1.168744 10.1016/j.fuel.2017.12.061 10.1016/j.jcp.2009.11.012 10.1016/S0010-2180(98)00132-1 10.1016/j.combustflame.2009.02.013 10.1088/1364-7830/3/2/002 10.1016/j.fuel.2016.08.005 10.1080/00102200601093498 10.1088/1364-7830/4/2/305 10.1016/j.combustflame.2017.11.010 10.1002/kin.20026 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Aug 15, 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Aug 15, 2019 |
| DBID | AAYXX CITATION 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.compfluid.2019.06.008 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0747 |
| EndPage | 127 |
| ExternalDocumentID | 10_1016_j_compfluid_2019_06_008 S0045793019301847 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSW SSZ T5K TN5 XPP ZMT ~G- 29F 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW T9H VH1 WUQ ~HD 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c343t-a8c1678e3d7ac52b52e2d57bbf2a2932ba9e5ee20dd35a366a2adca3b20f3be3 |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000479021500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7930 |
| IngestDate | Sun Nov 09 07:44:06 EST 2025 Sat Nov 29 03:39:22 EST 2025 Tue Nov 18 21:04:42 EST 2025 Fri Feb 23 02:19:43 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | OpenFOAM Cantera Reacting flow Combustion simulation Mid-point splitting Stiff ODE solver |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c343t-a8c1678e3d7ac52b52e2d57bbf2a2932ba9e5ee20dd35a366a2adca3b20f3be3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6743-6269 |
| PQID | 2274335834 |
| PQPubID | 2045265 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2274335834 crossref_citationtrail_10_1016_j_compfluid_2019_06_008 crossref_primary_10_1016_j_compfluid_2019_06_008 elsevier_sciencedirect_doi_10_1016_j_compfluid_2019_06_008 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-15 |
| PublicationDateYYYYMMDD | 2019-08-15 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computers & fluids |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Wang, Popov, Pope (bib0006) 2010; 229 Huang, He, Qin, Wei (bib0037) 2015; 40 Pitsch (bib0061) 1998; 81 Schwer, Lu, Green, Semiao (bib0003) 2003; 7 Speth, Green, MacNamara, Strang (bib0011) 2013; 51 Cicoria, Chan (bib0045) 2018; 211 Han, Yang, Mao (bib0040) 2016; 185 Duarte, Massot, Descombes, Tenaud, Dumont, Louvet, Laurent (bib0007) 2012; 34 Cloney, Ripley, Pegg, Amyotte (bib0048) 2018; 190 Bowman, Frenklach, Gardiner, Smith (bib0049) 1999 Lu, Zhou, Li, Ren, Lu, Law (bib0014) 2017; 335 Grcar (bib0051) 1992 Lam, Goussis (bib0021) 1994; 26 Law (bib0029) 2010 Mével, Niedzielska, Melguizo-Gavilanes, Coronel, Shepherd (bib0041) 2016; 188 Curtiss, Hirschfelder (bib0046) 1949; 17 Martí, Müller (bib0055) 1994 Sportisse (bib0047) 2000; 161 Taylor (bib0059) 1991 Wu, Ma, Ihme (bib0016) 2018 Zhong, Zhang, Peng, Bai, Du (bib0038) 2018; 234 Ren, Pope (bib0005) 2008; 227 Goodwin, Moffat, Speth (bib0033) 2017 Ren, Chao, Lu, Singer (bib0008) 2014; 263 Hong, Davidson, Hanson (bib0060) 2011; 158 Maas, Pope (bib0024) 1992; 88 Weinzierl, Kolb, Ahrens, Hirsch, Sattelmayer (bib0036) 2017; 139 Lutz, Kee, Grcar (bib0062) 1994 Bird, Setwart, Lightfoot (bib0028) 1960 Massias, Diamantis, Mastorakos, Goussis (bib0023) 1999; 3 Chao, Yang, Ren, Lu (bib0015) 2016; 172 Massias, Diamantis, Mastorakos, Goussis (bib0022) 1999; 117 Lam (bib0020) 1993; 89 Marchuk (bib0010) 1971 Xin, Liang, Liu, Lu, Law (bib0030) 2015; 162 Zhao P, Lam SH, Toward computational singular perturbation without eigen-decomposition, Combust Flame, under review. Li, Zhao, Kazakov, Dryer (bib0058) 2004; 36 Zhao (bib0001) 2018 Cuoci, Frassoldati, Faravelli, Ranzi (bib0013) 2013; 27 Zhang, Zirwes, Habisreuther, Bockhorn (bib0044) 2017; 175 Shekhar, Boeck, Uber, Gerlach (bib0042) 2017; 186 Tong, Liu, Wang, Richter, Klingmann (bib0043) 2018; 217 Burali, Lapinte, Bobbitt, Blanquart, Xuan (bib0032) 2016; 20 Singer, Pope, Najm (bib0004) 2006; 10 Imren, Haworth (bib0027) 2016; 174 Lam (bib0019) 2007; 179 Seiser, Pitsch, Seshadri, Pitz, Curran (bib0050) 2000; 28 Lu, Law (bib0025) 2008; 154 Strang (bib0009) 1968; 5 Ottino, Fancello, Falcon, Bastiaans, Goey (bib0035) 2016; 96 Correa (bib0053) 1994; 5 Sod (bib0054) 1978; 27 Chen, Burke, Ju (bib0056) 2011; 33 Lu, Law, Yoo, Chen (bib0017) 2009; 156 Evans, Medwell, Tian, Ye, Frassoldati, Cuoci (bib0063) 2017; 178 Lysenko, Ertesvåg (bib0039) 2018; 100 Chen (bib0012) 2009 He (bib0057) 2000; 4 Marchuk (bib0002) 1970 Weller, Tabor, Jasak, Fureby (bib0034) 1998; 12 Bongers, De Goey (bib0052) 2003; 175 Cohen, Hindmarsh, Dubois (bib0026) 1996; 10 Ambikasaran, Narayanaswamy (bib0031) 2017; 36 Ren (10.1016/j.compfluid.2019.06.008_bib0005) 2008; 227 Bongers (10.1016/j.compfluid.2019.06.008_bib0052) 2003; 175 Maas (10.1016/j.compfluid.2019.06.008_bib0024) 1992; 88 Cloney (10.1016/j.compfluid.2019.06.008_bib0048) 2018; 190 Chen (10.1016/j.compfluid.2019.06.008_bib0056) 2011; 33 Weller (10.1016/j.compfluid.2019.06.008_bib0034) 1998; 12 Zhang (10.1016/j.compfluid.2019.06.008_bib0044) 2017; 175 Xin (10.1016/j.compfluid.2019.06.008_bib0030) 2015; 162 Schwer (10.1016/j.compfluid.2019.06.008_bib0003) 2003; 7 Strang (10.1016/j.compfluid.2019.06.008_bib0009) 1968; 5 Lam (10.1016/j.compfluid.2019.06.008_bib0021) 1994; 26 Massias (10.1016/j.compfluid.2019.06.008_bib0022) 1999; 117 Chen (10.1016/j.compfluid.2019.06.008_bib0012) 2009 Taylor (10.1016/j.compfluid.2019.06.008_bib0059) 1991 Lu (10.1016/j.compfluid.2019.06.008_bib0014) 2017; 335 Burali (10.1016/j.compfluid.2019.06.008_bib0032) 2016; 20 Ottino (10.1016/j.compfluid.2019.06.008_bib0035) 2016; 96 Imren (10.1016/j.compfluid.2019.06.008_bib0027) 2016; 174 Grcar (10.1016/j.compfluid.2019.06.008_bib0051) 1992 Weinzierl (10.1016/j.compfluid.2019.06.008_bib0036) 2017; 139 10.1016/j.compfluid.2019.06.008_bib0018 Singer (10.1016/j.compfluid.2019.06.008_bib0004) 2006; 10 Tong (10.1016/j.compfluid.2019.06.008_bib0043) 2018; 217 Li (10.1016/j.compfluid.2019.06.008_bib0058) 2004; 36 Wu (10.1016/j.compfluid.2019.06.008_bib0016) 2018 Seiser (10.1016/j.compfluid.2019.06.008_bib0050) 2000; 28 Law (10.1016/j.compfluid.2019.06.008_bib0029) 2010 Lam (10.1016/j.compfluid.2019.06.008_bib0019) 2007; 179 Correa (10.1016/j.compfluid.2019.06.008_bib0053) 1994; 5 Sod (10.1016/j.compfluid.2019.06.008_bib0054) 1978; 27 Zhao (10.1016/j.compfluid.2019.06.008_bib0001) 2018 Han (10.1016/j.compfluid.2019.06.008_bib0040) 2016; 185 Huang (10.1016/j.compfluid.2019.06.008_bib0037) 2015; 40 Mével (10.1016/j.compfluid.2019.06.008_bib0041) 2016; 188 Cohen (10.1016/j.compfluid.2019.06.008_bib0026) 1996; 10 Cuoci (10.1016/j.compfluid.2019.06.008_bib0013) 2013; 27 Zhong (10.1016/j.compfluid.2019.06.008_bib0038) 2018; 234 Speth (10.1016/j.compfluid.2019.06.008_bib0011) 2013; 51 Ren (10.1016/j.compfluid.2019.06.008_bib0008) 2014; 263 Lutz (10.1016/j.compfluid.2019.06.008_bib0062) 1994 Lysenko (10.1016/j.compfluid.2019.06.008_bib0039) 2018; 100 Duarte (10.1016/j.compfluid.2019.06.008_bib0007) 2012; 34 Lu (10.1016/j.compfluid.2019.06.008_bib0025) 2008; 154 Martí (10.1016/j.compfluid.2019.06.008_bib0055) 1994 Goodwin (10.1016/j.compfluid.2019.06.008_bib0033) 2017 Lu (10.1016/j.compfluid.2019.06.008_bib0017) 2009; 156 Curtiss (10.1016/j.compfluid.2019.06.008_bib0046) 1949; 17 Lam (10.1016/j.compfluid.2019.06.008_bib0020) 1993; 89 Sportisse (10.1016/j.compfluid.2019.06.008_bib0047) 2000; 161 Cicoria (10.1016/j.compfluid.2019.06.008_bib0045) 2018; 211 Evans (10.1016/j.compfluid.2019.06.008_bib0063) 2017; 178 Marchuk (10.1016/j.compfluid.2019.06.008_bib0002) 1970 Wang (10.1016/j.compfluid.2019.06.008_bib0006) 2010; 229 Pitsch (10.1016/j.compfluid.2019.06.008_bib0061) 1998; 81 Bird (10.1016/j.compfluid.2019.06.008_bib0028) 1960 Bowman (10.1016/j.compfluid.2019.06.008_bib0049) 1999 Shekhar (10.1016/j.compfluid.2019.06.008_bib0042) 2017; 186 Ambikasaran (10.1016/j.compfluid.2019.06.008_bib0031) 2017; 36 Hong (10.1016/j.compfluid.2019.06.008_bib0060) 2011; 158 He (10.1016/j.compfluid.2019.06.008_bib0057) 2000; 4 Chao (10.1016/j.compfluid.2019.06.008_bib0015) 2016; 172 Marchuk (10.1016/j.compfluid.2019.06.008_bib0010) 1971 Massias (10.1016/j.compfluid.2019.06.008_bib0023) 1999; 3 |
| References_xml | – volume: 3 start-page: 233 year: 1999 end-page: 257 ident: bib0023 article-title: Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data publication-title: Combust Theory Modelling – volume: 234 start-page: 1044 year: 2018 end-page: 1054 ident: bib0038 article-title: Roles of CO2 and H2O in premixed turbulent oxy-fuel combustion publication-title: Fuel – year: 2009 ident: bib0012 article-title: Studies on the initiation, propagation, and extinction of premixed flames – volume: 179 start-page: 767 year: 2007 end-page: 786 ident: bib0019 article-title: Reduced chemistry-diffusion coupling publication-title: Combust Sci Technol – volume: 89 start-page: 375 year: 1993 end-page: 404 ident: bib0020 article-title: Using CSP to understand complex chemical kinetics publication-title: Combust Sci Technol – volume: 263 start-page: 19 year: 2014 end-page: 36 ident: bib0008 article-title: Dynamic adaptive chemistry with operator splitting schemes for reactive flow simulations publication-title: J Comput Phys – volume: 12 start-page: 620 year: 1998 end-page: 631 ident: bib0034 article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques publication-title: Comput Phys – start-page: 469 year: 1971 end-page: 500 ident: bib0010 article-title: On the theory of the splitting-up method publication-title: Numer Solut Partial Diff Eq–II – volume: 27 start-page: 1 year: 1978 end-page: 31 ident: bib0054 article-title: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws publication-title: J Comput Phys – volume: 88 start-page: 239 year: 1992 end-page: 264 ident: bib0024 article-title: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space publication-title: Combust Flame – start-page: 317 year: 1994 end-page: 333 ident: bib0055 article-title: The analytical solution of the Riemann problem in relativistic hydrodynamics publication-title: J Fluid Mech E1 – volume: 211 start-page: 754 year: 2018 end-page: 766 ident: bib0045 article-title: Effects of turbulence and strain rate on hydrogen-enriched high Ka number lean premixed methane flames publication-title: Fuel – volume: 161 start-page: 140 year: 2000 end-page: 168 ident: bib0047 article-title: An analysis of operator splitting techniques in the stiff case publication-title: J Comput Phys – year: 2017 ident: bib0033 article-title: Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, version 2.3.0 – volume: 40 start-page: 9815 year: 2015 end-page: 9824 ident: bib0037 article-title: Large eddy simulation of flame structure and combustion mode in a hydrogen fueled supersonic combustor publication-title: Int J Hydrogen Energy – volume: 158 start-page: 633 year: 2011 end-page: 644 ident: bib0060 article-title: An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements publication-title: Combust Flame – volume: 172 start-page: 183 year: 2016 end-page: 193 ident: bib0015 article-title: A sparse stiff chemistry solver based on dynamic adaptive integration for efficient combustion simulations publication-title: Combust Flame – volume: 20 start-page: 632 year: 2016 end-page: 657 ident: bib0032 article-title: Assessment of the constant non-unity Lewis number assumption in chemically-reacting flows publication-title: Combust Theory Model – volume: 156 start-page: 1542 year: 2009 end-page: 1551 ident: bib0017 article-title: Dynamic stiffness removal for direct numerical simulations publication-title: Combust Flame – volume: 28 start-page: 2029 year: 2000 end-page: 2037 ident: bib0050 article-title: Extinction and autoignition of n-Heptane in Counterflow configuration publication-title: Proc Combust Inst – volume: 34 start-page: A76 year: 2012 end-page: A104 ident: bib0007 article-title: New resolution strategy for multiscale reaction waves using time operator splitting, space adaptive multiresolution, and dedicated high order implicit/explicit time integrators publication-title: SIAM J Sci Comput – year: 1992 ident: bib0051 article-title: The TWOPNT program for boundary value problems publication-title: Sandia National Laboratories Report SAND91-8230 – volume: 335 start-page: 578 year: 2017 end-page: 591 ident: bib0014 article-title: Analysis of operator splitting errors for near limit flame simulations publication-title: J Comput Phys – volume: 229 start-page: 1852 year: 2010 end-page: 1878 ident: bib0006 article-title: Weak second-order splitting schemes for Lagrangian Monte Carlo particle methods for the composition PDF/FDF transport equations publication-title: J Comput Phys – year: 2018 ident: bib0001 article-title: Detailed kinetics in combustion simulation: manifestation, model reduction, and computational diagnostics – volume: 96 start-page: 773 year: 2016 end-page: 800 ident: bib0035 article-title: Combustion modeling including heat loss using flamelet generated manifolds: a validation study in OpenFOAM, Flow publication-title: Turbulence Combust – volume: 7 start-page: 383 year: 2003 end-page: 399 ident: bib0003 article-title: A consistent-splitting approach to computing stiff steady-state reacting flows with adaptive chemistry publication-title: Combust Theory Modelling – volume: 227 start-page: 8165 year: 2008 end-page: 8176 ident: bib0005 article-title: Second-order splitting schemes for a class of reactive systems publication-title: J Comput Phys – volume: 139 year: 2017 ident: bib0036 article-title: Large-eddy simulation of a reacting jet in cross flow with NOx prediction publication-title: J Eng Gas Turbines Power – volume: 175 start-page: 1915 year: 2003 end-page: 1928 ident: bib0052 article-title: The effect of simplified transport modeling on the burning velocity of laminar premixed flames publication-title: Combust Sci Tech – volume: 5 start-page: 135 year: 1994 end-page: 145 ident: bib0053 article-title: Models for high-intensity turbulent combustion publication-title: Comput Syst Eng – year: 1994 ident: bib0062 article-title: OPPDIF: a fortran program for computing opposed-flow diffusion flames – volume: 185 start-page: 449 year: 2016 end-page: 459 ident: bib0040 article-title: LES investigation of two frequency effects on acoustically forced premixed flame publication-title: Fuel – volume: 188 start-page: 2267 year: 2016 end-page: 2283 ident: bib0041 article-title: Chemical kinetics of n-hexane-air atmospheres in the boundary layer of a moving hot sphere publication-title: Combust Sci Technol – start-page: 469 year: 1970 end-page: 500 ident: bib0002 article-title: On the theory of the splitting-up method, in: proceedings of the 2nd symposium on numerical solution of partial differential equations publication-title: SVNSPADE – volume: 175 start-page: 170 year: 2017 end-page: 179 ident: bib0044 article-title: Effect of unsteady stretching on the flame local dynamics publication-title: Combust Flame – volume: 5 start-page: 506 year: 1968 end-page: 517 ident: bib0009 article-title: On the construction and comparison of difference schemes publication-title: SIAM J Numer Anal – volume: 174 start-page: 1 year: 2016 end-page: 15 ident: bib0027 article-title: On the merits of extrapolation-based stiff ODE solvers for combustion CFD publication-title: Combust Flame – volume: 100 start-page: 721 year: 2018 end-page: 768 ident: bib0039 article-title: Reynolds-Averaged, Scale-Adaptive and Large-Eddy Simulations of Premixed Bluff-Body, Combustion Using the Eddy Dissipation Concept publication-title: Flow Turbulence Combust – year: 1960 ident: bib0028 article-title: Transport phenomena – volume: 36 start-page: 507 year: 2017 end-page: 515 ident: bib0031 article-title: An accurate, fast, mathematically robust, universal, non-iterative algorithm for computing multi-component diffusion velocities publication-title: Proc Combust Inst – year: 1999 ident: bib0049 article-title: The GRI 3.0 chemical kinetic mechanism – volume: 51 start-page: 3084 year: 2013 end-page: 3105 ident: bib0011 article-title: Balanced splitting and rebalanced splitting publication-title: SIAM J Numer Anal – volume: 162 start-page: 68 year: 2015 end-page: 74 ident: bib0030 article-title: A reduced multicomponent diffusion model publication-title: Combust Flame – volume: 178 start-page: 297 year: 2017 end-page: 310 ident: bib0063 article-title: Effects of oxidant stream composition on non-premixed laminar flames with heated and diluted coflows publication-title: Combust Flame – volume: 217 start-page: 352 year: 2018 end-page: 364 ident: bib0043 article-title: Experimental and numerical study on bluff-body and swirl stabilized diffusion flames publication-title: Fuel – start-page: 1672 year: 2018 ident: bib0016 article-title: Efficient time stepping for reactive turbulent simulations with stiff chemistry publication-title: AIAA Aerospace Sciences Meeting – volume: 190 start-page: 87 year: 2018 end-page: 102 ident: bib0048 article-title: Laminar burning velocity and structure of coal dust flames using a unity Lewis number CFD model publication-title: Combust Flame – reference: Zhao P, Lam SH, Toward computational singular perturbation without eigen-decomposition, Combust Flame, under review. – volume: 17 start-page: 550 year: 1949 end-page: 555 ident: bib0046 article-title: Transport properties of multicomponent gas mixtures publication-title: J Chem Phys – volume: 4 start-page: 159 year: 2000 end-page: 172 ident: bib0057 article-title: Critical conditions for spherical flame initiation in mixtures with high Lewis numbers publication-title: Combust Theory Modelling – volume: 26 start-page: 461 year: 1994 end-page: 486 ident: bib0021 article-title: The CSP method for simplifying kinetics publication-title: Int J Chem Kinet – volume: 186 start-page: 236 year: 2017 end-page: 246 ident: bib0042 article-title: Ignition of a hydrogen–air mixture by low voltage electrical contact arcs publication-title: Combust Flame – volume: 10 start-page: 199 year: 2006 end-page: 217 ident: bib0004 article-title: Operator-splitting with ISAT to model reacting flow with detailed chemistry publication-title: Combust Theory Modelling – volume: 117 start-page: 685 year: 1999 end-page: 708 ident: bib0022 article-title: An algorithm for the construction of global reduced mechanisms with CSP data publication-title: Combust. Flame – volume: 10 start-page: 138 year: 1996 end-page: 143 ident: bib0026 article-title: CVODE, a stiff/nonstiff ODE solver in C publication-title: Comput Phys – year: 1991 ident: bib0059 article-title: Burning velocity and the influence of flame stretch – year: 2010 ident: bib0029 article-title: Combustion physics – volume: 27 start-page: 7730 year: 2013 end-page: 7753 ident: bib0013 article-title: Numerical modeling of laminar flames with detailed kinetics based on the operator-splitting method publication-title: Energy Fuels – volume: 154 start-page: 761 year: 2008 end-page: 774 ident: bib0025 article-title: A criterion based on computational singular perturbation for the identification of quasi steady state species: a reduced mechanism for methane oxidation with NO chemistry publication-title: Combust Flame – volume: 33 start-page: 1219 year: 2011 end-page: 1226 ident: bib0056 article-title: On the critical flame radius and minimum ignition energy for spherical flame initiation publication-title: Proc Combust Inst – volume: 36 start-page: 566 year: 2004 end-page: 575 ident: bib0058 article-title: An updated comprehensive kinetic model of hydrogen combustion publication-title: Int J Chem Kinet – volume: 81 year: 1998 ident: bib0061 publication-title: FlameMaster, A C++ computer program for 0D combustion and 1D laminar flame calculations – volume: 227 start-page: 8165 issue: 17 year: 2008 ident: 10.1016/j.compfluid.2019.06.008_bib0005 article-title: Second-order splitting schemes for a class of reactive systems publication-title: J Comput Phys doi: 10.1016/j.jcp.2008.05.019 – volume: 88 start-page: 239 year: 1992 ident: 10.1016/j.compfluid.2019.06.008_bib0024 article-title: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space publication-title: Combust Flame doi: 10.1016/0010-2180(92)90034-M – volume: 33 start-page: 1219 year: 2011 ident: 10.1016/j.compfluid.2019.06.008_bib0056 article-title: On the critical flame radius and minimum ignition energy for spherical flame initiation publication-title: Proc Combust Inst doi: 10.1016/j.proci.2010.05.005 – volume: 188 start-page: 2267 year: 2016 ident: 10.1016/j.compfluid.2019.06.008_bib0041 article-title: Chemical kinetics of n-hexane-air atmospheres in the boundary layer of a moving hot sphere publication-title: Combust Sci Technol doi: 10.1080/00102202.2016.1211886 – year: 1994 ident: 10.1016/j.compfluid.2019.06.008_bib0062 – volume: 96 start-page: 773 issue: 3 year: 2016 ident: 10.1016/j.compfluid.2019.06.008_bib0035 article-title: Combustion modeling including heat loss using flamelet generated manifolds: a validation study in OpenFOAM, Flow publication-title: Turbulence Combust doi: 10.1007/s10494-015-9666-5 – year: 2017 ident: 10.1016/j.compfluid.2019.06.008_bib0033 – ident: 10.1016/j.compfluid.2019.06.008_bib0018 – year: 1960 ident: 10.1016/j.compfluid.2019.06.008_bib0028 – volume: 175 start-page: 1915 year: 2003 ident: 10.1016/j.compfluid.2019.06.008_bib0052 article-title: The effect of simplified transport modeling on the burning velocity of laminar premixed flames publication-title: Combust Sci Tech doi: 10.1080/713713111 – volume: 178 start-page: 297 year: 2017 ident: 10.1016/j.compfluid.2019.06.008_bib0063 article-title: Effects of oxidant stream composition on non-premixed laminar flames with heated and diluted coflows publication-title: Combust Flame doi: 10.1016/j.combustflame.2016.12.023 – volume: 263 start-page: 19 year: 2014 ident: 10.1016/j.compfluid.2019.06.008_bib0008 article-title: Dynamic adaptive chemistry with operator splitting schemes for reactive flow simulations publication-title: J Comput Phys doi: 10.1016/j.jcp.2014.01.016 – year: 2010 ident: 10.1016/j.compfluid.2019.06.008_bib0029 – volume: 5 start-page: 506 year: 1968 ident: 10.1016/j.compfluid.2019.06.008_bib0009 article-title: On the construction and comparison of difference schemes publication-title: SIAM J Numer Anal doi: 10.1137/0705041 – volume: 211 start-page: 754 year: 2018 ident: 10.1016/j.compfluid.2019.06.008_bib0045 article-title: Effects of turbulence and strain rate on hydrogen-enriched high Ka number lean premixed methane flames publication-title: Fuel doi: 10.1016/j.fuel.2017.09.077 – year: 2018 ident: 10.1016/j.compfluid.2019.06.008_bib0001 – volume: 158 start-page: 633 year: 2011 ident: 10.1016/j.compfluid.2019.06.008_bib0060 article-title: An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements publication-title: Combust Flame doi: 10.1016/j.combustflame.2010.10.002 – volume: 27 start-page: 7730 year: 2013 ident: 10.1016/j.compfluid.2019.06.008_bib0013 article-title: Numerical modeling of laminar flames with detailed kinetics based on the operator-splitting method publication-title: Energy Fuels doi: 10.1021/ef4016334 – volume: 28 start-page: 2029 year: 2000 ident: 10.1016/j.compfluid.2019.06.008_bib0050 article-title: Extinction and autoignition of n-Heptane in Counterflow configuration publication-title: Proc Combust Inst doi: 10.1016/S0082-0784(00)80610-4 – volume: 17 start-page: 550 year: 1949 ident: 10.1016/j.compfluid.2019.06.008_bib0046 article-title: Transport properties of multicomponent gas mixtures publication-title: J Chem Phys doi: 10.1063/1.1747319 – volume: 40 start-page: 9815 year: 2015 ident: 10.1016/j.compfluid.2019.06.008_bib0037 article-title: Large eddy simulation of flame structure and combustion mode in a hydrogen fueled supersonic combustor publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.06.011 – volume: 154 start-page: 761 year: 2008 ident: 10.1016/j.compfluid.2019.06.008_bib0025 article-title: A criterion based on computational singular perturbation for the identification of quasi steady state species: a reduced mechanism for methane oxidation with NO chemistry publication-title: Combust Flame doi: 10.1016/j.combustflame.2008.04.025 – volume: 100 start-page: 721 year: 2018 ident: 10.1016/j.compfluid.2019.06.008_bib0039 article-title: Reynolds-Averaged, Scale-Adaptive and Large-Eddy Simulations of Premixed Bluff-Body, Combustion Using the Eddy Dissipation Concept publication-title: Flow Turbulence Combust doi: 10.1007/s10494-017-9880-4 – volume: 172 start-page: 183 year: 2016 ident: 10.1016/j.compfluid.2019.06.008_bib0015 article-title: A sparse stiff chemistry solver based on dynamic adaptive integration for efficient combustion simulations publication-title: Combust Flame doi: 10.1016/j.combustflame.2016.07.009 – volume: 51 start-page: 3084 year: 2013 ident: 10.1016/j.compfluid.2019.06.008_bib0011 article-title: Balanced splitting and rebalanced splitting publication-title: SIAM J Numer Anal doi: 10.1137/120878641 – volume: 162 start-page: 68 year: 2015 ident: 10.1016/j.compfluid.2019.06.008_bib0030 article-title: A reduced multicomponent diffusion model publication-title: Combust Flame doi: 10.1016/j.combustflame.2014.07.019 – volume: 5 start-page: 135 issue: 2 year: 1994 ident: 10.1016/j.compfluid.2019.06.008_bib0053 article-title: Models for high-intensity turbulent combustion publication-title: Comput Syst Eng doi: 10.1016/0956-0521(94)90045-0 – volume: 174 start-page: 1 year: 2016 ident: 10.1016/j.compfluid.2019.06.008_bib0027 article-title: On the merits of extrapolation-based stiff ODE solvers for combustion CFD publication-title: Combust Flame doi: 10.1016/j.combustflame.2016.09.018 – volume: 20 start-page: 632 year: 2016 ident: 10.1016/j.compfluid.2019.06.008_bib0032 article-title: Assessment of the constant non-unity Lewis number assumption in chemically-reacting flows publication-title: Combust Theory Model doi: 10.1080/13647830.2016.1164344 – volume: 335 start-page: 578 year: 2017 ident: 10.1016/j.compfluid.2019.06.008_bib0014 article-title: Analysis of operator splitting errors for near limit flame simulations publication-title: J Comput Phys doi: 10.1016/j.jcp.2017.01.044 – volume: 10 start-page: 138 year: 1996 ident: 10.1016/j.compfluid.2019.06.008_bib0026 article-title: CVODE, a stiff/nonstiff ODE solver in C publication-title: Comput Phys doi: 10.1063/1.4822377 – volume: 27 start-page: 1 year: 1978 ident: 10.1016/j.compfluid.2019.06.008_bib0054 article-title: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws publication-title: J Comput Phys doi: 10.1016/0021-9991(78)90023-2 – volume: 10 start-page: 199 issue: 2 year: 2006 ident: 10.1016/j.compfluid.2019.06.008_bib0004 article-title: Operator-splitting with ISAT to model reacting flow with detailed chemistry publication-title: Combust Theory Modelling doi: 10.1080/13647830500307501 – volume: 234 start-page: 1044 year: 2018 ident: 10.1016/j.compfluid.2019.06.008_bib0038 article-title: Roles of CO2 and H2O in premixed turbulent oxy-fuel combustion publication-title: Fuel doi: 10.1016/j.fuel.2018.07.135 – volume: 7 start-page: 383 issue: 2 year: 2003 ident: 10.1016/j.compfluid.2019.06.008_bib0003 article-title: A consistent-splitting approach to computing stiff steady-state reacting flows with adaptive chemistry publication-title: Combust Theory Modelling doi: 10.1088/1364-7830/7/2/310 – volume: 36 start-page: 507 year: 2017 ident: 10.1016/j.compfluid.2019.06.008_bib0031 article-title: An accurate, fast, mathematically robust, universal, non-iterative algorithm for computing multi-component diffusion velocities publication-title: Proc Combust Inst doi: 10.1016/j.proci.2016.05.055 – volume: 34 start-page: A76 issue: 1 year: 2012 ident: 10.1016/j.compfluid.2019.06.008_bib0007 article-title: New resolution strategy for multiscale reaction waves using time operator splitting, space adaptive multiresolution, and dedicated high order implicit/explicit time integrators publication-title: SIAM J Sci Comput doi: 10.1137/100816869 – start-page: 1672 year: 2018 ident: 10.1016/j.compfluid.2019.06.008_bib0016 article-title: Efficient time stepping for reactive turbulent simulations with stiff chemistry – volume: 89 start-page: 375 year: 1993 ident: 10.1016/j.compfluid.2019.06.008_bib0020 article-title: Using CSP to understand complex chemical kinetics publication-title: Combust Sci Technol doi: 10.1080/00102209308924120 – volume: 81 year: 1998 ident: 10.1016/j.compfluid.2019.06.008_bib0061 – year: 2009 ident: 10.1016/j.compfluid.2019.06.008_bib0012 – volume: 139 year: 2017 ident: 10.1016/j.compfluid.2019.06.008_bib0036 article-title: Large-eddy simulation of a reacting jet in cross flow with NOx prediction publication-title: J Eng Gas Turbines Power doi: 10.1115/1.4034447 – start-page: 317 year: 1994 ident: 10.1016/j.compfluid.2019.06.008_bib0055 article-title: The analytical solution of the Riemann problem in relativistic hydrodynamics publication-title: J Fluid Mech E1 doi: 10.1017/S0022112094003344 – volume: 175 start-page: 170 year: 2017 ident: 10.1016/j.compfluid.2019.06.008_bib0044 article-title: Effect of unsteady stretching on the flame local dynamics publication-title: Combust Flame doi: 10.1016/j.combustflame.2016.05.028 – volume: 161 start-page: 140 year: 2000 ident: 10.1016/j.compfluid.2019.06.008_bib0047 article-title: An analysis of operator splitting techniques in the stiff case publication-title: J Comput Phys doi: 10.1006/jcph.2000.6495 – year: 1991 ident: 10.1016/j.compfluid.2019.06.008_bib0059 – volume: 26 start-page: 461 year: 1994 ident: 10.1016/j.compfluid.2019.06.008_bib0021 article-title: The CSP method for simplifying kinetics publication-title: Int J Chem Kinet doi: 10.1002/kin.550260408 – start-page: 469 year: 1971 ident: 10.1016/j.compfluid.2019.06.008_bib0010 article-title: On the theory of the splitting-up method publication-title: Numer Solut Partial Diff Eq–II doi: 10.1016/B978-0-12-358502-8.50019-0 – volume: 186 start-page: 236 year: 2017 ident: 10.1016/j.compfluid.2019.06.008_bib0042 article-title: Ignition of a hydrogen–air mixture by low voltage electrical contact arcs publication-title: Combust Flame doi: 10.1016/j.combustflame.2017.08.006 – year: 1999 ident: 10.1016/j.compfluid.2019.06.008_bib0049 – volume: 12 start-page: 620 year: 1998 ident: 10.1016/j.compfluid.2019.06.008_bib0034 article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques publication-title: Comput Phys doi: 10.1063/1.168744 – volume: 217 start-page: 352 year: 2018 ident: 10.1016/j.compfluid.2019.06.008_bib0043 article-title: Experimental and numerical study on bluff-body and swirl stabilized diffusion flames publication-title: Fuel doi: 10.1016/j.fuel.2017.12.061 – volume: 229 start-page: 1852 issue: 5 year: 2010 ident: 10.1016/j.compfluid.2019.06.008_bib0006 article-title: Weak second-order splitting schemes for Lagrangian Monte Carlo particle methods for the composition PDF/FDF transport equations publication-title: J Comput Phys doi: 10.1016/j.jcp.2009.11.012 – volume: 117 start-page: 685 year: 1999 ident: 10.1016/j.compfluid.2019.06.008_bib0022 article-title: An algorithm for the construction of global reduced mechanisms with CSP data publication-title: Combust. Flame doi: 10.1016/S0010-2180(98)00132-1 – year: 1992 ident: 10.1016/j.compfluid.2019.06.008_bib0051 article-title: The TWOPNT program for boundary value problems – volume: 156 start-page: 1542 year: 2009 ident: 10.1016/j.compfluid.2019.06.008_bib0017 article-title: Dynamic stiffness removal for direct numerical simulations publication-title: Combust Flame doi: 10.1016/j.combustflame.2009.02.013 – start-page: 469 year: 1970 ident: 10.1016/j.compfluid.2019.06.008_bib0002 article-title: On the theory of the splitting-up method, in: proceedings of the 2nd symposium on numerical solution of partial differential equations publication-title: SVNSPADE – volume: 3 start-page: 233 year: 1999 ident: 10.1016/j.compfluid.2019.06.008_bib0023 article-title: Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data publication-title: Combust Theory Modelling doi: 10.1088/1364-7830/3/2/002 – volume: 185 start-page: 449 year: 2016 ident: 10.1016/j.compfluid.2019.06.008_bib0040 article-title: LES investigation of two frequency effects on acoustically forced premixed flame publication-title: Fuel doi: 10.1016/j.fuel.2016.08.005 – volume: 179 start-page: 767 year: 2007 ident: 10.1016/j.compfluid.2019.06.008_bib0019 article-title: Reduced chemistry-diffusion coupling publication-title: Combust Sci Technol doi: 10.1080/00102200601093498 – volume: 4 start-page: 159 year: 2000 ident: 10.1016/j.compfluid.2019.06.008_bib0057 article-title: Critical conditions for spherical flame initiation in mixtures with high Lewis numbers publication-title: Combust Theory Modelling doi: 10.1088/1364-7830/4/2/305 – volume: 190 start-page: 87 year: 2018 ident: 10.1016/j.compfluid.2019.06.008_bib0048 article-title: Laminar burning velocity and structure of coal dust flames using a unity Lewis number CFD model publication-title: Combust Flame doi: 10.1016/j.combustflame.2017.11.010 – volume: 36 start-page: 566 year: 2004 ident: 10.1016/j.compfluid.2019.06.008_bib0058 article-title: An updated comprehensive kinetic model of hydrogen combustion publication-title: Int J Chem Kinet doi: 10.1002/kin.20026 |
| SSID | ssj0004324 |
| Score | 2.456945 |
| Snippet | •Original OpenFOAM yields unsatisfactory prediction of basic combustion properties.•reactingFoam-SCI incorporates recent advances in computational... Computational fluid dynamics (CFD) has become a major tool in understanding and predicting the behavior of reacting flows, which intrinsically involve the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114 |
| SubjectTerms | Cantera Combustion simulation Computational fluid dynamics Computer simulation Convection-diffusion equation Counterflow Differential equations Exact solutions Flow simulation Fluid flow Fluid mechanics Mid-point splitting OpenFOAM Organic chemistry Premixed flames Reacting flow Reaction kinetics Robustness (mathematics) Solvers Splitting Stiff ODE solver Subroutines Thermal instability Transport properties Two dimensional flow |
| Title | reactingFoam-SCI: An open source CFD platform for reacting flow simulation |
| URI | https://dx.doi.org/10.1016/j.compfluid.2019.06.008 https://www.proquest.com/docview/2274335834 |
| Volume | 190 |
| WOSCitedRecordID | wos000479021500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0747 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004324 issn: 0045-7930 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdg4wAHxKc2GMgHblWkxnZie7eqrNomNIGoUDlFtuNImbq0Wjq2P5_n2E5LAZUduFhV1Gc5eb88__zyPhD6AJRbSW5ZklrOEpZlKpGUwZlHaqpyy3TeBY9_-8QvLsRsJj-H8gRt106AN424u5PL_6pquAbKdqmz91B3PylcgN-gdBhB7TD-k-KBBRoXyzxZqKvk6_gsuP5cm6yBd9UPxpOPrn30yhHWLs4wygyq-eJ20NZXoanXJnWN_R_aDi3V_KYuez7-PXidv9QbjuiFj_8NW6OL8emcp6eqvg35Z8Hb4BKcROLzLaMFZa7EZfiWEi2o7_gZbGDqs0LDdpr61P_fLLV3Gly6B73sluzC7GRXS3Uo1ptT_CC_tWf1kYQxSO2y6Ccq3ERFF64nHqJ9wjMJ5m5_dHYyO1-nzFLiC3SH2_kl9O-Pa_obcdnawjteMn2GnoYDBR55IDxHD2zzAj3ZKDP5Ep1vQ-IYjxrsAIE9IDAAAkdAYBhwlMAOEHgNiFdoOjmZjk-T0EMjMZTRVaKESYGPWFpyZTKiM2JJmXGtK6KA6RGtpM2sJcOypJmiea6IKo2imgwrqi19jfaaRWMPEDZCKwMHVqF1zhQwPWE4_K-SKTO54vIQ5fH5FCbUl3dtTubFDh0domEvuPQlVnaLHEcFFIEpegZYALx2Cx9FlRXhvW0LQoBK00xQ9ub-y3mLHq_flSO0t7q-se_QI_NjVbfX7wP0fgJNxpel |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=reactingFoam-SCI%3A+An+open+source+CFD+platform+for+reacting+flow+simulation&rft.jtitle=Computers+%26+fluids&rft.au=Yang%2C+Qi&rft.au=Zhao%2C+Peng&rft.au=Ge%2C+Haiwen&rft.date=2019-08-15&rft.issn=0045-7930&rft.volume=190&rft.spage=114&rft.epage=127&rft_id=info:doi/10.1016%2Fj.compfluid.2019.06.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compfluid_2019_06_008 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon |