A CFD based modelling approach for predicting steam condensation in the presence of non-condensable gases

•Detailed CFD simulation of steam condensation with non-condensable gases using Ansys-CFX.•Implementation of Wall Condensation and multicomponent model for NPP containment application.•Critical evaluation of the Wall Condensation Model for real-time containment applications.•Validation against exper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and design Jg. 324; S. 280 - 296
Hauptverfasser: Punetha, Maneesh, Khandekar, Sameer
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.12.2017
Elsevier BV
Schlagworte:
ISSN:0029-5493, 1872-759X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Detailed CFD simulation of steam condensation with non-condensable gases using Ansys-CFX.•Implementation of Wall Condensation and multicomponent model for NPP containment application.•Critical evaluation of the Wall Condensation Model for real-time containment applications.•Validation against experiments from different containment thermal hydraulic facilities. A typical post Loss-of-Coolant-Accident (LOCA) situation in nuclear power plant containments is a major safety concern. The simultaneous presence of steam, air and potentially hazardous hydrogen, which may get generated due to the metal-water vapour reactions, can lead to a singularly dangerous situation that may jeopardize the integrity of the containment structure. After steam leakage, wall condensation inside the containment is the primary heat transfer mechanism to maintain favourable safe pressure and temperature. Condensation of steam leads to strong, local, natural convective fluid flow currents, which are coupled with buoyancy and diffusional flow of the involved species. In this paper, an attempt has been made to address these complex transport processes, involving multicomponent gas species and phase-change phenomena, by CFD approach using Ansys CFX. A Wall Condensation Model (WCM) is utilized to handle wall condensation wherein the condensate is computed as a sink term. The simulated results are benchmarked against available data from several small and large scale experiments (such as TOSQAN, CONAN and others). These validation cases are chosen so as to cover different types of geometries. Specific experiments are also performed for studying the diffusion of helium jets into air filled volumes – such situations are also validated by solving the coupled conservation equations for the multicomponent mixture. Unless the net non-condensable gas (NCG) concentration is very low (less than about 6%), it is shown that the WCM, in tandem with multicomponent mixture model (MCM), works quite well for simulating the considered containment thermal-hydraulic situations. This provides the necessary confidence to further develop and validate the CFD based approach to, in the end, be able to reliably simulate post-accident thermal-hydraulics of large containment structures.
AbstractList A typical post Loss-of-Coolant-Accident (LOCA) situation in nuclear power plant containments is a major safety concern. The simultaneous presence of steam, air and potentially hazardous hydrogen, which may get generated due to the metal-water vapour reactions, can lead to a singularly dangerous situation that may jeopardize the integrity of the containment structure. After steam leakage, wall condensation inside the containment is the primary heat transfer mechanism to maintain favourable safe pressure and temperature. Condensation of steam leads to strong, local, natural convective fluid flow currents, which are coupled with buoyancy and diffusional flow of the involved species. In this paper, an attempt has been made to address these complex transport processes, involving multicomponent gas species and phase-change phenomena, by CFD approach using Ansys CFX. A Wall Condensation Model (WCM) is utilized to handle wall condensation wherein the condensate is computed as a sink term. The simulated results are benchmarked against available data from several small and large scale experiments (such as TOSQAN, CONAN and others). These validation cases are chosen so as to cover different types of geometries. Specific experiments are also performed for studying the diffusion of helium jets into air filled volumes -- such situations are also validated by solving the coupled conservation equations for the multicomponent mixture. Unless the net non-condensable gas (NCG) concentration is very low (less than about 6%), it is shown that the WCM, in tandem with multicomponent mixture model (MCM), works quite well for simulating the considered containment thermal-hydraulic situations. This provides the necessary confidence to further develop and validate the CFD based approach to, in the end, be able to reliably simulate post-accident thermal-hydraulics of large containment structures.
•Detailed CFD simulation of steam condensation with non-condensable gases using Ansys-CFX.•Implementation of Wall Condensation and multicomponent model for NPP containment application.•Critical evaluation of the Wall Condensation Model for real-time containment applications.•Validation against experiments from different containment thermal hydraulic facilities. A typical post Loss-of-Coolant-Accident (LOCA) situation in nuclear power plant containments is a major safety concern. The simultaneous presence of steam, air and potentially hazardous hydrogen, which may get generated due to the metal-water vapour reactions, can lead to a singularly dangerous situation that may jeopardize the integrity of the containment structure. After steam leakage, wall condensation inside the containment is the primary heat transfer mechanism to maintain favourable safe pressure and temperature. Condensation of steam leads to strong, local, natural convective fluid flow currents, which are coupled with buoyancy and diffusional flow of the involved species. In this paper, an attempt has been made to address these complex transport processes, involving multicomponent gas species and phase-change phenomena, by CFD approach using Ansys CFX. A Wall Condensation Model (WCM) is utilized to handle wall condensation wherein the condensate is computed as a sink term. The simulated results are benchmarked against available data from several small and large scale experiments (such as TOSQAN, CONAN and others). These validation cases are chosen so as to cover different types of geometries. Specific experiments are also performed for studying the diffusion of helium jets into air filled volumes – such situations are also validated by solving the coupled conservation equations for the multicomponent mixture. Unless the net non-condensable gas (NCG) concentration is very low (less than about 6%), it is shown that the WCM, in tandem with multicomponent mixture model (MCM), works quite well for simulating the considered containment thermal-hydraulic situations. This provides the necessary confidence to further develop and validate the CFD based approach to, in the end, be able to reliably simulate post-accident thermal-hydraulics of large containment structures.
Author Punetha, Maneesh
Khandekar, Sameer
Author_xml – sequence: 1
  givenname: Maneesh
  orcidid: 0000-0003-4075-0837
  surname: Punetha
  fullname: Punetha, Maneesh
  email: maneeshp@iitk.ac.in
– sequence: 2
  givenname: Sameer
  surname: Khandekar
  fullname: Khandekar, Sameer
  email: samkhan@iitk.ac.in
BookMark eNqNkE1rGzEQhkVxoHaS31BBzrsZ7ad0yME4zQcEemkgN6GVZh0ta8mR5ED_fXbjJodc2rkMDO_7zsyzIgvnHRLyg0HOgDWXQ-4OGt3WYMwLYG0OIgdov5El422RtbV4WpAlQCGyuhLld7KKcYC5RLEkdk03N9e0UxEN3XmD42jdlqr9Pniln2nvA90HNFaneR4Tqh3V3hl0USXrHbWOpmecRRGdRup7Ol2YfWi6Eel2So9n5KRXY8Tzv_2UPN78_L25yx5-3d5v1g-ZLqsyZaoy2BRQ94XCUhUNal6ZGjmvRdmIlhWomw50ZbjmYJTgvOwYAK-hUy0gL0_JxTF3-uDlgDHJwR-Cm1ZKJjiDkvOqmlRXR5UOPsaAvdQ2vT-UgrKjZCBnunKQn3TlTFeCkBPdyd9-8e-D3anw5z-c66MTJwivFoOM2s7kjA2okzTe_jPjDQn2nQA
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2018_05_136
crossref_primary_10_1016_j_nucengdes_2023_112366
crossref_primary_10_1016_j_pnucene_2021_103837
crossref_primary_10_3390_chemengineering3010004
crossref_primary_10_1155_2024_2880812
crossref_primary_10_3390_en13010035
crossref_primary_10_3389_fenrg_2023_1064067
crossref_primary_10_1016_j_ijthermalsci_2023_108648
crossref_primary_10_1016_j_enggeo_2025_107969
crossref_primary_10_1016_j_applthermaleng_2021_117802
crossref_primary_10_1080_01457632_2023_2213992
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122936
crossref_primary_10_1016_j_pnucene_2022_104557
crossref_primary_10_1007_s00231_024_03521_9
crossref_primary_10_1016_j_applthermaleng_2021_116620
crossref_primary_10_1088_1757_899X_1096_1_012099
crossref_primary_10_1002_cite_201800088
crossref_primary_10_1007_s42757_021_0115_5
crossref_primary_10_1016_j_cjche_2023_02_008
crossref_primary_10_1016_j_nucengdes_2022_111861
crossref_primary_10_1615_HeatTransRes_2025055664
crossref_primary_10_1007_s42757_022_0136_8
crossref_primary_10_1016_j_applthermaleng_2020_115233
crossref_primary_10_1016_j_ijhydene_2019_11_179
crossref_primary_10_1016_j_anucene_2020_107992
crossref_primary_10_1016_j_applthermaleng_2022_118881
crossref_primary_10_1016_j_nucengdes_2019_04_012
crossref_primary_10_1155_2022_7129092
crossref_primary_10_1371_journal_pone_0274924
crossref_primary_10_1002_ppsc_202400115
crossref_primary_10_1007_s40997_021_00454_0
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119405
crossref_primary_10_1016_j_nucengdes_2025_114289
crossref_primary_10_1016_j_tsep_2022_101403
crossref_primary_10_1016_j_applthermaleng_2023_120243
crossref_primary_10_1016_j_applthermaleng_2025_127453
crossref_primary_10_1155_2019_1673834
crossref_primary_10_1016_j_expthermflusci_2019_05_020
crossref_primary_10_3390_app131810520
crossref_primary_10_1016_j_ijhydene_2018_08_168
Cites_doi 10.1080/08916159608946519
10.1016/0017-9310(80)90095-2
10.1016/0017-9310(73)90144-0
10.13182/NT93-A17037
10.1016/j.nucengdes.2006.04.025
10.1021/ie50234a018
10.1016/0017-9310(67)90053-1
10.1021/ie50483a022
10.1016/j.nucengdes.2016.01.004
10.1016/j.nucengdes.2013.05.002
10.1016/S0029-5493(97)00185-4
10.1021/ie50677a007
10.1063/1.1461829
10.5516/NET.03.2014.702
10.1016/j.nucengdes.2013.07.014
10.1007/978-3-540-74234-0_3
10.1016/j.nucengdes.2014.03.007
10.1155/2009/738480
10.1007/s00231-004-0606-5
10.1016/j.nucengdes.2010.05.061
10.1016/j.nucengdes.2013.02.002
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier BV Dec 1, 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 1, 2017
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
KR7
L7M
SOI
DOI 10.1016/j.nucengdes.2017.09.007
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-759X
EndPage 296
ExternalDocumentID 10_1016_j_nucengdes_2017_09_007
S0029549317304478
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
LY7
LZ3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
ZMT
~02
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HME
HVGLF
HZ~
R2-
SAC
SET
SEW
SHN
UHS
WUQ
XPP
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
FR3
KR7
L7M
SOI
ID FETCH-LOGICAL-c343t-a4de6205f2ae3a26ec84d5e8859369712ec6b0c4d8c80da9883b100850ba70e83
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414699200027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5493
IngestDate Wed Aug 13 04:50:53 EDT 2025
Sat Nov 29 07:28:20 EST 2025
Tue Nov 18 22:12:50 EST 2025
Fri Feb 23 02:28:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Containment thermal-hydraulics
Benchmarking and Validation
Wall Condensation and multicomponent model
CFD modelling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-a4de6205f2ae3a26ec84d5e8859369712ec6b0c4d8c80da9883b100850ba70e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4075-0837
PQID 1981038844
PQPubID 2045424
PageCount 17
ParticipantIDs proquest_journals_1981038844
crossref_citationtrail_10_1016_j_nucengdes_2017_09_007
crossref_primary_10_1016_j_nucengdes_2017_09_007
elsevier_sciencedirect_doi_10_1016_j_nucengdes_2017_09_007
PublicationCentury 2000
PublicationDate 2017-12-01
2017-12-00
20171201
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Nuclear engineering and design
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Bird, Stewart, Lightfoot (b0015) 2007
Othmer (b0085) 1929; 21
Fuller, Schettler, Giddings (b0055) 1966; 58
Fairbanks, Wilke (b0050) 1950; 42
CFX, A., 2016. Solver Theory Guide. Ansys Inc, Canonsburg, PA, U.S.A.
Martin-Valdepenas, Jimenez, Martin-Fuertes, Benítez (b0075) 2005; 41
Kljenak, Babić, Mavko, Bajsić (b0060) 2006; 236
Ambrosini, Bucci, Forgione, Manfredini, Oriolo (b0010) 2009; 2009
Yang (b0135) 2014; 46
Kuhn, Peterson, Schrock (b0065) 1996; 9
Siddique, Golay, Kazimi (b0100) 1993; 102
Su, Sun, Fan, Ding (b0110) 2013; 262
Nusselt (b0080) 1916; 60
Al-Diwany, Rose (b0005) 1973; 16
Carey (b0020) 1992
Sparrow, Minkowycz, Saddy (b0105) 1967; 10
Wagner, W., Kretzschmar, H.-J., 2008. IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97, 7–150.
Peterson, Schrock, Kageyama (b0090) 1993; 115
Yadav, Khandekar, Sharma (b0130) 2016; 300
Kuhn, Schrock, Peterson (b9000) 1997; 177
Dehbi (b0040) 2013; 265
Rose (b0095) 1980; 23
Wagner, Pruss (b0125) 2002; 31
Zschaeck, Frank, Burns (b0140) 2014; 279
Dehbi (b0035) 1991
Malet, Porcheron, Vendel (b0070) 2010; 240
Dehbi, Janasz, Bell (b0045) 2013; 258
Toshikazu, Yoichiro, Basma, Katsuhisa (b0115) 2012
Casey, M., Wintergerste, T., Innotec, S., 2000. ERCOFTAC special interest group on quality and trust in industrial CFD. Best practice guidelines.
Peterson (10.1016/j.nucengdes.2017.09.007_b0090) 1993; 115
Malet (10.1016/j.nucengdes.2017.09.007_b0070) 2010; 240
Fuller (10.1016/j.nucengdes.2017.09.007_b0055) 1966; 58
Yadav (10.1016/j.nucengdes.2017.09.007_b0130) 2016; 300
Dehbi (10.1016/j.nucengdes.2017.09.007_b0040) 2013; 265
Sparrow (10.1016/j.nucengdes.2017.09.007_b0105) 1967; 10
Dehbi (10.1016/j.nucengdes.2017.09.007_b0045) 2013; 258
Kljenak (10.1016/j.nucengdes.2017.09.007_b0060) 2006; 236
Nusselt (10.1016/j.nucengdes.2017.09.007_b0080) 1916; 60
Kuhn (10.1016/j.nucengdes.2017.09.007_b0065) 1996; 9
Martin-Valdepenas (10.1016/j.nucengdes.2017.09.007_b0075) 2005; 41
Bird (10.1016/j.nucengdes.2017.09.007_b0015) 2007
Kuhn (10.1016/j.nucengdes.2017.09.007_b9000) 1997; 177
Wagner (10.1016/j.nucengdes.2017.09.007_b0125) 2002; 31
Yang (10.1016/j.nucengdes.2017.09.007_b0135) 2014; 46
Su (10.1016/j.nucengdes.2017.09.007_b0110) 2013; 262
Dehbi (10.1016/j.nucengdes.2017.09.007_b0035) 1991
10.1016/j.nucengdes.2017.09.007_b0025
10.1016/j.nucengdes.2017.09.007_b0120
Carey (10.1016/j.nucengdes.2017.09.007_b0020) 1992
Zschaeck (10.1016/j.nucengdes.2017.09.007_b0140) 2014; 279
Al-Diwany (10.1016/j.nucengdes.2017.09.007_b0005) 1973; 16
10.1016/j.nucengdes.2017.09.007_b0030
Rose (10.1016/j.nucengdes.2017.09.007_b0095) 1980; 23
Othmer (10.1016/j.nucengdes.2017.09.007_b0085) 1929; 21
Siddique (10.1016/j.nucengdes.2017.09.007_b0100) 1993; 102
Ambrosini (10.1016/j.nucengdes.2017.09.007_b0010) 2009; 2009
Fairbanks (10.1016/j.nucengdes.2017.09.007_b0050) 1950; 42
Toshikazu (10.1016/j.nucengdes.2017.09.007_b0115) 2012
References_xml – volume: 240
  start-page: 3209
  year: 2010
  end-page: 3220
  ident: b0070
  article-title: OECD International Standard Problem ISP-47 on containment thermal-hydraulics—conclusions of the TOSQAN part
  publication-title: Nucl. Eng. Des.
– volume: 279
  start-page: 137
  year: 2014
  end-page: 146
  ident: b0140
  article-title: CFD modelling and validation of wall condensation in the presence of non-condensable gases
  publication-title: Nucl. Eng. Des.
– year: 2012
  ident: b0115
  article-title: Review of safety improvement on sodium-cooled fast reactors after Fukushima accident
  publication-title: Nat. Sci.
– volume: 236
  start-page: 1682
  year: 2006
  end-page: 1692
  ident: b0060
  article-title: Modeling of containment atmosphere mixing and stratification experiment using a CFD approach
  publication-title: Nucl. Eng. Des.
– volume: 2009
  year: 2009
  ident: b0010
  article-title: Experiments and modelling techniques for heat and mass transfer in light water reactors
  publication-title: Sci. Technol. Nucl. Installations
– reference: CFX, A., 2016. Solver Theory Guide. Ansys Inc, Canonsburg, PA, U.S.A.
– volume: 16
  start-page: 1359
  year: 1973
  end-page: 1369
  ident: b0005
  article-title: Free convection film condensation of steam in the presence of non-condensing gases
  publication-title: Int. J. Heat Mass Transf.
– volume: 9
  start-page: 149
  year: 1996
  end-page: 163
  ident: b0065
  article-title: Determination of the local heat flux in condensation experiments
  publication-title: Exp. Heat Transf. Int. J.
– volume: 60
  start-page: 541
  year: 1916
  end-page: 546
  ident: b0080
  article-title: The surface condensation of water vapour
  publication-title: VDI Z
– volume: 265
  start-page: 25
  year: 2013
  end-page: 34
  ident: b0040
  article-title: On the adequacy of wall functions to predict condensation rates from steam-noncondensable gas mixtures
  publication-title: Nucl. Eng. Des.
– reference: Casey, M., Wintergerste, T., Innotec, S., 2000. ERCOFTAC special interest group on quality and trust in industrial CFD. Best practice guidelines.
– volume: 58
  start-page: 18
  year: 1966
  end-page: 27
  ident: b0055
  article-title: New method for prediction of binary gas-phase diffusion coefficients
  publication-title: Ind. Eng. Chem.
– volume: 42
  start-page: 471
  year: 1950
  end-page: 475
  ident: b0050
  article-title: Diffusion coefficients in multicomponent gas mixtures
  publication-title: Ind. Eng. Chem.
– volume: 41
  start-page: 961
  year: 2005
  end-page: 976
  ident: b0075
  article-title: Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code
  publication-title: Heat Mass Transf.
– volume: 21
  start-page: 576
  year: 1929
  end-page: 583
  ident: b0085
  article-title: The condensation of steam
  publication-title: Ind. Eng. Chem.
– volume: 102
  start-page: 386
  year: 1993
  end-page: 402
  ident: b0100
  article-title: Local heat transfer coefficients for forced-convection condensation of steam in a vertical tube in the presence of a noncondensable gas
  publication-title: Nucl. Technol.
– volume: 115
  year: 1993
  ident: b0090
  article-title: Diffusion layer theory for turbulent vapor condensation with noncondensable gases
  publication-title: Trans. Am. Soc. Mech. Eng. J. Heat Transf.
– year: 1991
  ident: b0035
  article-title: The Effects of Noncondensable Gases on Steam Condensation Under Turbulent Natural Convection Conditions
– volume: 300
  start-page: 181
  year: 2016
  end-page: 209
  ident: b0130
  article-title: An integrated approach to steam condensation studies inside reactor containments: a review
  publication-title: Nucl. Eng. Des.
– year: 1992
  ident: b0020
  article-title: Liquid Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
– year: 2007
  ident: b0015
  article-title: Transport Phenomena
– volume: 23
  start-page: 539
  year: 1980
  end-page: 546
  ident: b0095
  article-title: Approximate equations for forced-convection condensation in the presence of a non-condensing gas on a flat plate and horizontal tube
  publication-title: Int. J. Heat Mass Transf.
– volume: 258
  start-page: 199
  year: 2013
  end-page: 210
  ident: b0045
  article-title: Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach
  publication-title: Nucl. Eng. Des.
– volume: 31
  start-page: 387
  year: 2002
  end-page: 535
  ident: b0125
  article-title: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use
  publication-title: J. Phys. Chem. Ref. Data
– volume: 177
  start-page: 53
  year: 1997
  end-page: 69
  ident: b9000
  article-title: An investigation of condensation from steam–gas mixtures flowing downward inside a vertical tube
  publication-title: Nucl. Eng. Des.
– volume: 46
  start-page: 27
  year: 2014
  end-page: 38
  ident: b0135
  article-title: Fukushima Dai-Ichi accident: lessons learned and future actions from the risk perspectives
  publication-title: Nucl. Eng. Technol.
– volume: 10
  start-page: 1829
  year: 1967
  end-page: 1845
  ident: b0105
  article-title: Forced convection condensation in the presence of noncondensables and interfacial resistance
  publication-title: Int. J. Heat Mass Transf.
– volume: 262
  start-page: 201
  year: 2013
  end-page: 208
  ident: b0110
  article-title: Experimental study of the effect of non-condensable gases on steam condensation over a vertical tube external surface
  publication-title: Nucl. Eng. Des.
– reference: Wagner, W., Kretzschmar, H.-J., 2008. IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97, 7–150.
– volume: 9
  start-page: 149
  year: 1996
  ident: 10.1016/j.nucengdes.2017.09.007_b0065
  article-title: Determination of the local heat flux in condensation experiments
  publication-title: Exp. Heat Transf. Int. J.
  doi: 10.1080/08916159608946519
– volume: 23
  start-page: 539
  year: 1980
  ident: 10.1016/j.nucengdes.2017.09.007_b0095
  article-title: Approximate equations for forced-convection condensation in the presence of a non-condensing gas on a flat plate and horizontal tube
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(80)90095-2
– volume: 16
  start-page: 1359
  year: 1973
  ident: 10.1016/j.nucengdes.2017.09.007_b0005
  article-title: Free convection film condensation of steam in the presence of non-condensing gases
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(73)90144-0
– volume: 102
  start-page: 386
  year: 1993
  ident: 10.1016/j.nucengdes.2017.09.007_b0100
  article-title: Local heat transfer coefficients for forced-convection condensation of steam in a vertical tube in the presence of a noncondensable gas
  publication-title: Nucl. Technol.
  doi: 10.13182/NT93-A17037
– volume: 236
  start-page: 1682
  year: 2006
  ident: 10.1016/j.nucengdes.2017.09.007_b0060
  article-title: Modeling of containment atmosphere mixing and stratification experiment using a CFD approach
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2006.04.025
– volume: 21
  start-page: 576
  year: 1929
  ident: 10.1016/j.nucengdes.2017.09.007_b0085
  article-title: The condensation of steam
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50234a018
– volume: 10
  start-page: 1829
  year: 1967
  ident: 10.1016/j.nucengdes.2017.09.007_b0105
  article-title: Forced convection condensation in the presence of noncondensables and interfacial resistance
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(67)90053-1
– volume: 42
  start-page: 471
  year: 1950
  ident: 10.1016/j.nucengdes.2017.09.007_b0050
  article-title: Diffusion coefficients in multicomponent gas mixtures
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50483a022
– year: 1992
  ident: 10.1016/j.nucengdes.2017.09.007_b0020
– volume: 300
  start-page: 181
  year: 2016
  ident: 10.1016/j.nucengdes.2017.09.007_b0130
  article-title: An integrated approach to steam condensation studies inside reactor containments: a review
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2016.01.004
– volume: 262
  start-page: 201
  year: 2013
  ident: 10.1016/j.nucengdes.2017.09.007_b0110
  article-title: Experimental study of the effect of non-condensable gases on steam condensation over a vertical tube external surface
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2013.05.002
– ident: 10.1016/j.nucengdes.2017.09.007_b0025
– volume: 177
  start-page: 53
  year: 1997
  ident: 10.1016/j.nucengdes.2017.09.007_b9000
  article-title: An investigation of condensation from steam–gas mixtures flowing downward inside a vertical tube
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/S0029-5493(97)00185-4
– year: 1991
  ident: 10.1016/j.nucengdes.2017.09.007_b0035
– volume: 58
  start-page: 18
  year: 1966
  ident: 10.1016/j.nucengdes.2017.09.007_b0055
  article-title: New method for prediction of binary gas-phase diffusion coefficients
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50677a007
– year: 2007
  ident: 10.1016/j.nucengdes.2017.09.007_b0015
– volume: 31
  start-page: 387
  year: 2002
  ident: 10.1016/j.nucengdes.2017.09.007_b0125
  article-title: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.1461829
– volume: 46
  start-page: 27
  year: 2014
  ident: 10.1016/j.nucengdes.2017.09.007_b0135
  article-title: Fukushima Dai-Ichi accident: lessons learned and future actions from the risk perspectives
  publication-title: Nucl. Eng. Technol.
  doi: 10.5516/NET.03.2014.702
– volume: 265
  start-page: 25
  year: 2013
  ident: 10.1016/j.nucengdes.2017.09.007_b0040
  article-title: On the adequacy of wall functions to predict condensation rates from steam-noncondensable gas mixtures
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2013.07.014
– volume: 115
  year: 1993
  ident: 10.1016/j.nucengdes.2017.09.007_b0090
  article-title: Diffusion layer theory for turbulent vapor condensation with noncondensable gases
  publication-title: Trans. Am. Soc. Mech. Eng. J. Heat Transf.
– ident: 10.1016/j.nucengdes.2017.09.007_b0120
  doi: 10.1007/978-3-540-74234-0_3
– volume: 279
  start-page: 137
  year: 2014
  ident: 10.1016/j.nucengdes.2017.09.007_b0140
  article-title: CFD modelling and validation of wall condensation in the presence of non-condensable gases
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2014.03.007
– volume: 2009
  year: 2009
  ident: 10.1016/j.nucengdes.2017.09.007_b0010
  article-title: Experiments and modelling techniques for heat and mass transfer in light water reactors
  publication-title: Sci. Technol. Nucl. Installations
  doi: 10.1155/2009/738480
– volume: 41
  start-page: 961
  year: 2005
  ident: 10.1016/j.nucengdes.2017.09.007_b0075
  article-title: Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-004-0606-5
– volume: 240
  start-page: 3209
  year: 2010
  ident: 10.1016/j.nucengdes.2017.09.007_b0070
  article-title: OECD International Standard Problem ISP-47 on containment thermal-hydraulics—conclusions of the TOSQAN part
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2010.05.061
– ident: 10.1016/j.nucengdes.2017.09.007_b0030
– volume: 60
  start-page: 541
  year: 1916
  ident: 10.1016/j.nucengdes.2017.09.007_b0080
  article-title: The surface condensation of water vapour
  publication-title: VDI Z
– year: 2012
  ident: 10.1016/j.nucengdes.2017.09.007_b0115
  article-title: Review of safety improvement on sodium-cooled fast reactors after Fukushima accident
  publication-title: Nat. Sci.
– volume: 258
  start-page: 199
  year: 2013
  ident: 10.1016/j.nucengdes.2017.09.007_b0045
  article-title: Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2013.02.002
SSID ssj0000092
Score 2.4030225
Snippet •Detailed CFD simulation of steam condensation with non-condensable gases using Ansys-CFX.•Implementation of Wall Condensation and multicomponent model for NPP...
A typical post Loss-of-Coolant-Accident (LOCA) situation in nuclear power plant containments is a major safety concern. The simultaneous presence of steam, air...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 280
SubjectTerms Benchmarking and Validation
CAD
CFD modelling
Computational fluid dynamics
Computer aided design
Computer simulation
Condensation
Conservation equations
Containment
Containment thermal-hydraulics
Containment vessels
Electric power plants
Fluid dynamics
Fluid flow
Gases
Heat transfer
Helium
Hydraulics
Loss of coolant accidents
Mathematical models
Nuclear accidents & safety
Nuclear electric power generation
Nuclear energy
Nuclear engineering
Nuclear power plants
Nuclear reactions
Nuclear safety
Phase transitions
Species diffusion
Steam
Steam electric power generation
Studies
Transport processes
Wall Condensation and multicomponent model
Water vapor
Title A CFD based modelling approach for predicting steam condensation in the presence of non-condensable gases
URI https://dx.doi.org/10.1016/j.nucengdes.2017.09.007
https://www.proquest.com/docview/1981038844
Volume 324
WOSCitedRecordID wos000414699200027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-759X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000092
  issn: 0029-5493
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCygEOiKcoFOQDt2jRxuvdtblFpRUPKapEkXKz_EqVPrZRkla98N8ZvzabFFQQ4rKKVmvvxvN5PB5_M4PQuwpW_ULRMqPEeat0RTNGjckUV4zL0uYmFpuox2M2mfCjXu9HioW5Pq-bht3c8Pl_FTXcA2G70Nm_EHfbKdyA3yB0uILY4fpHgh8N9g8_DtzqZEKdGx9wnnKHe1rhfOGOZ1bBlWDlheOeg_4JxJ7EfJz7wCTtfQrNZZOlZ1yo1Qn0vuzatWOXFlkuBnad3tAfS5gNgsjRlYsBkiFGCB5btr7or86Bb88C2_ubvLCRNBz9EbDGbXI7bgfKxKABnsFWNOgyG3Qtq8G4L30l3VYZF4R21Wmo8hRXZhJq395S-sH_cPq-gcnQnMAfc4y92qevDRV1tzJquwNqd7oJplORU1qze2iHwIewPtoZfT6YfOnsnzhJHCHXYIMg-MvX_c682VrovfVy_Bg9itsOPApweYJ6tnmKHnaSUT5DsxEG4GAPHNwCByfgYAAOXgMHe-DgLnDwrMEAHJyAgy-neAs42APnOfp-eHC8_ymLhTgyXdBilUlqbEXyckqkLSSprIb5XFrGfDnIekisrlSuqWGa5UZyxgo19MkQlaxzy4oXqA_vsy8dk85KypWiNa2oIrBcWGamuoCNu9SkUruoSuMndMxS74qlnItERzwV7cALN_Ai5wIGfhflbcN5SNRyd5MPSUAi2pvBjhSArLsb7yWRijj7l2LImSs4wCh99S99v0YP1jNrD_VXiyv7Bt3X16vZcvE2gvQnQJG1xw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CFD+based+modelling+approach+for+predicting+steam+condensation+in+the+presence+of+non-condensable+gases&rft.jtitle=Nuclear+engineering+and+design&rft.au=Punetha%2C+Maneesh&rft.au=Khandekar%2C+Sameer&rft.date=2017-12-01&rft.pub=Elsevier+B.V&rft.issn=0029-5493&rft.eissn=1872-759X&rft.volume=324&rft.spage=280&rft.epage=296&rft_id=info:doi/10.1016%2Fj.nucengdes.2017.09.007&rft.externalDocID=S0029549317304478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5493&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5493&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5493&client=summon