Kinetic Characteristics of Nitriding of Zr–1% Nb Alloy
We study the kinetic characteristics of nitriding of thin-sheet (~ 1 mm) samples of Zr–1% Nb alloy treated in a nitrogen atmosphere ( ) in broad temperature ( T = 550; 650; 750; 850 and 950°С) and time ( τ = 1; 5 and 10 h) ranges. It is shown that the process of nitriding of the analyzed alloy obeys...
Uložené v:
| Vydané v: | Materials science (New York, N.Y.) Ročník 58; číslo 3; s. 408 - 416 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.11.2022
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 1068-820X, 1573-885X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We study the kinetic characteristics of nitriding of thin-sheet (~ 1 mm) samples of Zr–1% Nb alloy treated in a nitrogen atmosphere (
) in broad temperature (
T
= 550; 650; 750; 850 and 950°С) and time (
τ
= 1; 5 and 10 h) ranges. It is shown that the process of nitriding of the analyzed alloy obeys a law close to a parabolic dependence (
n
≈ 2). It is discovered that the activation energy of nitriding of the alloy within the temperature range 550–950°C is equal to 131.8 kJ/mole. The microstructure of the subsurface layer of the alloy after nitriding is analyzed. The distribution of the surface microhardness of Zr–1% Nb alloy is determined. The diagrams of intensity of the phase reflexes of
α
-Zr and ZrN on the surface of alloy after treatment in a nitrogen atmosphere are constructed. |
|---|---|
| AbstractList | We study the kinetic characteristics of nitriding of thin-sheet (~ 1 mm) samples of Zr–1% Nb alloy treated in a nitrogen atmosphere () in broad temperature (T = 550; 650; 750; 850 and 950°С) and time (τ = 1; 5 and 10 h) ranges. It is shown that the process of nitriding of the analyzed alloy obeys a law close to a parabolic dependence (n ≈ 2). It is discovered that the activation energy of nitriding of the alloy within the temperature range 550–950°C is equal to 131.8 kJ/mole. The microstructure of the subsurface layer of the alloy after nitriding is analyzed. The distribution of the surface microhardness of Zr–1% Nb alloy is determined. The diagrams of intensity of the phase reflexes of α-Zr and ZrN on the surface of alloy after treatment in a nitrogen atmosphere are constructed. We study the kinetic characteristics of nitriding of thin-sheet (~ 1 mm) samples of Zr-1% Nb alloy treated in a nitrogen atmosphere ( [Formula omitted]) in broad temperature (T = 550; 650; 750; 850 and 950°Ð¡) and time ([tau] = 1; 5 and 10 h) ranges. It is shown that the process of nitriding of the analyzed alloy obeys a law close to a parabolic dependence (n [almost equal to] 2). It is discovered that the activation energy of nitriding of the alloy within the temperature range 550-950°C is equal to 131.8 kJ/mole. The microstructure of the subsurface layer of the alloy after nitriding is analyzed. The distribution of the surface microhardness of Zr-1% Nb alloy is determined. The diagrams of intensity of the phase reflexes of [alpha]-Zr and ZrN on the surface of alloy after treatment in a nitrogen atmosphere are constructed. We study the kinetic characteristics of nitriding of thin-sheet (~ 1 mm) samples of Zr–1% Nb alloy treated in a nitrogen atmosphere ( ) in broad temperature ( T = 550; 650; 750; 850 and 950°С) and time ( τ = 1; 5 and 10 h) ranges. It is shown that the process of nitriding of the analyzed alloy obeys a law close to a parabolic dependence ( n ≈ 2). It is discovered that the activation energy of nitriding of the alloy within the temperature range 550–950°C is equal to 131.8 kJ/mole. The microstructure of the subsurface layer of the alloy after nitriding is analyzed. The distribution of the surface microhardness of Zr–1% Nb alloy is determined. The diagrams of intensity of the phase reflexes of α -Zr and ZrN on the surface of alloy after treatment in a nitrogen atmosphere are constructed. |
| Audience | Academic |
| Author | Luk’yanenko, A. G. Stoev, P. I. Kovalchuk, I. V. Pohrelyuk, I. M. Trush, V. S. Fedirko, V. M. Kravchyshyn, T. M. |
| Author_xml | – sequence: 1 givenname: V. S. surname: Trush fullname: Trush, V. S. email: trushvasyl@gmail.com organization: Karpenko Physicomechanical Institute, National Academy of Sciences of Ukraine – sequence: 2 givenname: I. M. surname: Pohrelyuk fullname: Pohrelyuk, I. M. organization: Karpenko Physicomechanical Institute, National Academy of Sciences of Ukraine – sequence: 3 givenname: T. M. surname: Kravchyshyn fullname: Kravchyshyn, T. M. organization: Karpenko Physicomechanical Institute, National Academy of Sciences of Ukraine – sequence: 4 givenname: A. G. surname: Luk’yanenko fullname: Luk’yanenko, A. G. organization: Karpenko Physicomechanical Institute, National Academy of Sciences of Ukraine – sequence: 5 givenname: P. I. surname: Stoev fullname: Stoev, P. I. organization: Institute of Solid-State Physics, Materials Science, and Technologies, “KhFTI” National Science Center, National Academy of Sciences of Ukraine – sequence: 6 givenname: V. M. surname: Fedirko fullname: Fedirko, V. M. organization: Karpenko Physicomechanical Institute, National Academy of Sciences of Ukraine – sequence: 7 givenname: I. V. surname: Kovalchuk fullname: Kovalchuk, I. V. organization: Karpenko Physicomechanical Institute, National Academy of Sciences of Ukraine |
| BookMark | eNp9kMtKAzEUhoNUsFZfwNWAuHAxmuRMLl2W4qUoFbxAcRPSmUxNaWc0mYLd-Q6-oU_iqSNINxJCcsL35ST_PulUdeUIOWL0jFGqziPDBVLKcVKpdMp3SJcJBanWYtLBPZU61ZxO9sh-jHOKklCiS_SNr1zj82T4YoPNGxd8xDImdZmMfRN84avZpngOXx-f7CQZT5PBYlGvD8huaRfRHf6uPfJ0efE4vE5v765Gw8FtmkMGTWohLyljGXBXCgEgp0CZAgkyoyzXVpRUIaG4hILnTPb71jIQYAtdSM4L6JHj9t7XUL-tXGzMvF6FClsarhRowVTGkDprqZldOOOrsm7wNzgKt_Q5ZlV6PB9gY5ZlUmgUTrcEZBr33szsKkYzerjfZnnL5qGOMbjSvAa_tGFtGDWb-E0bv8H4zU_8hqMErRQRrmYu_L37H-sbLiGGJg |
| Cites_doi | 10.1002/9783527603978.mst0111 10.1039/c5cp02252e 10.1146/annurev-matsci-070214-020951 10.1007/BF02647575 10.1007/s11041-015-9818-1 10.1016/j.ceramint.2011.11.07 10.1007/s11003-020-00342-z 10.1007/s11003-021-00457-x 10.1007/s11003-016-9945-x 10.15544/balttrib.2017.09 10.1016/j.surfcoat.2013.09.04 10.1016/j.scriptamat.2016.02.021 10.1016/В978-0-12-803581-8.02576-5 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2022 Springer |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2022 Springer |
| DBID | AAYXX CITATION ISR |
| DOI | 10.1007/s11003-023-00678-2 |
| DatabaseName | CrossRef Gale In Context: Science |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-885X |
| EndPage | 416 |
| ExternalDocumentID | A736144658 10_1007_s11003_023_00678_2 |
| GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABEFU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP CZ9 D1I DDRTE DL5 DNIVK DPUIP EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IGS IHE IJ- IKXTQ ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KB. KC. KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PDBOC PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 XU3 YLTOR Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR CITATION M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c343t-a3cf011432ef55336b30173636401c8a5f07cf07263d2c1699aa1353ad8d622d3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000922767300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1068-820X |
| IngestDate | Thu Sep 25 00:43:55 EDT 2025 Sat Nov 29 10:29:36 EST 2025 Mon Nov 24 14:50:18 EST 2025 Sat Nov 29 06:15:17 EST 2025 Fri Feb 21 02:45:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Zr–1% Nb alloy microstructure surface layer parameters of the crystal lattice kinetics of mass changes microhardness nitriding |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c343t-a3cf011432ef55336b30173636401c8a5f07cf07263d2c1699aa1353ad8d622d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2773851741 |
| PQPubID | 2044364 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2773851741 gale_infotracacademiconefile_A736144658 gale_incontextgauss_ISR_A736144658 crossref_primary_10_1007_s11003_023_00678_2 springer_journals_10_1007_s11003_023_00678_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20221100 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 20221100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Heidelberg |
| PublicationTitle | Materials science (New York, N.Y.) |
| PublicationTitleAbbrev | Mater Sci |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | ChossonRGourgues-LorenzonAFVandenbergheVBrachetJCCrépinJCreep flow and fracture behavior of the oxygen-enriched alpha phase in zirconium alloysScripta Mater.201611720231:CAS:528:DC%2BC28XksFCrtbs%3D10.1016/j.scriptamat.2016.02.021 V. N. Fedirko, A. G. Luk’yanenko, and V. S. Trush, “Solid-solution hardening of the surface layer of titanium alloys. Part 2. Effect on metallophysical properties,” Metal Sci. Heat Treatm.,56, No. 11, 661–664 (2015); DOI: https://doi.org/10.1007/s11041-015-9818-1. S. Banerjee and M. K. Banerjee, “Nuclear applications: zirconium alloys,” Reference Module Mater. Sci. Mater. Eng., 1–15 (2016); DOI:https://doi.org/10.1016/В978-0-12-803581-8.02576-5. R. W. Cahn, P. Haasen, and E. J. Kramer, “Zirconium alloys in nuclear applications,” Materials Science and Technology (2006); DOI:https://doi.org/10.1002/9783527603978.mst0111. Е. О. Adamov, Yu. G. Dragunov, V. V. Orlov, et al., Mechanical Engineering in Nuclear Engineering [in Russian], Vol. IV-25, Book 1 in: Mechanical Engineering. Encyclopedia, Mashinostroenie, Moscow (2005). V. M. Fedirko, O. H. Luk’yanenko, V. S. Trush, P. I. Stoev, and M. A. Tykhonovs’kyi, “Effect of thermochemical treatment in regulated gas media on the thermal resistance of Zr–1%Nb alloy,” Mater. Sci.,52, No. 2, 209–215 (2016); DOI: https://doi.org/10.1007/s11003-016-9945-x. MottaATCouetAComstockRJCorrosion of zirconium alloys used for nuclear fuel claddingAnnual Rev. Mat. Res.2015453113431:CAS:528:DC%2BC2MXhtFWqurrJ10.1146/annurev-matsci-070214-020951 V. S. Vakhrusheva, O. A. Kolenkova, and G. D. Sukhomlin, “Influence of oxygen content on the plasticity, damageability, and the parameters of acoustic emission of the metal of pipes made of Zr–1%Nb alloy,” in: Vopr. Atom. Nauk. Tekh.. Ser.: Fiz. Radiats. Povrezhd. Radiats. Materialoved., No. 5 (88) (2005), pp. 104–109. Z. Z. Tang, “Effect of nitrogen concentration to the structural, chemical and electrical properties of tantalum zirconium nitride films,” Ceramics Int., No. 38 (4), 2997–3000 (2012); DOI:https://doi.org/10.1016/j.ceramint.2011.11.07. T. P. Chernyaeva, A. I. Stukalov, and V. M. Gritsina, “Influence of oxygen on the mechanical properties of zirconium,” Vopr. Atom. Nauki Tekh., Ser. Vakuum, Chist. Mater., Sverkhprovodniki, No. 1 (12), 96–102 (2002). V. S. Trush, V. N. Fedirko, A. G. Luk’yanenko, M. A. Tikhonovsky, and P. I. Stoev, “Influence of thermochemical treatment on properties of tubes from Zr–1Nb alloy,” Probl. Atomic Sci. Technol., No. 114 (2), 70–75 (2018). TrushVSLukianenkoОHStoevPІInfluence of modification of the surface layer by penetrating impurities on the long-term strength of Zr–1% Nb alloyMater. Sci.20205545855891:CAS:528:DC%2BB3cXpt1yktrc%3D10.1007/s11003-020-00342-z О. М. Ivasishin, V. N. Voevodin, А. I. Dekhtyar, P. E. Markovsky, M. M. Pylypenko, S. D. Lavrinenko, and R. G. Gontareva, “Features of the mechanical behavior of fuel elements tubes of Zr–1%Nb under conditions simulating breakdown of cooling,” Probl. Atomic Sci. Technol., No. 5 (99), 53–60 (2015). AzarenkovNАBulavinLАZalyubovskiiIIKirichenkoVGNeklyudovIМShilyaevBАNuclear Power Engineering: A Textbook2012KharkovKarazin Kharkov National University[in Russian] DubeyPAryaVSrivastavaSSinghDChandraREffect of nitrogen flow rate on structural and mechanical properties of zirconium tungsten nitride (Zr–W–N) coatings deposited by magnetron sputteringSurf. Coat. Technol.20132361821871:CAS:528:DC%2BC3sXhs1Wiu7zF10.1016/j.surfcoat.2013.09.04 LemaignanCMottaATCahnRWHaasenPKramerEJZirconium alloys in nuclear applicationsMaterials Science and Technology, Chapter 72006WeinheimWILEY-VCH25110.1002/9783527603978.mst0111 J. Zhang, A. R. Oganov, X. Li, H. Dong, and Q. Zeng, “Novel compounds in the Zr–O system, their crystal structures and mechanical properties,” Phys. Chem. Chem. Phys., No. 17 (26), 17301–17310 (2015); DOI:https://doi.org/10.1039/c5cp02252e. BelousVAVyugovPNKuprinASLeonovSANosovGIOvcharenkoVDOzhigovLSRudenkoAGSavchenkoVITolmachevaGNKhoroshikhVMInvestigation of the influence of ion-plasma processing on the mechanical characteristics of Zr1Nb zirconium alloyFiz. Inzhener. Poverkh.201311197102 I. M. Pohrelyuk, J. Padgurskas, S. M. Lavrys, A. G. Luk’yanenko, V. S. Trush, and R. Kreivaitis, “Topography, hardness, elastic modulus and wear resistance of nitride on titanium,” in: Proc. of the 9th Internat. Conf. BALTTRIB’2017, (November, 16–17, 2017), A. Stulginskis Univ., Kaunas (2017), pp. 41–46; DOI:10.15544/balttrib.2017.09. ZaimovskiiASNikulinaAVReshetnikovNGZirconium Alloys in Nuclear Power Engineering1994MoscowÉnergoatomizdat[in Russian] V. M. Voyevodin, V. M. Fedirko, V. S. Trush, O. H. Luk’yanenko, P. I. Stoev, V. A. Panov, M. А. Tykhonovsky, “Influence of thermochemical treatment on the oxidation of fuel cladding tubes made of Zr–1%Nb alloy,” Mater. Sci.,56, No. 4, 509–515 (2021); DOI:https://doi.org/10.1007/s11003-021-00457-x. L. Gribaudo, D. Arias, and J. Abriata, “The N–Zr (Nitrogen–Zirconium) system,” J. Phase Equilibria,15, No. 4, 441–449 (1994). I. E. Kopanets, G. D. Tolstolutskaya, A. V. Nikityn, V. A. Belous, A. S. Kuprin, V. D. Ovcharenko, and R. L. Vasylenko, “Influence of Cr, Cr–N, and Cr–Ox coatings on retention and penetration of deuterium in Zr–1Nb zirconium alloys,” in: in: Vopr. Atom. Nauk. Tekh., Ser.: Fiz. Radiats. Povr. Radiats. Materialoved., No. 5 (99) (2015), pp. 81–86. 678_CR19 678_CR17 P Dubey (678_CR10) 2013; 236 678_CR15 678_CR14 678_CR13 C Lemaignan (678_CR2) 2006 678_CR23 678_CR22 R Chosson (678_CR6) 2016; 117 678_CR21 VA Belous (678_CR16) 2013; 11 678_CR20 AT Motta (678_CR3) 2015; 45 678_CR7 AS Zaimovskii (678_CR11) 1994 678_CR8 678_CR9 678_CR4 678_CR5 NА Azarenkov (678_CR12) 2012 678_CR1 VS Trush (678_CR18) 2020; 55 |
| References_xml | – reference: I. M. Pohrelyuk, J. Padgurskas, S. M. Lavrys, A. G. Luk’yanenko, V. S. Trush, and R. Kreivaitis, “Topography, hardness, elastic modulus and wear resistance of nitride on titanium,” in: Proc. of the 9th Internat. Conf. BALTTRIB’2017, (November, 16–17, 2017), A. Stulginskis Univ., Kaunas (2017), pp. 41–46; DOI:10.15544/balttrib.2017.09. – reference: О. М. Ivasishin, V. N. Voevodin, А. I. Dekhtyar, P. E. Markovsky, M. M. Pylypenko, S. D. Lavrinenko, and R. G. Gontareva, “Features of the mechanical behavior of fuel elements tubes of Zr–1%Nb under conditions simulating breakdown of cooling,” Probl. Atomic Sci. Technol., No. 5 (99), 53–60 (2015). – reference: S. Banerjee and M. K. Banerjee, “Nuclear applications: zirconium alloys,” Reference Module Mater. Sci. Mater. Eng., 1–15 (2016); DOI:https://doi.org/10.1016/В978-0-12-803581-8.02576-5. – reference: Z. Z. Tang, “Effect of nitrogen concentration to the structural, chemical and electrical properties of tantalum zirconium nitride films,” Ceramics Int., No. 38 (4), 2997–3000 (2012); DOI:https://doi.org/10.1016/j.ceramint.2011.11.07. – reference: AzarenkovNАBulavinLАZalyubovskiiIIKirichenkoVGNeklyudovIМShilyaevBАNuclear Power Engineering: A Textbook2012KharkovKarazin Kharkov National University[in Russian] – reference: V. M. Voyevodin, V. M. Fedirko, V. S. Trush, O. H. Luk’yanenko, P. I. Stoev, V. A. Panov, M. А. Tykhonovsky, “Influence of thermochemical treatment on the oxidation of fuel cladding tubes made of Zr–1%Nb alloy,” Mater. Sci.,56, No. 4, 509–515 (2021); DOI:https://doi.org/10.1007/s11003-021-00457-x. – reference: TrushVSLukianenkoОHStoevPІInfluence of modification of the surface layer by penetrating impurities on the long-term strength of Zr–1% Nb alloyMater. Sci.20205545855891:CAS:528:DC%2BB3cXpt1yktrc%3D10.1007/s11003-020-00342-z – reference: V. M. Fedirko, O. H. Luk’yanenko, V. S. Trush, P. I. Stoev, and M. A. Tykhonovs’kyi, “Effect of thermochemical treatment in regulated gas media on the thermal resistance of Zr–1%Nb alloy,” Mater. Sci.,52, No. 2, 209–215 (2016); DOI: https://doi.org/10.1007/s11003-016-9945-x. – reference: ChossonRGourgues-LorenzonAFVandenbergheVBrachetJCCrépinJCreep flow and fracture behavior of the oxygen-enriched alpha phase in zirconium alloysScripta Mater.201611720231:CAS:528:DC%2BC28XksFCrtbs%3D10.1016/j.scriptamat.2016.02.021 – reference: L. Gribaudo, D. Arias, and J. Abriata, “The N–Zr (Nitrogen–Zirconium) system,” J. Phase Equilibria,15, No. 4, 441–449 (1994). – reference: DubeyPAryaVSrivastavaSSinghDChandraREffect of nitrogen flow rate on structural and mechanical properties of zirconium tungsten nitride (Zr–W–N) coatings deposited by magnetron sputteringSurf. Coat. Technol.20132361821871:CAS:528:DC%2BC3sXhs1Wiu7zF10.1016/j.surfcoat.2013.09.04 – reference: J. Zhang, A. R. Oganov, X. Li, H. Dong, and Q. Zeng, “Novel compounds in the Zr–O system, their crystal structures and mechanical properties,” Phys. Chem. Chem. Phys., No. 17 (26), 17301–17310 (2015); DOI:https://doi.org/10.1039/c5cp02252e. – reference: T. P. Chernyaeva, A. I. Stukalov, and V. M. Gritsina, “Influence of oxygen on the mechanical properties of zirconium,” Vopr. Atom. Nauki Tekh., Ser. Vakuum, Chist. Mater., Sverkhprovodniki, No. 1 (12), 96–102 (2002). – reference: V. N. Fedirko, A. G. Luk’yanenko, and V. S. Trush, “Solid-solution hardening of the surface layer of titanium alloys. Part 2. Effect on metallophysical properties,” Metal Sci. Heat Treatm.,56, No. 11, 661–664 (2015); DOI: https://doi.org/10.1007/s11041-015-9818-1. – reference: V. S. Trush, V. N. Fedirko, A. G. Luk’yanenko, M. A. Tikhonovsky, and P. I. Stoev, “Influence of thermochemical treatment on properties of tubes from Zr–1Nb alloy,” Probl. Atomic Sci. Technol., No. 114 (2), 70–75 (2018). – reference: ZaimovskiiASNikulinaAVReshetnikovNGZirconium Alloys in Nuclear Power Engineering1994MoscowÉnergoatomizdat[in Russian] – reference: Е. О. Adamov, Yu. G. Dragunov, V. V. Orlov, et al., Mechanical Engineering in Nuclear Engineering [in Russian], Vol. IV-25, Book 1 in: Mechanical Engineering. Encyclopedia, Mashinostroenie, Moscow (2005). – reference: LemaignanCMottaATCahnRWHaasenPKramerEJZirconium alloys in nuclear applicationsMaterials Science and Technology, Chapter 72006WeinheimWILEY-VCH25110.1002/9783527603978.mst0111 – reference: R. W. Cahn, P. Haasen, and E. J. Kramer, “Zirconium alloys in nuclear applications,” Materials Science and Technology (2006); DOI:https://doi.org/10.1002/9783527603978.mst0111. – reference: I. E. Kopanets, G. D. Tolstolutskaya, A. V. Nikityn, V. A. Belous, A. S. Kuprin, V. D. Ovcharenko, and R. L. Vasylenko, “Influence of Cr, Cr–N, and Cr–Ox coatings on retention and penetration of deuterium in Zr–1Nb zirconium alloys,” in: in: Vopr. Atom. Nauk. Tekh., Ser.: Fiz. Radiats. Povr. Radiats. Materialoved., No. 5 (99) (2015), pp. 81–86. – reference: V. S. Vakhrusheva, O. A. Kolenkova, and G. D. Sukhomlin, “Influence of oxygen content on the plasticity, damageability, and the parameters of acoustic emission of the metal of pipes made of Zr–1%Nb alloy,” in: Vopr. Atom. Nauk. Tekh.. Ser.: Fiz. Radiats. Povrezhd. Radiats. Materialoved., No. 5 (88) (2005), pp. 104–109. – reference: MottaATCouetAComstockRJCorrosion of zirconium alloys used for nuclear fuel claddingAnnual Rev. Mat. Res.2015453113431:CAS:528:DC%2BC2MXhtFWqurrJ10.1146/annurev-matsci-070214-020951 – reference: BelousVAVyugovPNKuprinASLeonovSANosovGIOvcharenkoVDOzhigovLSRudenkoAGSavchenkoVITolmachevaGNKhoroshikhVMInvestigation of the influence of ion-plasma processing on the mechanical characteristics of Zr1Nb zirconium alloyFiz. Inzhener. Poverkh.201311197102 – ident: 678_CR1 doi: 10.1002/9783527603978.mst0111 – ident: 678_CR4 – ident: 678_CR17 – ident: 678_CR13 – ident: 678_CR15 doi: 10.1039/c5cp02252e – ident: 678_CR20 – volume-title: Zirconium Alloys in Nuclear Power Engineering year: 1994 ident: 678_CR11 – volume: 45 start-page: 311 year: 2015 ident: 678_CR3 publication-title: Annual Rev. Mat. Res. doi: 10.1146/annurev-matsci-070214-020951 – ident: 678_CR14 doi: 10.1007/BF02647575 – ident: 678_CR19 doi: 10.1007/s11041-015-9818-1 – ident: 678_CR9 doi: 10.1016/j.ceramint.2011.11.07 – ident: 678_CR7 – ident: 678_CR8 – volume-title: Nuclear Power Engineering: A Textbook year: 2012 ident: 678_CR12 – volume: 55 start-page: 585 issue: 4 year: 2020 ident: 678_CR18 publication-title: Mater. Sci. doi: 10.1007/s11003-020-00342-z – ident: 678_CR22 doi: 10.1007/s11003-021-00457-x – ident: 678_CR23 doi: 10.1007/s11003-016-9945-x – start-page: 2 volume-title: Materials Science and Technology, Chapter 7 year: 2006 ident: 678_CR2 doi: 10.1002/9783527603978.mst0111 – ident: 678_CR21 doi: 10.15544/balttrib.2017.09 – volume: 236 start-page: 182 year: 2013 ident: 678_CR10 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2013.09.04 – volume: 117 start-page: 20 year: 2016 ident: 678_CR6 publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2016.02.021 – ident: 678_CR5 doi: 10.1016/В978-0-12-803581-8.02576-5 – volume: 11 start-page: 97 issue: 1 year: 2013 ident: 678_CR16 publication-title: Fiz. Inzhener. Poverkh. |
| SSID | ssj0007575 |
| Score | 2.2355464 |
| Snippet | We study the kinetic characteristics of nitriding of thin-sheet (~ 1 mm) samples of Zr–1% Nb alloy treated in a nitrogen atmosphere (
) in broad temperature (... We study the kinetic characteristics of nitriding of thin-sheet (~ 1 mm) samples of Zr-1% Nb alloy treated in a nitrogen atmosphere ( [Formula omitted]) in... We study the kinetic characteristics of nitriding of thin-sheet (~ 1 mm) samples of Zr–1% Nb alloy treated in a nitrogen atmosphere () in broad temperature (T... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 408 |
| SubjectTerms | Alloys Characterization and Evaluation of Materials Chemistry and Materials Science Materials Science Microhardness Niobium base alloys Nitriding Nitrogen Reflexes Solid Mechanics Specialty metals industry Structural Materials Zirconium base alloys |
| Title | Kinetic Characteristics of Nitriding of Zr–1% Nb Alloy |
| URI | https://link.springer.com/article/10.1007/s11003-023-00678-2 https://www.proquest.com/docview/2773851741 |
| Volume | 58 |
| WOSCitedRecordID | wos000922767300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1573-885X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007575 issn: 1068-820X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsQwEA6iHvTgv1hdpYjiQQvbpE3T47K4KMIiuyqLl5AmrSwsrbRdwZvv4Bv6JE6yrev6c9BDoSVDGb4kMxky8w1CR6zpx4C9cgT2FQQonnAEpTrZQWh671CEnjTNJoJulw0G4XVVFFbU2e71laSx1NNiN9d0vsPwaBPrgOFdAHfH9Hbs9e8-7G_gG3pdiHWYA_5tUJXK_PyPGXf01Sh_ux01Tqez-j9119BKdci0W5NVsY7m4nQDLX-iHtxE7AreYdhuzzI221lid4dlPtQ-TX_c528vr-6x3Y3s1miUPW-h2875TfvCqbooOJJ4pHQEkYmOegiOEx8OdzSCPR0QSiiEVpIJP2kGIBFgShSWLg1DIXQzDKGYohgrso3m0yyNd5AdMalc6gsaqMRj1Afs4biRRJq1lEVSWui0BpM_Tsgy-JQWWePBAQ9u8ODYQocab65ZKFKd5vIgxkXBL_s93gL9DJUbs9BJJZRkJcAhqqoBUEgTV81INup549U-LDgONFsPRF2uhc7qeZoO_67c7t_E99AS1nURpkixgebLfBzvo0X5VA6L_MCsz3cWHNqI |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EBfXgW1xdtYjiQQvbtE3T4yKKohbxxeIlpGkrC7Ir2yp48z_4D_0lzmRb1_Vx0EOhJUMZviQzGTLzDcCWaPgpYp_YivkJBiieshXnlOygiN47VKGnTbOJIIpEqxWel0VheZXtXl1JGks9KHZzTOc7hg-ZWBsN75iHHosS-S4ubz7sb-Abel2MdYSN_q1Vlsr8_I8hd_TVKH-7HTVO53Dmf-rOwnR5yLSa_VUxByNpZx6mPlEPLoA4wXcctvaHGZutbmZF7aLXJp9GH7e9t5dXZ9uKYqt5f999XoTrw4Or_SO77KJga9dzC1u5OqOox2Vp5uPhjse4pwOXuxxDKy2UnzUClAgYdxOmHR6GSlEzDJWIhDOWuEsw2ul20mWwYqETh_uKB0nmCe6HgmhFs5hYS0WsdQ12KzDlQ58sQw5okQkPiXhIg4dkNdgkvCWxUHQozeVOPea5PL68kE3Uz1C5iRrslEJZt0A4VFk1gAoRcdWQZL2aN1nuw1yygNh6MOpyarBXzdNg-HflVv4mvgETR1dnp_L0ODpZhUlGNRKmYLEOo0XvMV2Dcf1UtPPeulmr711b3Ww |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS9xAEB9ERfTB1n941rZBLD7UcJdNstk8HrZHj5Mgasvhy7LZTeTgSI67KPjmd_Ab9pN0Zi_X82r7IH0IJOwQht_uzuywM78BOBatMEPsjatYaDBACZSrOKdkB0X03rGKA22bTURJIvr9-OJZFb_Ndp9dSU5rGoilqaiaI5M354Vvnu2Cx_Ahc-uiEV4JqGkQxetXP37b4ii0VLsY9wgXfV2_Lpv5-z8WXNOfBvrFTal1QJ03_6_6W9isD59Oe7patmApK7Zh4xkl4Q6IHr7jsHO2yOTslLmTDKrxgHwdfdyMfz4-eZ-cJHXaw2H5sAvfO1-vz765dXcFV_uBX7nK1zlFQz7L8hAPfTzFvR753OcYcmmhwrwVoUTEuG-Y9ngcK0VNMpQRhjNm_D1YLsoi2wcnFdp4PFQ8MnkgeBgLohvNU2IzFanWDfg8A1aOpiQack6XTHhIxENaPCRrwBFhL4mdoqD0l1t1N5nI7tWlbKN-luJNNOCkFsrLCuFQdTUBKkSEVguSh7M5lPX-nEgWEYsPRmNeA05nczYf_rdyB68T_whrF1868ryb9N7BOqPSCVvHeAjL1fguew-r-r4aTMYf7LL9Bdy65lA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+Characteristics+of+Nitriding+of+Zr%E2%80%931%25+Nb+Alloy&rft.jtitle=Materials+science+%28New+York%2C+N.Y.%29&rft.au=Trush%2C+V.+S.&rft.au=Pohrelyuk%2C+I.+M.&rft.au=Kravchyshyn%2C+T.+M.&rft.au=Luk%E2%80%99yanenko%2C+A.+G.&rft.date=2022-11-01&rft.issn=1068-820X&rft.eissn=1573-885X&rft.volume=58&rft.issue=3&rft.spage=408&rft.epage=416&rft_id=info:doi/10.1007%2Fs11003-023-00678-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11003_023_00678_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-820X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-820X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-820X&client=summon |