Investigation of combustion characteristics in a hydrogen-fueled scramjet combustor
The combustion characteristics of a hydrogen-fueled scramjet combustor were investigated experimentally and numerically. One nonreacting case (case 1), and two different equivalence ratio (ER) reacting cases (cases 2 and 3) were compared. The combustion process of each reacting case was divided into...
Uloženo v:
| Vydáno v: | Acta astronautica Ročník 186; s. 486 - 495 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elmsford
Elsevier Ltd
01.09.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0094-5765, 1879-2030 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The combustion characteristics of a hydrogen-fueled scramjet combustor were investigated experimentally and numerically. One nonreacting case (case 1), and two different equivalence ratio (ER) reacting cases (cases 2 and 3) were compared. The combustion process of each reacting case was divided into three phases. In the first phase, the monitor pressure in case 2 (ER = 0.1) reached a higher level due to the fuel injected before the hydrogen was ignited, whereas the change in case 3 (ER = 0.3) was the opposite, being less than that in the nonreacting flow. Almost all of the hydrogen in case 2 was in the front of the cavity, and that in case 3 was both throughout the whole cavity and near the top wall behind the cavity. In the second phase, the ignition times were about 0.010 s in case 2 and about 0.022 in case 3; a larger ER of hydrogen might be difficult to ignite. Finally, in the last phase, the hydrogen combustion was stable. The shock train in case 3 was pushed into the isolator, and the disturbing distance was about 0.08 m, in accordance with the wall pressure distribution. The higher static temperature in case 2 was mainly in the back of the cavity and that in case 3 was in the cavity shear layer, in line with the hydroxyl planner laser-induced fluorescence (OH-PLIF) results. The combustion mode in case 2 was supersonic combustion and that in case 3 was subsonic combustion.
•Combustion characteristics were investigated in a supersonic combustor.•The whole combustion process could be divided into three parts.•Various measurements are used for better understanding combustion characteristics.•The ignition time for different ER reacting cases was measured. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0094-5765 1879-2030 |
| DOI: | 10.1016/j.actaastro.2021.06.021 |