An impulsive model predictive static programming based station-keeping guidance for quasi-halo orbits
In this paper, a control effort minimizing optimal station-keeping guidance is designed and implemented to regulate a spacecraft around an L1 quasi-halo orbit in the Sun–Earth–Moon elliptic four-body problem. The station-keeping guidance is formulated as a finite time, non-linear optimal control pro...
Saved in:
| Published in: | Acta astronautica Vol. 188; pp. 518 - 530 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elmsford
Elsevier Ltd
01.11.2021
Elsevier BV |
| Subjects: | |
| ISSN: | 0094-5765, 1879-2030 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, a control effort minimizing optimal station-keeping guidance is designed and implemented to regulate a spacecraft around an L1 quasi-halo orbit in the Sun–Earth–Moon elliptic four-body problem. The station-keeping guidance is formulated as a finite time, non-linear optimal control problem with hard terminal output constraints and Impulsive Model Predictive Static Programming (I-MPSP) is used to obtain station-keeping maneuvers. The algorithm is iterative, where the guessed station-keeping maneuvers are optimally updated by a simple closed-form equation until an output terminal constraint is satisfied and an optimal cost function is obtained. The technique involves the calculation of sensitivity matrices that is done in a computationally efficient manner owing to their recursive nature. Through extensive simulations, in the presence of disturbance forces and uncertainties, a closed-loop application of I-MPSP guidance results in a trajectory that remains tightly bound to the reference orbit over a long-duration mission.
•Impulsive MPSP guidance is proposed for station keeping on quasi-halo orbits.•This computational guidance ensures control energy minimization.•It exhibits rapid convergence and demands minimal computational time.•Robustness analysis shows it can effectively handle disturbances and uncertainties.•Spacecraft trajectories are tightly bound to the reference orbit during the entire mission. |
|---|---|
| AbstractList | In this paper, a control effort minimizing optimal station-keeping guidance is designed and implemented to regulate a spacecraft around an L1 quasi-halo orbit in the Sun–Earth–Moon elliptic four-body problem. The station-keeping guidance is formulated as a finite time, non-linear optimal control problem with hard terminal output constraints and Impulsive Model Predictive Static Programming (I-MPSP) is used to obtain station-keeping maneuvers. The algorithm is iterative, where the guessed station-keeping maneuvers are optimally updated by a simple closed-form equation until an output terminal constraint is satisfied and an optimal cost function is obtained. The technique involves the calculation of sensitivity matrices that is done in a computationally efficient manner owing to their recursive nature. Through extensive simulations, in the presence of disturbance forces and uncertainties, a closed-loop application of I-MPSP guidance results in a trajectory that remains tightly bound to the reference orbit over a long-duration mission. In this paper, a control effort minimizing optimal station-keeping guidance is designed and implemented to regulate a spacecraft around an L1 quasi-halo orbit in the Sun–Earth–Moon elliptic four-body problem. The station-keeping guidance is formulated as a finite time, non-linear optimal control problem with hard terminal output constraints and Impulsive Model Predictive Static Programming (I-MPSP) is used to obtain station-keeping maneuvers. The algorithm is iterative, where the guessed station-keeping maneuvers are optimally updated by a simple closed-form equation until an output terminal constraint is satisfied and an optimal cost function is obtained. The technique involves the calculation of sensitivity matrices that is done in a computationally efficient manner owing to their recursive nature. Through extensive simulations, in the presence of disturbance forces and uncertainties, a closed-loop application of I-MPSP guidance results in a trajectory that remains tightly bound to the reference orbit over a long-duration mission. •Impulsive MPSP guidance is proposed for station keeping on quasi-halo orbits.•This computational guidance ensures control energy minimization.•It exhibits rapid convergence and demands minimal computational time.•Robustness analysis shows it can effectively handle disturbances and uncertainties.•Spacecraft trajectories are tightly bound to the reference orbit during the entire mission. |
| Author | Vutukuri, Srianish Padhi, Radhakant |
| Author_xml | – sequence: 1 givenname: Srianish orcidid: 0000-0003-0269-8740 surname: Vutukuri fullname: Vutukuri, Srianish email: srianishv@iisc.ac.in – sequence: 2 givenname: Radhakant orcidid: 0000-0003-2406-4917 surname: Padhi fullname: Padhi, Radhakant email: padhi@iisc.ac.in |
| BookMark | eNqNkEtr4zAUhUVJoUmmv6GGWduV5Me1Fl2EMo9CoJvOWshXUqqMbaWSHJh_Pw4euphNu7pw7jn38W3IavSjIeSO0YJR1twfC4VJqZiCLzjlrKBQ0IpdkTVrQeSclnRF1pSKKq-hqW_IJsYjpRR4K9bE7MbMDaepj-5sssFr02enYLTDdBFiUsnhrPhDUMPgxkPWqWj00vBj_tuY00U9TE6rEU1mfcjeJhVd_qp6n_nQuRS_kGur-mhu_9Ut-fX928vjz3z__OPpcbfPsazKlLcoKisstIBY6xIsNigslpp1wFrbdqzTjCMXDTRNWwIHwUVpsWZKAFZVuSVfl7nzwW-TiUke_RTGeaXkdVsBQM1gdj0sLgw-xmCsRLe8k4JyvWRUXsjKo3wnKy9kJQU5k53z8F_-FNygwp9PJHdL0swQzs4EGdGZGZt2wWCS2rsPZ_wFF5-coQ |
| CitedBy_id | crossref_primary_10_1016_j_ifacol_2024_05_002 crossref_primary_10_1016_j_ifacsc_2024_100282 crossref_primary_10_1109_MCS_2024_3358624 crossref_primary_10_1016_j_asr_2022_11_033 crossref_primary_10_1109_TAES_2024_3524197 crossref_primary_10_1016_j_asr_2025_05_074 crossref_primary_10_1109_JRFID_2023_3284670 crossref_primary_10_1007_s40295_023_00427_2 |
| Cites_doi | 10.1016/j.asr.2009.10.023 10.2514/1.G001850 10.1016/0094-5765(87)90175-5 10.1142/S230138501950002X 10.2514/1.28738 10.2514/1.G003115 10.2514/1.53647 10.2514/6.2012-4665 10.3182/20140313-3-IN-3024.00172 10.1016/j.actaastro.2013.01.022 10.1016/j.actaastro.2018.02.004 10.1016/j.asr.2013.09.021 10.2514/1.G003990 10.2514/1.G002845 10.2514/3.11440 |
| ContentType | Journal Article |
| Copyright | 2021 IAA Copyright Elsevier BV Nov 2021 |
| Copyright_xml | – notice: 2021 IAA – notice: Copyright Elsevier BV Nov 2021 |
| DBID | AAYXX CITATION 7TB 7TG 8FD FR3 H8D KL. L7M |
| DOI | 10.1016/j.actaastro.2021.07.041 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database Engineering Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2030 |
| EndPage | 530 |
| ExternalDocumentID | 10_1016_j_actaastro_2021_07_041 S0094576521003994 |
| GrantInformation_xml | – fundername: Space Technology Cell at the Indian Institute of Science, Bangalore, India grantid: ISTC-19-0004 funderid: http://dx.doi.org/10.13039/100007780 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELOY BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H VH1 VOH WUQ ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 7TG 8FD AGCQF FR3 H8D KL. L7M |
| ID | FETCH-LOGICAL-c343t-8c94f9f787cc5d37fc6c9fc3d1b718f8b1bd12c296766837279293fc51a97c443 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000693831100046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-5765 |
| IngestDate | Wed Aug 13 09:50:02 EDT 2025 Sat Nov 29 07:25:19 EST 2025 Tue Nov 18 21:59:29 EST 2025 Fri Feb 23 02:43:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Circular restricted three body problem Elliptic four body problem Quasi-halo orbits Station-keeping Model predictive static programming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c343t-8c94f9f787cc5d37fc6c9fc3d1b718f8b1bd12c296766837279293fc51a97c443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0269-8740 0000-0003-2406-4917 |
| PQID | 2584777517 |
| PQPubID | 2045287 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2584777517 crossref_citationtrail_10_1016_j_actaastro_2021_07_041 crossref_primary_10_1016_j_actaastro_2021_07_041 elsevier_sciencedirect_doi_10_1016_j_actaastro_2021_07_041 |
| PublicationCentury | 2000 |
| PublicationDate | November 2021 2021-11-00 20211101 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Elmsford |
| PublicationPlace_xml | – name: Elmsford |
| PublicationTitle | Acta astronautica |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Lovelly, George (b30) 2017; 14 Folta, Pavlak, Haapala, Howell, Woodard (b14) 2014; 94 Padhi, Kothari (b23) 2009; 5 G. Gómez, J. Llibre, R. Martınez, C. Simó, Station keeping of a quasiperiodic halo orbit using invariant manifolds, in: Proceed. 2nd Internat. Symp. on Spacecraft Flight Dynamics, Darmstadt, 1986, pp. 65–70. Grebow, Ozimek, Howell, Folta (b15) 2008; 45 Jung, Kim (b5) 2019; 42 A. Farrés, G. Gómez, J. Masdemont, C. Webster, D. Folta, The geometry of stationkeeping strategies around libration point orbits, in: 70th International Astronautical Congress, Washington DC, 1986. El’yasberg, Timokhova (b9) 1986; 24 Sakode, Padhi (b22) 2014; 47 Gómez, Howell, Masdemont, Simó (b33) 1998; 99 Akiyama, Bando, Hokamoto (b3) 2018; 41 Gómez (b28) 2001 Kogan (b10) 1992; 30 Akiyama, Bando, Hokamoto (b4) 2018; 153 Muralidharan (b20) 2017 T. Pavlak, K. Howell, Strategy for optimal, long-term stationkeeping of libration point orbits in the Earth-Moon system, in: AIAA/AAS Astrodynamics Specialist Conference Paper, AIAA 2012 - 4665. Ilyin (b8) 2015 Narula, Biggs (b2) 2018; 41 Howell, Keeter (b18) 1995 Vutukuri (b27) 2018 Shirobokov, Trofimov, Ovchinnikov (b1) 2017; 40 Molnar (b19) 2020 Sachan, Padhi (b32) 2019; 7 Lidov, Lyakhova (b7) 1992; 30 Simó, Gómez, Llibre, Martinez, Rodriguez (b11) 1987; 15 Banerjee, Padhi (b31) 2020 (b25) 2021 Turner (b29) 2008 Ghorbani, Assadian (b17) 2013; 52 Assadian, Pourtakdoust (b26) 2010; 45 Lidov, Lukianov (b6) 1977; 14 Oza, Padhi (b24) 2012; 35 Subudhi, Vutukuri, Padhi (b21) 2020 Howell, Pernicka (b16) 1993; 16 Lovelly (10.1016/j.actaastro.2021.07.041_b30) 2017; 14 Muralidharan (10.1016/j.actaastro.2021.07.041_b20) 2017 Lidov (10.1016/j.actaastro.2021.07.041_b7) 1992; 30 Gómez (10.1016/j.actaastro.2021.07.041_b33) 1998; 99 Ghorbani (10.1016/j.actaastro.2021.07.041_b17) 2013; 52 El’yasberg (10.1016/j.actaastro.2021.07.041_b9) 1986; 24 (10.1016/j.actaastro.2021.07.041_b25) 2021 Vutukuri (10.1016/j.actaastro.2021.07.041_b27) 2018 Gómez (10.1016/j.actaastro.2021.07.041_b28) 2001 10.1016/j.actaastro.2021.07.041_b13 Padhi (10.1016/j.actaastro.2021.07.041_b23) 2009; 5 10.1016/j.actaastro.2021.07.041_b12 10.1016/j.actaastro.2021.07.041_b34 Shirobokov (10.1016/j.actaastro.2021.07.041_b1) 2017; 40 Lidov (10.1016/j.actaastro.2021.07.041_b6) 1977; 14 Howell (10.1016/j.actaastro.2021.07.041_b18) 1995 Howell (10.1016/j.actaastro.2021.07.041_b16) 1993; 16 Banerjee (10.1016/j.actaastro.2021.07.041_b31) 2020 Oza (10.1016/j.actaastro.2021.07.041_b24) 2012; 35 Kogan (10.1016/j.actaastro.2021.07.041_b10) 1992; 30 Sakode (10.1016/j.actaastro.2021.07.041_b22) 2014; 47 Grebow (10.1016/j.actaastro.2021.07.041_b15) 2008; 45 Narula (10.1016/j.actaastro.2021.07.041_b2) 2018; 41 Ilyin (10.1016/j.actaastro.2021.07.041_b8) 2015 Simó (10.1016/j.actaastro.2021.07.041_b11) 1987; 15 Subudhi (10.1016/j.actaastro.2021.07.041_b21) 2020 Folta (10.1016/j.actaastro.2021.07.041_b14) 2014; 94 Turner (10.1016/j.actaastro.2021.07.041_b29) 2008 Assadian (10.1016/j.actaastro.2021.07.041_b26) 2010; 45 Sachan (10.1016/j.actaastro.2021.07.041_b32) 2019; 7 Akiyama (10.1016/j.actaastro.2021.07.041_b4) 2018; 153 Akiyama (10.1016/j.actaastro.2021.07.041_b3) 2018; 41 Jung (10.1016/j.actaastro.2021.07.041_b5) 2019; 42 Molnar (10.1016/j.actaastro.2021.07.041_b19) 2020 |
| References_xml | – volume: 14 start-page: 922 year: 1977 end-page: 935 ident: b6 article-title: Statistical estimates in the control problem for motion of a space vehicle in the vicinity of a collinear libration point publication-title: Cosm. Res. – volume: 45 start-page: 344 year: 2008 end-page: 358 ident: b15 article-title: Multibody orbit architectures for lunar south pole coverage publication-title: J. Spacecr. Rockets – year: 2017 ident: b20 article-title: Orbit maintenance strategies for Sun-Earth/Moon libration point missions: Parameter selection for target point and Cauchy-Green tensor approaches – volume: 99 start-page: 949 year: 1998 end-page: 967 ident: b33 article-title: Station-keeping strategies for translunar libration point orbits publication-title: Adv. Astronaut. Sci. – volume: 153 start-page: 289 year: 2018 end-page: 296 ident: b4 article-title: Station-keeping and formation flying based on nonlinear output regulation theory publication-title: Acta Astronaut. – volume: 41 start-page: 1407 year: 2018 end-page: 1415 ident: b3 article-title: Explicit form of station-keeping and formation flying controller for libration point orbits publication-title: J. Guid. Control Dyn. – volume: 14 start-page: 184 year: 2017 end-page: 197 ident: b30 article-title: Comparative analysis of present and future space-grade processors with device metrics publication-title: J. Aerosp. Inf. Syst. – volume: 24 start-page: 497 year: 1986 end-page: 512 ident: b9 article-title: Control of spacecraft motion in neighborhood of collinear libration center in restricted elliptical three-body problem publication-title: Kosmicheskie Issledovaniya – volume: 35 start-page: 153 year: 2012 end-page: 164 ident: b24 article-title: Impact-angle-constrained suboptimal model predictive static programming guidance of air-to-ground missiles publication-title: J. Guid. Control Dyn. – volume: 30 start-page: 712 year: 1992 end-page: 714 ident: b10 article-title: An optimal program of impulse corrections of unstable periodic orbits publication-title: Kosmicheskie Issledovaniya – volume: 40 start-page: 1085 year: 2017 end-page: 1105 ident: b1 article-title: Survey of station-keeping techniques for libration point orbits publication-title: J. Guid. Control Dyn. – reference: G. Gómez, J. Llibre, R. Martınez, C. Simó, Station keeping of a quasiperiodic halo orbit using invariant manifolds, in: Proceed. 2nd Internat. Symp. on Spacecraft Flight Dynamics, Darmstadt, 1986, pp. 65–70. – start-page: 1 year: 2020 end-page: 14 ident: b31 article-title: Multi-phase MPSP guidance for lunar soft landing publication-title: Trans. Indian Natl. Acad. Eng. – volume: 45 start-page: 398 year: 2010 end-page: 409 ident: b26 article-title: Multiobjective genetic optimization of Earth–Moon trajectories in the restricted four-body problem publication-title: Adv. Space Res. – reference: T. Pavlak, K. Howell, Strategy for optimal, long-term stationkeeping of libration point orbits in the Earth-Moon system, in: AIAA/AAS Astrodynamics Specialist Conference Paper, AIAA 2012 - 4665. – volume: 5 start-page: 399 year: 2009 end-page: 411 ident: b23 article-title: Model predictive static programming: a computationally efficient technique for suboptimal control design publication-title: Int. J. Innovative Comput. Inf. Control – year: 2015 ident: b8 article-title: Quasi-periodic orbits around Sun–Earth L2 libration point and their transfer trajectories in Russian space missions – volume: 52 start-page: 2067 year: 2013 end-page: 2079 ident: b17 article-title: Optimal station-keeping near Earth–Moon collinear libration points using continuous and impulsive maneuvers publication-title: Adv. Space Res. – year: 2021 ident: b25 article-title: NASA JPL Horizons web-interface – year: 2001 ident: b28 article-title: Dynamics and Mission Design Near Libration Points: Fundamentals-the Case of Collinear Libration Points, vol. 1 – volume: 41 start-page: 879 year: 2018 end-page: 887 ident: b2 article-title: Fault-tolerant station-keeping on libration point orbits publication-title: J. Guid. Control Dyn. – start-page: 1478 year: 2020 end-page: 1483 ident: b21 article-title: A near fuel-optimal station-keeping strategy for halo orbits publication-title: 2020 59th IEEE Conference on Decision and Control (CDC) – volume: 16 start-page: 151 year: 1993 end-page: 159 ident: b16 article-title: Station-keeping method for libration point trajectories publication-title: J. Guid. Control Dyn. – volume: 42 start-page: 1912 year: 2019 end-page: 1929 ident: b5 article-title: Hamiltonian structure-based robust station-keeping for unstable libration point orbits publication-title: J. Guid. Control Dyn. – year: 2018 ident: b27 article-title: Spacecraft trajectory design techniques using resonant orbits – start-page: 1377 year: 1995 end-page: 1396 ident: b18 article-title: Station-keeping strategies for libration point orbits- Target point and Floquet Mode approaches publication-title: Spacefl. Mech. – volume: 94 start-page: 421 year: 2014 end-page: 433 ident: b14 article-title: Earth–Moon libration point orbit stationkeeping: theory, modeling, and operations publication-title: Acta Astronaut. – volume: 47 start-page: 41 year: 2014 end-page: 46 ident: b22 article-title: Computationally efficient suboptimal control design for impulsive systems based on model predictive static programming publication-title: IFAC Proc. Vol. – volume: 7 start-page: 83 year: 2019 end-page: 104 ident: b32 article-title: Waypoint constrained multi-phase optimal guidance of spacecraft for soft lunar landing publication-title: Unmanned Syst. – year: 2008 ident: b29 article-title: Rocket and Spacecraft Propulsion: Principles, Practice and New Developments – volume: 30 start-page: 579 year: 1992 end-page: 595 ident: b7 article-title: The guaranteeing synthesis of control for stabilization of the motion of a space vehicle in the vicinity of unstable libration points publication-title: Kosmicheskie Issledovaniia – volume: 15 start-page: 391 year: 1987 end-page: 397 ident: b11 article-title: On the optimal station keeping control of halo orbits publication-title: Acta Astronaut. – reference: A. Farrés, G. Gómez, J. Masdemont, C. Webster, D. Folta, The geometry of stationkeeping strategies around libration point orbits, in: 70th International Astronautical Congress, Washington DC, 1986. – year: 2020 ident: b19 article-title: Hybrid station-keeping controller design leveraging floquet mode and reinforcement learning approaches – volume: 45 start-page: 398 issue: 3 year: 2010 ident: 10.1016/j.actaastro.2021.07.041_b26 article-title: Multiobjective genetic optimization of Earth–Moon trajectories in the restricted four-body problem publication-title: Adv. Space Res. doi: 10.1016/j.asr.2009.10.023 – volume: 40 start-page: 1085 issue: 5 year: 2017 ident: 10.1016/j.actaastro.2021.07.041_b1 article-title: Survey of station-keeping techniques for libration point orbits publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G001850 – volume: 15 start-page: 391 issue: 6–7 year: 1987 ident: 10.1016/j.actaastro.2021.07.041_b11 article-title: On the optimal station keeping control of halo orbits publication-title: Acta Astronaut. doi: 10.1016/0094-5765(87)90175-5 – ident: 10.1016/j.actaastro.2021.07.041_b12 – start-page: 1 year: 2020 ident: 10.1016/j.actaastro.2021.07.041_b31 article-title: Multi-phase MPSP guidance for lunar soft landing publication-title: Trans. Indian Natl. Acad. Eng. – volume: 7 start-page: 83 issue: 02 year: 2019 ident: 10.1016/j.actaastro.2021.07.041_b32 article-title: Waypoint constrained multi-phase optimal guidance of spacecraft for soft lunar landing publication-title: Unmanned Syst. doi: 10.1142/S230138501950002X – volume: 45 start-page: 344 issue: 2 year: 2008 ident: 10.1016/j.actaastro.2021.07.041_b15 article-title: Multibody orbit architectures for lunar south pole coverage publication-title: J. Spacecr. Rockets doi: 10.2514/1.28738 – volume: 41 start-page: 879 issue: 4 year: 2018 ident: 10.1016/j.actaastro.2021.07.041_b2 article-title: Fault-tolerant station-keeping on libration point orbits publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G003115 – volume: 35 start-page: 153 issue: 1 year: 2012 ident: 10.1016/j.actaastro.2021.07.041_b24 article-title: Impact-angle-constrained suboptimal model predictive static programming guidance of air-to-ground missiles publication-title: J. Guid. Control Dyn. doi: 10.2514/1.53647 – year: 2018 ident: 10.1016/j.actaastro.2021.07.041_b27 – ident: 10.1016/j.actaastro.2021.07.041_b13 doi: 10.2514/6.2012-4665 – volume: 30 start-page: 579 issue: 5 year: 1992 ident: 10.1016/j.actaastro.2021.07.041_b7 article-title: The guaranteeing synthesis of control for stabilization of the motion of a space vehicle in the vicinity of unstable libration points publication-title: Kosmicheskie Issledovaniia – volume: 47 start-page: 41 issue: 1 year: 2014 ident: 10.1016/j.actaastro.2021.07.041_b22 article-title: Computationally efficient suboptimal control design for impulsive systems based on model predictive static programming publication-title: IFAC Proc. Vol. doi: 10.3182/20140313-3-IN-3024.00172 – volume: 94 start-page: 421 issue: 1 year: 2014 ident: 10.1016/j.actaastro.2021.07.041_b14 article-title: Earth–Moon libration point orbit stationkeeping: theory, modeling, and operations publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2013.01.022 – volume: 153 start-page: 289 year: 2018 ident: 10.1016/j.actaastro.2021.07.041_b4 article-title: Station-keeping and formation flying based on nonlinear output regulation theory publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.02.004 – volume: 14 start-page: 184 issue: 3 year: 2017 ident: 10.1016/j.actaastro.2021.07.041_b30 article-title: Comparative analysis of present and future space-grade processors with device metrics publication-title: J. Aerosp. Inf. Syst. – year: 2020 ident: 10.1016/j.actaastro.2021.07.041_b19 – volume: 52 start-page: 2067 issue: 12 year: 2013 ident: 10.1016/j.actaastro.2021.07.041_b17 article-title: Optimal station-keeping near Earth–Moon collinear libration points using continuous and impulsive maneuvers publication-title: Adv. Space Res. doi: 10.1016/j.asr.2013.09.021 – ident: 10.1016/j.actaastro.2021.07.041_b34 – volume: 42 start-page: 1912 issue: 9 year: 2019 ident: 10.1016/j.actaastro.2021.07.041_b5 article-title: Hamiltonian structure-based robust station-keeping for unstable libration point orbits publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G003990 – volume: 24 start-page: 497 issue: 4 year: 1986 ident: 10.1016/j.actaastro.2021.07.041_b9 article-title: Control of spacecraft motion in neighborhood of collinear libration center in restricted elliptical three-body problem publication-title: Kosmicheskie Issledovaniya – start-page: 1478 year: 2020 ident: 10.1016/j.actaastro.2021.07.041_b21 article-title: A near fuel-optimal station-keeping strategy for halo orbits – volume: 99 start-page: 949 issue: 2 year: 1998 ident: 10.1016/j.actaastro.2021.07.041_b33 article-title: Station-keeping strategies for translunar libration point orbits publication-title: Adv. Astronaut. Sci. – year: 2021 ident: 10.1016/j.actaastro.2021.07.041_b25 – volume: 14 start-page: 922 issue: 6 year: 1977 ident: 10.1016/j.actaastro.2021.07.041_b6 article-title: Statistical estimates in the control problem for motion of a space vehicle in the vicinity of a collinear libration point publication-title: Cosm. Res. – year: 2008 ident: 10.1016/j.actaastro.2021.07.041_b29 – volume: 30 start-page: 712 issue: 5 year: 1992 ident: 10.1016/j.actaastro.2021.07.041_b10 article-title: An optimal program of impulse corrections of unstable periodic orbits publication-title: Kosmicheskie Issledovaniya – volume: 41 start-page: 1407 issue: 6 year: 2018 ident: 10.1016/j.actaastro.2021.07.041_b3 article-title: Explicit form of station-keeping and formation flying controller for libration point orbits publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G002845 – year: 2017 ident: 10.1016/j.actaastro.2021.07.041_b20 – volume: 16 start-page: 151 issue: 1 year: 1993 ident: 10.1016/j.actaastro.2021.07.041_b16 article-title: Station-keeping method for libration point trajectories publication-title: J. Guid. Control Dyn. doi: 10.2514/3.11440 – year: 2001 ident: 10.1016/j.actaastro.2021.07.041_b28 – volume: 5 start-page: 399 issue: 2 year: 2009 ident: 10.1016/j.actaastro.2021.07.041_b23 article-title: Model predictive static programming: a computationally efficient technique for suboptimal control design publication-title: Int. J. Innovative Comput. Inf. Control – year: 2015 ident: 10.1016/j.actaastro.2021.07.041_b8 – start-page: 1377 year: 1995 ident: 10.1016/j.actaastro.2021.07.041_b18 article-title: Station-keeping strategies for libration point orbits- Target point and Floquet Mode approaches publication-title: Spacefl. Mech. |
| SSID | ssj0007289 |
| Score | 2.3350194 |
| Snippet | In this paper, a control effort minimizing optimal station-keeping guidance is designed and implemented to regulate a spacecraft around an L1 quasi-halo orbit... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 518 |
| SubjectTerms | Algorithms Circular restricted three body problem Constraint modelling Cost function Elliptic four body problem Four body problem Iterative methods Maneuvers Model predictive static programming Nonlinear control Optimal control Optimization Quasi-halo orbits Spacecraft Spacecraft guidance Station-keeping Terminal constraints |
| Title | An impulsive model predictive static programming based station-keeping guidance for quasi-halo orbits |
| URI | https://dx.doi.org/10.1016/j.actaastro.2021.07.041 https://www.proquest.com/docview/2584777517 |
| Volume | 188 |
| WOSCitedRecordID | wos000693831100046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2030 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007289 issn: 0094-5765 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZglwMcEE-xsCAfEJfKqHna5lahrgBVZQXdVW-WYyeQbUm7TYL25zN-JO0uj4UDlyhN5CbxfB6PxzPfIPRShUUG40iRkCtNDCEXgd-SaMY1D-kw1i5ReEKnUzaf82O_g1_bcgK0qtjFBV__V1HDNRC2SZ39B3H3fwoX4ByEDkcQOxz_SvCjyqQ-tksbl24L3RgiAF1axWZcB4ai1YdlfTOOAjORaXdjVZFFntsUqi9tqW06gYlDPG9lXZKvcrkarDZZ6difevJa1ciBrI1PXVrXeCfE07ZpF61LZf8MX16Vde98PpbalhMefIITuZA-_Mb7H8LAJ-L1TrE-MeZ0V8_ymMBKxu1X5061MspBUH4Xpte9bEd7Jk4V_6TVnYPhDBDWSPs5r82LWNJVx5p1mUd7-lEcnUwmYjaez16tz4kpMWa24n29lZtoP6QJB6W4P3o_nn_oJ24aMrda8i9_KRzwl8_-nTFzZVq3tsrsHrrrFxl45MBxH93Iqwfozg715EOUjyrcwwRbmOAtTLCDCd6BCbYwwVdggjuYYIAJ3sIEO5g8QidH49nbd8SX3CAqiqOGMMXjghegxZVKdEQLlSpeqEgHGRgxBcuCTAehCnlK05RF1NBP8qhQSSA5VXEcPUZ71arKnyBsuPIibVawkYyDnGWK0TzWqQx5lgcFPUBp13dCeT56UxZlKbrAwzPRd7ownS6GVECnH6Bh33DtKFmub_KmE47wlqWzGAVA7PrGh504hR_ntQhNeAGlSUCf_vn2M3R7O2oO0V6zafPn6Jb63pT15oWH4A_286js |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+impulsive+model+predictive+static+programming+based+station-keeping+guidance+for+quasi-halo+orbits&rft.jtitle=Acta+astronautica&rft.au=Vutukuri%2C+Srianish&rft.au=Padhi%2C+Radhakant&rft.date=2021-11-01&rft.pub=Elsevier+BV&rft.issn=0094-5765&rft.eissn=1879-2030&rft.volume=188&rft.spage=518&rft_id=info:doi/10.1016%2Fj.actaastro.2021.07.041&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon |