A CFD based modelling approach for predicting steam condensation in the presence of non-condensable gases
•Detailed CFD simulation of steam condensation with non-condensable gases using Ansys-CFX.•Implementation of Wall Condensation and multicomponent model for NPP containment application.•Critical evaluation of the Wall Condensation Model for real-time containment applications.•Validation against exper...
Gespeichert in:
| Veröffentlicht in: | Nuclear engineering and design Jg. 324; S. 280 - 296 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
01.12.2017
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0029-5493, 1872-759X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Detailed CFD simulation of steam condensation with non-condensable gases using Ansys-CFX.•Implementation of Wall Condensation and multicomponent model for NPP containment application.•Critical evaluation of the Wall Condensation Model for real-time containment applications.•Validation against experiments from different containment thermal hydraulic facilities.
A typical post Loss-of-Coolant-Accident (LOCA) situation in nuclear power plant containments is a major safety concern. The simultaneous presence of steam, air and potentially hazardous hydrogen, which may get generated due to the metal-water vapour reactions, can lead to a singularly dangerous situation that may jeopardize the integrity of the containment structure. After steam leakage, wall condensation inside the containment is the primary heat transfer mechanism to maintain favourable safe pressure and temperature. Condensation of steam leads to strong, local, natural convective fluid flow currents, which are coupled with buoyancy and diffusional flow of the involved species. In this paper, an attempt has been made to address these complex transport processes, involving multicomponent gas species and phase-change phenomena, by CFD approach using Ansys CFX. A Wall Condensation Model (WCM) is utilized to handle wall condensation wherein the condensate is computed as a sink term. The simulated results are benchmarked against available data from several small and large scale experiments (such as TOSQAN, CONAN and others). These validation cases are chosen so as to cover different types of geometries. Specific experiments are also performed for studying the diffusion of helium jets into air filled volumes – such situations are also validated by solving the coupled conservation equations for the multicomponent mixture. Unless the net non-condensable gas (NCG) concentration is very low (less than about 6%), it is shown that the WCM, in tandem with multicomponent mixture model (MCM), works quite well for simulating the considered containment thermal-hydraulic situations. This provides the necessary confidence to further develop and validate the CFD based approach to, in the end, be able to reliably simulate post-accident thermal-hydraulics of large containment structures. |
|---|---|
| AbstractList | A typical post Loss-of-Coolant-Accident (LOCA) situation in nuclear power plant containments is a major safety concern. The simultaneous presence of steam, air and potentially hazardous hydrogen, which may get generated due to the metal-water vapour reactions, can lead to a singularly dangerous situation that may jeopardize the integrity of the containment structure. After steam leakage, wall condensation inside the containment is the primary heat transfer mechanism to maintain favourable safe pressure and temperature. Condensation of steam leads to strong, local, natural convective fluid flow currents, which are coupled with buoyancy and diffusional flow of the involved species. In this paper, an attempt has been made to address these complex transport processes, involving multicomponent gas species and phase-change phenomena, by CFD approach using Ansys CFX. A Wall Condensation Model (WCM) is utilized to handle wall condensation wherein the condensate is computed as a sink term. The simulated results are benchmarked against available data from several small and large scale experiments (such as TOSQAN, CONAN and others). These validation cases are chosen so as to cover different types of geometries. Specific experiments are also performed for studying the diffusion of helium jets into air filled volumes -- such situations are also validated by solving the coupled conservation equations for the multicomponent mixture. Unless the net non-condensable gas (NCG) concentration is very low (less than about 6%), it is shown that the WCM, in tandem with multicomponent mixture model (MCM), works quite well for simulating the considered containment thermal-hydraulic situations. This provides the necessary confidence to further develop and validate the CFD based approach to, in the end, be able to reliably simulate post-accident thermal-hydraulics of large containment structures. •Detailed CFD simulation of steam condensation with non-condensable gases using Ansys-CFX.•Implementation of Wall Condensation and multicomponent model for NPP containment application.•Critical evaluation of the Wall Condensation Model for real-time containment applications.•Validation against experiments from different containment thermal hydraulic facilities. A typical post Loss-of-Coolant-Accident (LOCA) situation in nuclear power plant containments is a major safety concern. The simultaneous presence of steam, air and potentially hazardous hydrogen, which may get generated due to the metal-water vapour reactions, can lead to a singularly dangerous situation that may jeopardize the integrity of the containment structure. After steam leakage, wall condensation inside the containment is the primary heat transfer mechanism to maintain favourable safe pressure and temperature. Condensation of steam leads to strong, local, natural convective fluid flow currents, which are coupled with buoyancy and diffusional flow of the involved species. In this paper, an attempt has been made to address these complex transport processes, involving multicomponent gas species and phase-change phenomena, by CFD approach using Ansys CFX. A Wall Condensation Model (WCM) is utilized to handle wall condensation wherein the condensate is computed as a sink term. The simulated results are benchmarked against available data from several small and large scale experiments (such as TOSQAN, CONAN and others). These validation cases are chosen so as to cover different types of geometries. Specific experiments are also performed for studying the diffusion of helium jets into air filled volumes – such situations are also validated by solving the coupled conservation equations for the multicomponent mixture. Unless the net non-condensable gas (NCG) concentration is very low (less than about 6%), it is shown that the WCM, in tandem with multicomponent mixture model (MCM), works quite well for simulating the considered containment thermal-hydraulic situations. This provides the necessary confidence to further develop and validate the CFD based approach to, in the end, be able to reliably simulate post-accident thermal-hydraulics of large containment structures. |
| Author | Punetha, Maneesh Khandekar, Sameer |
| Author_xml | – sequence: 1 givenname: Maneesh orcidid: 0000-0003-4075-0837 surname: Punetha fullname: Punetha, Maneesh email: maneeshp@iitk.ac.in – sequence: 2 givenname: Sameer surname: Khandekar fullname: Khandekar, Sameer email: samkhan@iitk.ac.in |
| BookMark | eNqNkE1rGzEQhkVxoHaS31BBzrsZ7ad0yME4zQcEemkgN6GVZh0ta8mR5ED_fXbjJodc2rkMDO_7zsyzIgvnHRLyg0HOgDWXQ-4OGt3WYMwLYG0OIgdov5El422RtbV4WpAlQCGyuhLld7KKcYC5RLEkdk03N9e0UxEN3XmD42jdlqr9Pniln2nvA90HNFaneR4Tqh3V3hl0USXrHbWOpmecRRGdRup7Ol2YfWi6Eel2So9n5KRXY8Tzv_2UPN78_L25yx5-3d5v1g-ZLqsyZaoy2BRQ94XCUhUNal6ZGjmvRdmIlhWomw50ZbjmYJTgvOwYAK-hUy0gL0_JxTF3-uDlgDHJwR-Cm1ZKJjiDkvOqmlRXR5UOPsaAvdQ2vT-UgrKjZCBnunKQn3TlTFeCkBPdyd9-8e-D3anw5z-c66MTJwivFoOM2s7kjA2okzTe_jPjDQn2nQA |
| CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2018_05_136 crossref_primary_10_1016_j_nucengdes_2023_112366 crossref_primary_10_1016_j_pnucene_2021_103837 crossref_primary_10_3390_chemengineering3010004 crossref_primary_10_1155_2024_2880812 crossref_primary_10_3390_en13010035 crossref_primary_10_3389_fenrg_2023_1064067 crossref_primary_10_1016_j_ijthermalsci_2023_108648 crossref_primary_10_1016_j_enggeo_2025_107969 crossref_primary_10_1016_j_applthermaleng_2021_117802 crossref_primary_10_1080_01457632_2023_2213992 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122936 crossref_primary_10_1016_j_pnucene_2022_104557 crossref_primary_10_1007_s00231_024_03521_9 crossref_primary_10_1016_j_applthermaleng_2021_116620 crossref_primary_10_1088_1757_899X_1096_1_012099 crossref_primary_10_1002_cite_201800088 crossref_primary_10_1007_s42757_021_0115_5 crossref_primary_10_1016_j_cjche_2023_02_008 crossref_primary_10_1016_j_nucengdes_2022_111861 crossref_primary_10_1615_HeatTransRes_2025055664 crossref_primary_10_1007_s42757_022_0136_8 crossref_primary_10_1016_j_applthermaleng_2020_115233 crossref_primary_10_1016_j_ijhydene_2019_11_179 crossref_primary_10_1016_j_anucene_2020_107992 crossref_primary_10_1016_j_applthermaleng_2022_118881 crossref_primary_10_1016_j_nucengdes_2019_04_012 crossref_primary_10_1155_2022_7129092 crossref_primary_10_1371_journal_pone_0274924 crossref_primary_10_1002_ppsc_202400115 crossref_primary_10_1007_s40997_021_00454_0 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119405 crossref_primary_10_1016_j_nucengdes_2025_114289 crossref_primary_10_1016_j_tsep_2022_101403 crossref_primary_10_1016_j_applthermaleng_2023_120243 crossref_primary_10_1016_j_applthermaleng_2025_127453 crossref_primary_10_1155_2019_1673834 crossref_primary_10_1016_j_expthermflusci_2019_05_020 crossref_primary_10_3390_app131810520 crossref_primary_10_1016_j_ijhydene_2018_08_168 |
| Cites_doi | 10.1080/08916159608946519 10.1016/0017-9310(80)90095-2 10.1016/0017-9310(73)90144-0 10.13182/NT93-A17037 10.1016/j.nucengdes.2006.04.025 10.1021/ie50234a018 10.1016/0017-9310(67)90053-1 10.1021/ie50483a022 10.1016/j.nucengdes.2016.01.004 10.1016/j.nucengdes.2013.05.002 10.1016/S0029-5493(97)00185-4 10.1021/ie50677a007 10.1063/1.1461829 10.5516/NET.03.2014.702 10.1016/j.nucengdes.2013.07.014 10.1007/978-3-540-74234-0_3 10.1016/j.nucengdes.2014.03.007 10.1155/2009/738480 10.1007/s00231-004-0606-5 10.1016/j.nucengdes.2010.05.061 10.1016/j.nucengdes.2013.02.002 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. Copyright Elsevier BV Dec 1, 2017 |
| Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier BV Dec 1, 2017 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 KR7 L7M SOI |
| DOI | 10.1016/j.nucengdes.2017.09.007 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1872-759X |
| EndPage | 296 |
| ExternalDocumentID | 10_1016_j_nucengdes_2017_09_007 S0029549317304478 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 LY7 LZ3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ZMT ~02 ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HME HVGLF HZ~ R2- SAC SET SEW SHN UHS WUQ XPP ~HD 7SP 7ST 7TB 8FD AGCQF C1K FR3 KR7 L7M SOI |
| ID | FETCH-LOGICAL-c343t-a4de6205f2ae3a26ec84d5e8859369712ec6b0c4d8c80da9883b100850ba70e83 |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414699200027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-5493 |
| IngestDate | Wed Aug 13 04:50:53 EDT 2025 Sat Nov 29 07:28:20 EST 2025 Tue Nov 18 22:12:50 EST 2025 Fri Feb 23 02:28:31 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Containment thermal-hydraulics Benchmarking and Validation Wall Condensation and multicomponent model CFD modelling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c343t-a4de6205f2ae3a26ec84d5e8859369712ec6b0c4d8c80da9883b100850ba70e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4075-0837 |
| PQID | 1981038844 |
| PQPubID | 2045424 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_1981038844 crossref_citationtrail_10_1016_j_nucengdes_2017_09_007 crossref_primary_10_1016_j_nucengdes_2017_09_007 elsevier_sciencedirect_doi_10_1016_j_nucengdes_2017_09_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-12-01 2017-12-00 20171201 |
| PublicationDateYYYYMMDD | 2017-12-01 |
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Nuclear engineering and design |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Bird, Stewart, Lightfoot (b0015) 2007 Othmer (b0085) 1929; 21 Fuller, Schettler, Giddings (b0055) 1966; 58 Fairbanks, Wilke (b0050) 1950; 42 CFX, A., 2016. Solver Theory Guide. Ansys Inc, Canonsburg, PA, U.S.A. Martin-Valdepenas, Jimenez, Martin-Fuertes, Benítez (b0075) 2005; 41 Kljenak, Babić, Mavko, Bajsić (b0060) 2006; 236 Ambrosini, Bucci, Forgione, Manfredini, Oriolo (b0010) 2009; 2009 Yang (b0135) 2014; 46 Kuhn, Peterson, Schrock (b0065) 1996; 9 Siddique, Golay, Kazimi (b0100) 1993; 102 Su, Sun, Fan, Ding (b0110) 2013; 262 Nusselt (b0080) 1916; 60 Al-Diwany, Rose (b0005) 1973; 16 Carey (b0020) 1992 Sparrow, Minkowycz, Saddy (b0105) 1967; 10 Wagner, W., Kretzschmar, H.-J., 2008. IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97, 7–150. Peterson, Schrock, Kageyama (b0090) 1993; 115 Yadav, Khandekar, Sharma (b0130) 2016; 300 Kuhn, Schrock, Peterson (b9000) 1997; 177 Dehbi (b0040) 2013; 265 Rose (b0095) 1980; 23 Wagner, Pruss (b0125) 2002; 31 Zschaeck, Frank, Burns (b0140) 2014; 279 Dehbi (b0035) 1991 Malet, Porcheron, Vendel (b0070) 2010; 240 Dehbi, Janasz, Bell (b0045) 2013; 258 Toshikazu, Yoichiro, Basma, Katsuhisa (b0115) 2012 Casey, M., Wintergerste, T., Innotec, S., 2000. ERCOFTAC special interest group on quality and trust in industrial CFD. Best practice guidelines. Peterson (10.1016/j.nucengdes.2017.09.007_b0090) 1993; 115 Malet (10.1016/j.nucengdes.2017.09.007_b0070) 2010; 240 Fuller (10.1016/j.nucengdes.2017.09.007_b0055) 1966; 58 Yadav (10.1016/j.nucengdes.2017.09.007_b0130) 2016; 300 Dehbi (10.1016/j.nucengdes.2017.09.007_b0040) 2013; 265 Sparrow (10.1016/j.nucengdes.2017.09.007_b0105) 1967; 10 Dehbi (10.1016/j.nucengdes.2017.09.007_b0045) 2013; 258 Kljenak (10.1016/j.nucengdes.2017.09.007_b0060) 2006; 236 Nusselt (10.1016/j.nucengdes.2017.09.007_b0080) 1916; 60 Kuhn (10.1016/j.nucengdes.2017.09.007_b0065) 1996; 9 Martin-Valdepenas (10.1016/j.nucengdes.2017.09.007_b0075) 2005; 41 Bird (10.1016/j.nucengdes.2017.09.007_b0015) 2007 Kuhn (10.1016/j.nucengdes.2017.09.007_b9000) 1997; 177 Wagner (10.1016/j.nucengdes.2017.09.007_b0125) 2002; 31 Yang (10.1016/j.nucengdes.2017.09.007_b0135) 2014; 46 Su (10.1016/j.nucengdes.2017.09.007_b0110) 2013; 262 Dehbi (10.1016/j.nucengdes.2017.09.007_b0035) 1991 10.1016/j.nucengdes.2017.09.007_b0025 10.1016/j.nucengdes.2017.09.007_b0120 Carey (10.1016/j.nucengdes.2017.09.007_b0020) 1992 Zschaeck (10.1016/j.nucengdes.2017.09.007_b0140) 2014; 279 Al-Diwany (10.1016/j.nucengdes.2017.09.007_b0005) 1973; 16 10.1016/j.nucengdes.2017.09.007_b0030 Rose (10.1016/j.nucengdes.2017.09.007_b0095) 1980; 23 Othmer (10.1016/j.nucengdes.2017.09.007_b0085) 1929; 21 Siddique (10.1016/j.nucengdes.2017.09.007_b0100) 1993; 102 Ambrosini (10.1016/j.nucengdes.2017.09.007_b0010) 2009; 2009 Fairbanks (10.1016/j.nucengdes.2017.09.007_b0050) 1950; 42 Toshikazu (10.1016/j.nucengdes.2017.09.007_b0115) 2012 |
| References_xml | – volume: 240 start-page: 3209 year: 2010 end-page: 3220 ident: b0070 article-title: OECD International Standard Problem ISP-47 on containment thermal-hydraulics—conclusions of the TOSQAN part publication-title: Nucl. Eng. Des. – volume: 279 start-page: 137 year: 2014 end-page: 146 ident: b0140 article-title: CFD modelling and validation of wall condensation in the presence of non-condensable gases publication-title: Nucl. Eng. Des. – year: 2012 ident: b0115 article-title: Review of safety improvement on sodium-cooled fast reactors after Fukushima accident publication-title: Nat. Sci. – volume: 236 start-page: 1682 year: 2006 end-page: 1692 ident: b0060 article-title: Modeling of containment atmosphere mixing and stratification experiment using a CFD approach publication-title: Nucl. Eng. Des. – volume: 2009 year: 2009 ident: b0010 article-title: Experiments and modelling techniques for heat and mass transfer in light water reactors publication-title: Sci. Technol. Nucl. Installations – reference: CFX, A., 2016. Solver Theory Guide. Ansys Inc, Canonsburg, PA, U.S.A. – volume: 16 start-page: 1359 year: 1973 end-page: 1369 ident: b0005 article-title: Free convection film condensation of steam in the presence of non-condensing gases publication-title: Int. J. Heat Mass Transf. – volume: 9 start-page: 149 year: 1996 end-page: 163 ident: b0065 article-title: Determination of the local heat flux in condensation experiments publication-title: Exp. Heat Transf. Int. J. – volume: 60 start-page: 541 year: 1916 end-page: 546 ident: b0080 article-title: The surface condensation of water vapour publication-title: VDI Z – volume: 265 start-page: 25 year: 2013 end-page: 34 ident: b0040 article-title: On the adequacy of wall functions to predict condensation rates from steam-noncondensable gas mixtures publication-title: Nucl. Eng. Des. – reference: Casey, M., Wintergerste, T., Innotec, S., 2000. ERCOFTAC special interest group on quality and trust in industrial CFD. Best practice guidelines. – volume: 58 start-page: 18 year: 1966 end-page: 27 ident: b0055 article-title: New method for prediction of binary gas-phase diffusion coefficients publication-title: Ind. Eng. Chem. – volume: 42 start-page: 471 year: 1950 end-page: 475 ident: b0050 article-title: Diffusion coefficients in multicomponent gas mixtures publication-title: Ind. Eng. Chem. – volume: 41 start-page: 961 year: 2005 end-page: 976 ident: b0075 article-title: Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code publication-title: Heat Mass Transf. – volume: 21 start-page: 576 year: 1929 end-page: 583 ident: b0085 article-title: The condensation of steam publication-title: Ind. Eng. Chem. – volume: 102 start-page: 386 year: 1993 end-page: 402 ident: b0100 article-title: Local heat transfer coefficients for forced-convection condensation of steam in a vertical tube in the presence of a noncondensable gas publication-title: Nucl. Technol. – volume: 115 year: 1993 ident: b0090 article-title: Diffusion layer theory for turbulent vapor condensation with noncondensable gases publication-title: Trans. Am. Soc. Mech. Eng. J. Heat Transf. – year: 1991 ident: b0035 article-title: The Effects of Noncondensable Gases on Steam Condensation Under Turbulent Natural Convection Conditions – volume: 300 start-page: 181 year: 2016 end-page: 209 ident: b0130 article-title: An integrated approach to steam condensation studies inside reactor containments: a review publication-title: Nucl. Eng. Des. – year: 1992 ident: b0020 article-title: Liquid Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment – year: 2007 ident: b0015 article-title: Transport Phenomena – volume: 23 start-page: 539 year: 1980 end-page: 546 ident: b0095 article-title: Approximate equations for forced-convection condensation in the presence of a non-condensing gas on a flat plate and horizontal tube publication-title: Int. J. Heat Mass Transf. – volume: 258 start-page: 199 year: 2013 end-page: 210 ident: b0045 article-title: Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach publication-title: Nucl. Eng. Des. – volume: 31 start-page: 387 year: 2002 end-page: 535 ident: b0125 article-title: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use publication-title: J. Phys. Chem. Ref. Data – volume: 177 start-page: 53 year: 1997 end-page: 69 ident: b9000 article-title: An investigation of condensation from steam–gas mixtures flowing downward inside a vertical tube publication-title: Nucl. Eng. Des. – volume: 46 start-page: 27 year: 2014 end-page: 38 ident: b0135 article-title: Fukushima Dai-Ichi accident: lessons learned and future actions from the risk perspectives publication-title: Nucl. Eng. Technol. – volume: 10 start-page: 1829 year: 1967 end-page: 1845 ident: b0105 article-title: Forced convection condensation in the presence of noncondensables and interfacial resistance publication-title: Int. J. Heat Mass Transf. – volume: 262 start-page: 201 year: 2013 end-page: 208 ident: b0110 article-title: Experimental study of the effect of non-condensable gases on steam condensation over a vertical tube external surface publication-title: Nucl. Eng. Des. – reference: Wagner, W., Kretzschmar, H.-J., 2008. IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97, 7–150. – volume: 9 start-page: 149 year: 1996 ident: 10.1016/j.nucengdes.2017.09.007_b0065 article-title: Determination of the local heat flux in condensation experiments publication-title: Exp. Heat Transf. Int. J. doi: 10.1080/08916159608946519 – volume: 23 start-page: 539 year: 1980 ident: 10.1016/j.nucengdes.2017.09.007_b0095 article-title: Approximate equations for forced-convection condensation in the presence of a non-condensing gas on a flat plate and horizontal tube publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(80)90095-2 – volume: 16 start-page: 1359 year: 1973 ident: 10.1016/j.nucengdes.2017.09.007_b0005 article-title: Free convection film condensation of steam in the presence of non-condensing gases publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(73)90144-0 – volume: 102 start-page: 386 year: 1993 ident: 10.1016/j.nucengdes.2017.09.007_b0100 article-title: Local heat transfer coefficients for forced-convection condensation of steam in a vertical tube in the presence of a noncondensable gas publication-title: Nucl. Technol. doi: 10.13182/NT93-A17037 – volume: 236 start-page: 1682 year: 2006 ident: 10.1016/j.nucengdes.2017.09.007_b0060 article-title: Modeling of containment atmosphere mixing and stratification experiment using a CFD approach publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2006.04.025 – volume: 21 start-page: 576 year: 1929 ident: 10.1016/j.nucengdes.2017.09.007_b0085 article-title: The condensation of steam publication-title: Ind. Eng. Chem. doi: 10.1021/ie50234a018 – volume: 10 start-page: 1829 year: 1967 ident: 10.1016/j.nucengdes.2017.09.007_b0105 article-title: Forced convection condensation in the presence of noncondensables and interfacial resistance publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(67)90053-1 – volume: 42 start-page: 471 year: 1950 ident: 10.1016/j.nucengdes.2017.09.007_b0050 article-title: Diffusion coefficients in multicomponent gas mixtures publication-title: Ind. Eng. Chem. doi: 10.1021/ie50483a022 – year: 1992 ident: 10.1016/j.nucengdes.2017.09.007_b0020 – volume: 300 start-page: 181 year: 2016 ident: 10.1016/j.nucengdes.2017.09.007_b0130 article-title: An integrated approach to steam condensation studies inside reactor containments: a review publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2016.01.004 – volume: 262 start-page: 201 year: 2013 ident: 10.1016/j.nucengdes.2017.09.007_b0110 article-title: Experimental study of the effect of non-condensable gases on steam condensation over a vertical tube external surface publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2013.05.002 – ident: 10.1016/j.nucengdes.2017.09.007_b0025 – volume: 177 start-page: 53 year: 1997 ident: 10.1016/j.nucengdes.2017.09.007_b9000 article-title: An investigation of condensation from steam–gas mixtures flowing downward inside a vertical tube publication-title: Nucl. Eng. Des. doi: 10.1016/S0029-5493(97)00185-4 – year: 1991 ident: 10.1016/j.nucengdes.2017.09.007_b0035 – volume: 58 start-page: 18 year: 1966 ident: 10.1016/j.nucengdes.2017.09.007_b0055 article-title: New method for prediction of binary gas-phase diffusion coefficients publication-title: Ind. Eng. Chem. doi: 10.1021/ie50677a007 – year: 2007 ident: 10.1016/j.nucengdes.2017.09.007_b0015 – volume: 31 start-page: 387 year: 2002 ident: 10.1016/j.nucengdes.2017.09.007_b0125 article-title: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.1461829 – volume: 46 start-page: 27 year: 2014 ident: 10.1016/j.nucengdes.2017.09.007_b0135 article-title: Fukushima Dai-Ichi accident: lessons learned and future actions from the risk perspectives publication-title: Nucl. Eng. Technol. doi: 10.5516/NET.03.2014.702 – volume: 265 start-page: 25 year: 2013 ident: 10.1016/j.nucengdes.2017.09.007_b0040 article-title: On the adequacy of wall functions to predict condensation rates from steam-noncondensable gas mixtures publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2013.07.014 – volume: 115 year: 1993 ident: 10.1016/j.nucengdes.2017.09.007_b0090 article-title: Diffusion layer theory for turbulent vapor condensation with noncondensable gases publication-title: Trans. Am. Soc. Mech. Eng. J. Heat Transf. – ident: 10.1016/j.nucengdes.2017.09.007_b0120 doi: 10.1007/978-3-540-74234-0_3 – volume: 279 start-page: 137 year: 2014 ident: 10.1016/j.nucengdes.2017.09.007_b0140 article-title: CFD modelling and validation of wall condensation in the presence of non-condensable gases publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2014.03.007 – volume: 2009 year: 2009 ident: 10.1016/j.nucengdes.2017.09.007_b0010 article-title: Experiments and modelling techniques for heat and mass transfer in light water reactors publication-title: Sci. Technol. Nucl. Installations doi: 10.1155/2009/738480 – volume: 41 start-page: 961 year: 2005 ident: 10.1016/j.nucengdes.2017.09.007_b0075 article-title: Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code publication-title: Heat Mass Transf. doi: 10.1007/s00231-004-0606-5 – volume: 240 start-page: 3209 year: 2010 ident: 10.1016/j.nucengdes.2017.09.007_b0070 article-title: OECD International Standard Problem ISP-47 on containment thermal-hydraulics—conclusions of the TOSQAN part publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2010.05.061 – ident: 10.1016/j.nucengdes.2017.09.007_b0030 – volume: 60 start-page: 541 year: 1916 ident: 10.1016/j.nucengdes.2017.09.007_b0080 article-title: The surface condensation of water vapour publication-title: VDI Z – year: 2012 ident: 10.1016/j.nucengdes.2017.09.007_b0115 article-title: Review of safety improvement on sodium-cooled fast reactors after Fukushima accident publication-title: Nat. Sci. – volume: 258 start-page: 199 year: 2013 ident: 10.1016/j.nucengdes.2017.09.007_b0045 article-title: Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2013.02.002 |
| SSID | ssj0000092 |
| Score | 2.4030225 |
| Snippet | •Detailed CFD simulation of steam condensation with non-condensable gases using Ansys-CFX.•Implementation of Wall Condensation and multicomponent model for NPP... A typical post Loss-of-Coolant-Accident (LOCA) situation in nuclear power plant containments is a major safety concern. The simultaneous presence of steam, air... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 280 |
| SubjectTerms | Benchmarking and Validation CAD CFD modelling Computational fluid dynamics Computer aided design Computer simulation Condensation Conservation equations Containment Containment thermal-hydraulics Containment vessels Electric power plants Fluid dynamics Fluid flow Gases Heat transfer Helium Hydraulics Loss of coolant accidents Mathematical models Nuclear accidents & safety Nuclear electric power generation Nuclear energy Nuclear engineering Nuclear power plants Nuclear reactions Nuclear safety Phase transitions Species diffusion Steam Steam electric power generation Studies Transport processes Wall Condensation and multicomponent model Water vapor |
| Title | A CFD based modelling approach for predicting steam condensation in the presence of non-condensable gases |
| URI | https://dx.doi.org/10.1016/j.nucengdes.2017.09.007 https://www.proquest.com/docview/1981038844 |
| Volume | 324 |
| WOSCitedRecordID | wos000414699200027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-759X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000092 issn: 0029-5493 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCygEOiKcoFOQDt2jRxuvdtblFpRUPKapEkXKz_EqVPrZRkla98N8ZvzabFFQQ4rKKVmvvxvN5PB5_M4PQuwpW_ULRMqPEeat0RTNGjckUV4zL0uYmFpuox2M2mfCjXu9HioW5Pq-bht3c8Pl_FTXcA2G70Nm_EHfbKdyA3yB0uILY4fpHgh8N9g8_DtzqZEKdGx9wnnKHe1rhfOGOZ1bBlWDlheOeg_4JxJ7EfJz7wCTtfQrNZZOlZ1yo1Qn0vuzatWOXFlkuBnad3tAfS5gNgsjRlYsBkiFGCB5btr7or86Bb88C2_ubvLCRNBz9EbDGbXI7bgfKxKABnsFWNOgyG3Qtq8G4L30l3VYZF4R21Wmo8hRXZhJq395S-sH_cPq-gcnQnMAfc4y92qevDRV1tzJquwNqd7oJplORU1qze2iHwIewPtoZfT6YfOnsnzhJHCHXYIMg-MvX_c682VrovfVy_Bg9itsOPApweYJ6tnmKHnaSUT5DsxEG4GAPHNwCByfgYAAOXgMHe-DgLnDwrMEAHJyAgy-neAs42APnOfp-eHC8_ymLhTgyXdBilUlqbEXyckqkLSSprIb5XFrGfDnIekisrlSuqWGa5UZyxgo19MkQlaxzy4oXqA_vsy8dk85KypWiNa2oIrBcWGamuoCNu9SkUruoSuMndMxS74qlnItERzwV7cALN_Ai5wIGfhflbcN5SNRyd5MPSUAi2pvBjhSArLsb7yWRijj7l2LImSs4wCh99S99v0YP1jNrD_VXiyv7Bt3X16vZcvE2gvQnQJG1xw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CFD+based+modelling+approach+for+predicting+steam+condensation+in+the+presence+of+non-condensable+gases&rft.jtitle=Nuclear+engineering+and+design&rft.au=Punetha%2C+Maneesh&rft.au=Khandekar%2C+Sameer&rft.date=2017-12-01&rft.pub=Elsevier+B.V&rft.issn=0029-5493&rft.eissn=1872-759X&rft.volume=324&rft.spage=280&rft.epage=296&rft_id=info:doi/10.1016%2Fj.nucengdes.2017.09.007&rft.externalDocID=S0029549317304478 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5493&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5493&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5493&client=summon |