Investigation of combustion characteristics in a hydrogen-fueled scramjet combustor

The combustion characteristics of a hydrogen-fueled scramjet combustor were investigated experimentally and numerically. One nonreacting case (case 1), and two different equivalence ratio (ER) reacting cases (cases 2 and 3) were compared. The combustion process of each reacting case was divided into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica Jg. 186; S. 486 - 495
Hauptverfasser: Tian, Ye, Shi, Wen, Guo, Mingming, Liu, Yuan, Zhang, Chenlin, Le, Jialing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elmsford Elsevier Ltd 01.09.2021
Elsevier BV
Schlagworte:
ISSN:0094-5765, 1879-2030
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The combustion characteristics of a hydrogen-fueled scramjet combustor were investigated experimentally and numerically. One nonreacting case (case 1), and two different equivalence ratio (ER) reacting cases (cases 2 and 3) were compared. The combustion process of each reacting case was divided into three phases. In the first phase, the monitor pressure in case 2 (ER = 0.1) reached a higher level due to the fuel injected before the hydrogen was ignited, whereas the change in case 3 (ER = 0.3) was the opposite, being less than that in the nonreacting flow. Almost all of the hydrogen in case 2 was in the front of the cavity, and that in case 3 was both throughout the whole cavity and near the top wall behind the cavity. In the second phase, the ignition times were about 0.010 s in case 2 and about 0.022 in case 3; a larger ER of hydrogen might be difficult to ignite. Finally, in the last phase, the hydrogen combustion was stable. The shock train in case 3 was pushed into the isolator, and the disturbing distance was about 0.08 m, in accordance with the wall pressure distribution. The higher static temperature in case 2 was mainly in the back of the cavity and that in case 3 was in the cavity shear layer, in line with the hydroxyl planner laser-induced fluorescence (OH-PLIF) results. The combustion mode in case 2 was supersonic combustion and that in case 3 was subsonic combustion. •Combustion characteristics were investigated in a supersonic combustor.•The whole combustion process could be divided into three parts.•Various measurements are used for better understanding combustion characteristics.•The ignition time for different ER reacting cases was measured.
AbstractList The combustion characteristics of a hydrogen-fueled scramjet combustor were investigated experimentally and numerically. One nonreacting case (case 1), and two different equivalence ratio (ER) reacting cases (cases 2 and 3) were compared. The combustion process of each reacting case was divided into three phases. In the first phase, the monitor pressure in case 2 (ER = 0.1) reached a higher level due to the fuel injected before the hydrogen was ignited, whereas the change in case 3 (ER = 0.3) was the opposite, being less than that in the nonreacting flow. Almost all of the hydrogen in case 2 was in the front of the cavity, and that in case 3 was both throughout the whole cavity and near the top wall behind the cavity. In the second phase, the ignition times were about 0.010 s in case 2 and about 0.022 in case 3; a larger ER of hydrogen might be difficult to ignite. Finally, in the last phase, the hydrogen combustion was stable. The shock train in case 3 was pushed into the isolator, and the disturbing distance was about 0.08 m, in accordance with the wall pressure distribution. The higher static temperature in case 2 was mainly in the back of the cavity and that in case 3 was in the cavity shear layer, in line with the hydroxyl planner laser-induced fluorescence (OH-PLIF) results. The combustion mode in case 2 was supersonic combustion and that in case 3 was subsonic combustion.
The combustion characteristics of a hydrogen-fueled scramjet combustor were investigated experimentally and numerically. One nonreacting case (case 1), and two different equivalence ratio (ER) reacting cases (cases 2 and 3) were compared. The combustion process of each reacting case was divided into three phases. In the first phase, the monitor pressure in case 2 (ER = 0.1) reached a higher level due to the fuel injected before the hydrogen was ignited, whereas the change in case 3 (ER = 0.3) was the opposite, being less than that in the nonreacting flow. Almost all of the hydrogen in case 2 was in the front of the cavity, and that in case 3 was both throughout the whole cavity and near the top wall behind the cavity. In the second phase, the ignition times were about 0.010 s in case 2 and about 0.022 in case 3; a larger ER of hydrogen might be difficult to ignite. Finally, in the last phase, the hydrogen combustion was stable. The shock train in case 3 was pushed into the isolator, and the disturbing distance was about 0.08 m, in accordance with the wall pressure distribution. The higher static temperature in case 2 was mainly in the back of the cavity and that in case 3 was in the cavity shear layer, in line with the hydroxyl planner laser-induced fluorescence (OH-PLIF) results. The combustion mode in case 2 was supersonic combustion and that in case 3 was subsonic combustion. •Combustion characteristics were investigated in a supersonic combustor.•The whole combustion process could be divided into three parts.•Various measurements are used for better understanding combustion characteristics.•The ignition time for different ER reacting cases was measured.
Author Le, Jialing
Liu, Yuan
Shi, Wen
Zhang, Chenlin
Tian, Ye
Guo, Mingming
Author_xml – sequence: 1
  givenname: Ye
  orcidid: 0000-0001-9955-3438
  surname: Tian
  fullname: Tian, Ye
  email: tianye@cardc.cn
  organization: Science and Technology on Scramjet Laboratory, China Aerodynamics Research and Development Center, Mianyang, 621000, China
– sequence: 2
  givenname: Wen
  surname: Shi
  fullname: Shi, Wen
  organization: Science and Technology on Scramjet Laboratory, China Aerodynamics Research and Development Center, Mianyang, 621000, China
– sequence: 3
  givenname: Mingming
  surname: Guo
  fullname: Guo, Mingming
  organization: Science and Technology on Scramjet Laboratory, China Aerodynamics Research and Development Center, Mianyang, 621000, China
– sequence: 4
  givenname: Yuan
  surname: Liu
  fullname: Liu, Yuan
  organization: Science and Technology on Scramjet Laboratory, China Aerodynamics Research and Development Center, Mianyang, 621000, China
– sequence: 5
  givenname: Chenlin
  surname: Zhang
  fullname: Zhang, Chenlin
  organization: Shenyang Aircraft Design and Research Institute, Shenyang, 110035, China
– sequence: 6
  givenname: Jialing
  surname: Le
  fullname: Le, Jialing
  organization: Science and Technology on Scramjet Laboratory, China Aerodynamics Research and Development Center, Mianyang, 621000, China
BookMark eNqNkE1LAzEURYNUsFZ_gwOuZ8zXJDMLF6X4USi4UNchk2TaDO2kJplC_71pqy7c6Ory4J37eOcSjHrXGwBuECwQROyuK6SKUoboXYEhRgVkRYozMEYVr3MMCRyBMYQ1zUvOygtwGUIHIeS4qsfgdd7vTIh2KaN1febaTLlNM4TjpFbSp3LjbZpVyGyfyWy1194tTZ-3g1kbnQXl5aYz8Rt0_gqct3IdzPVXTsD748Pb7DlfvDzNZ9NFrgglMedU1lTyEiJNVFtjUhFCa11LgonUbfqlgkwxglFDdWu4plS2WjeSM8x02ZAJuD31br37GNIXonOD79NJgcuyppxVrEpb_LSlvAvBm1Zsvd1IvxcIioNB0Ykfg-JgUEAmUiTy_hepbDx6il7a9T_46Yk3ScLOGi-CsqZXRltvVBTa2T87PgEMIJZg
CitedBy_id crossref_primary_10_3390_aerospace9040214
crossref_primary_10_1016_j_cja_2023_03_042
crossref_primary_10_1016_j_engappai_2024_109435
crossref_primary_10_1088_1361_6501_ad6c6e
crossref_primary_10_1016_j_actaastro_2025_03_036
crossref_primary_10_1016_j_combustflame_2023_112856
crossref_primary_10_1016_j_ast_2025_110169
crossref_primary_10_1016_j_actaastro_2022_04_036
crossref_primary_10_1016_j_ast_2023_108193
crossref_primary_10_1007_s44270_025_00015_9
crossref_primary_10_1016_j_actaastro_2024_08_041
crossref_primary_10_3390_en16217385
crossref_primary_10_1063_5_0217214
crossref_primary_10_1016_j_aei_2025_103486
crossref_primary_10_1016_j_enconman_2022_116068
crossref_primary_10_1016_j_ast_2023_108459
crossref_primary_10_1016_j_actaastro_2024_01_015
crossref_primary_10_1016_j_actaastro_2021_08_046
crossref_primary_10_1016_j_ijhydene_2022_09_256
crossref_primary_10_1063_5_0148331
crossref_primary_10_1016_j_applthermaleng_2025_128207
crossref_primary_10_1016_j_cja_2023_06_031
crossref_primary_10_1016_j_ast_2022_107508
crossref_primary_10_1007_s40430_024_05361_4
crossref_primary_10_1016_j_actaastro_2022_04_007
crossref_primary_10_1016_j_ast_2024_109073
crossref_primary_10_1016_j_ast_2023_108380
Cites_doi 10.1016/j.actaastro.2019.02.012
10.2514/1.J056761
10.1016/j.ast.2018.04.016
10.1016/j.actaastro.2019.05.013
10.1016/j.actaastro.2018.12.011
10.2514/1.B35580
10.1016/j.ast.2015.09.002
10.1016/j.ast.2018.11.011
10.1016/j.ijhydene.2016.07.219
10.1016/j.ijhydene.2014.04.150
10.1016/j.ijhydene.2015.11.115
10.2514/1.J054662
10.1016/j.cja.2017.06.010
10.1063/5.0036592
10.1016/j.actaastro.2017.03.023
10.1016/j.actaastro.2015.08.013
10.1063/1.5135096
10.2514/1.J053513
10.2514/1.J059653
10.1016/j.expthermflusci.2012.10.013
10.1063/5.0026125
10.1063/1.4990668
10.2514/1.34970
10.1016/j.actaastro.2014.11.023
10.1016/j.cja.2017.03.017
10.1016/j.combustflame.2020.01.034
10.1016/j.actaastro.2019.05.037
10.1016/S1000-9361(07)60072-7
10.1016/j.actaastro.2018.05.014
10.1016/j.ijhydene.2016.01.062
10.1063/5.0039537
10.1016/j.ast.2019.02.018
10.1063/1.5129151
10.1016/j.expthermflusci.2012.03.028
10.2514/1.B36099
10.1016/j.combustflame.2017.01.021
ContentType Journal Article
Copyright 2021 IAA
Copyright Elsevier BV Sep 2021
Copyright_xml – notice: 2021 IAA
– notice: Copyright Elsevier BV Sep 2021
DBID AAYXX
CITATION
7TB
7TG
8FD
FR3
H8D
KL.
L7M
DOI 10.1016/j.actaastro.2021.06.021
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2030
EndPage 495
ExternalDocumentID 10_1016_j_actaastro_2021_06_021
S0094576521003180
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELOY
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
VH1
VOH
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
7TG
8FD
AGCQF
FR3
H8D
KL.
L7M
ID FETCH-LOGICAL-c343t-74a94a7501d3cf92383349d9a323adf202806c6321b4dfe7d44afddba7626d5b3
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000670759300043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-5765
IngestDate Wed Aug 13 09:06:01 EDT 2025
Sat Nov 29 07:23:35 EST 2025
Tue Nov 18 22:10:47 EST 2025
Fri Feb 23 02:45:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Supersonic combustor
Combustion characteristics
Hydrogen
Scramjet
Ignition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-74a94a7501d3cf92383349d9a323adf202806c6321b4dfe7d44afddba7626d5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9955-3438
PQID 2559476868
PQPubID 2045287
PageCount 10
ParticipantIDs proquest_journals_2559476868
crossref_primary_10_1016_j_actaastro_2021_06_021
crossref_citationtrail_10_1016_j_actaastro_2021_06_021
elsevier_sciencedirect_doi_10_1016_j_actaastro_2021_06_021
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Elmsford
PublicationPlace_xml – name: Elmsford
PublicationTitle Acta astronautica
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zhao, Sun, Wu, Cui, Wang (bib22) 2019; 87
Tian, Yang, Le, Zhong, Tian (bib30) 2017; 179
Oamjee, Sadanandan (bib2) 2020; 32
Song, Wang, Sun, Cai, Liu, Yu (bib8) 2019; 159
Sun, Cui, Wang, Bychkov (bib18) 2015; 31
Smirnov, Betelin, Shagaliev, Nikitin, Belyakov, Deryuguin, Aksenov, Korchazhkin (bib36) 2014; 39
Zhang, Yang, Chang, Tang, Bao (bib7) 2015; 110
Deng, Le, Yang, Zhang, Tian (bib10) 2017; 30
Gao, Liang, Sun (bib16) 2017; 29
Sun, Gong, Zhang, Liang, Liu, Wang (bib13) 2012; 43
Kong, Chang, Li, Wang (bib4) 2021; 33
Wu, Li, Ding, Liu, Wang (bib1) 2007; 20
Ruan, Domingo, Ribert (bib26) 2020; 215
Zhang, Chang, Kong, Qiu, Bao (bib20) 2019; 161
Tian, Yang, Le, Su, Yue, Zhong, Tian (bib32) 2016; 41
Huang, Li (bib25) 2016; 41
Srinivasan, Maurya, Abhishek, Desikan, Murugan (bib27) 2018; 56
Chen, Xu, Wei, Zhang (bib9) 2017; 30
Tian, Shi, Zhong, Le (bib33) 2021; 33
Zhao, Sun, Song, Li, Wang (bib5) 2019; 155
Yang, Wang, Sun, Wang (bib17) 2016; 41
Bricalli, Brown, Boyce (bib28) 2015; 53
Sun, Wang, Liang, Geng (bib14) 2008; 24
Wang, Wang, Sun (bib15) 2013; 45
Busa, Rice, Fulton, Edwards, Diskin (bib19) 2016; 54
Cai, Zhu, Sun, Wang (bib12) 2018; 78
Zhang, Chang, Zhang, Wang, Bao (bib6) 2017; 137
Tian, Han, Yang, Zhong, Le (bib29) 2019; 31
Devaraj, Jutur, Rao, Jagadeesh, Anavardham (bib3) 2020; 32
Zhang, Chang, Quan, Bian, Bao (bib21) 2019; 161
Tian, Xiao, Zhang, Xing (bib31) 2015; 46
Tian, Le, Yang, Zhong (bib34) 2020; 58
Sathiyamoorthy, Danish, Srinivas, Manjunath (bib11) 2018; 148
Denman, Chan, Brieschenk, Veeraragavan, Wheatley, Smart (bib23) 2016; 32
Li, Huang, Yan, Du, Fang (bib24) 2019; 84
Smirnov, Betelin, Nikitin, Stamov, Altoukhov (bib35) 2015; 117
Zhang (10.1016/j.actaastro.2021.06.021_bib21) 2019; 161
Zhao (10.1016/j.actaastro.2021.06.021_bib5) 2019; 155
Gao (10.1016/j.actaastro.2021.06.021_bib16) 2017; 29
Tian (10.1016/j.actaastro.2021.06.021_bib30) 2017; 179
Devaraj (10.1016/j.actaastro.2021.06.021_bib3) 2020; 32
Cai (10.1016/j.actaastro.2021.06.021_bib12) 2018; 78
Tian (10.1016/j.actaastro.2021.06.021_bib34) 2020; 58
Sun (10.1016/j.actaastro.2021.06.021_bib18) 2015; 31
Kong (10.1016/j.actaastro.2021.06.021_bib4) 2021; 33
Smirnov (10.1016/j.actaastro.2021.06.021_bib36) 2014; 39
Yang (10.1016/j.actaastro.2021.06.021_bib17) 2016; 41
Denman (10.1016/j.actaastro.2021.06.021_bib23) 2016; 32
Tian (10.1016/j.actaastro.2021.06.021_bib29) 2019; 31
Chen (10.1016/j.actaastro.2021.06.021_bib9) 2017; 30
Wang (10.1016/j.actaastro.2021.06.021_bib15) 2013; 45
Ruan (10.1016/j.actaastro.2021.06.021_bib26) 2020; 215
Wu (10.1016/j.actaastro.2021.06.021_bib1) 2007; 20
Huang (10.1016/j.actaastro.2021.06.021_bib25) 2016; 41
Bricalli (10.1016/j.actaastro.2021.06.021_bib28) 2015; 53
Busa (10.1016/j.actaastro.2021.06.021_bib19) 2016; 54
Song (10.1016/j.actaastro.2021.06.021_bib8) 2019; 159
Li (10.1016/j.actaastro.2021.06.021_bib24) 2019; 84
Tian (10.1016/j.actaastro.2021.06.021_bib32) 2016; 41
Smirnov (10.1016/j.actaastro.2021.06.021_bib35) 2015; 117
Sathiyamoorthy (10.1016/j.actaastro.2021.06.021_bib11) 2018; 148
Zhang (10.1016/j.actaastro.2021.06.021_bib7) 2015; 110
Srinivasan (10.1016/j.actaastro.2021.06.021_bib27) 2018; 56
Zhang (10.1016/j.actaastro.2021.06.021_bib6) 2017; 137
Oamjee (10.1016/j.actaastro.2021.06.021_bib2) 2020; 32
Zhang (10.1016/j.actaastro.2021.06.021_bib20) 2019; 161
Tian (10.1016/j.actaastro.2021.06.021_bib33) 2021; 33
Deng (10.1016/j.actaastro.2021.06.021_bib10) 2017; 30
Sun (10.1016/j.actaastro.2021.06.021_bib13) 2012; 43
Sun (10.1016/j.actaastro.2021.06.021_bib14) 2008; 24
Tian (10.1016/j.actaastro.2021.06.021_bib31) 2015; 46
Zhao (10.1016/j.actaastro.2021.06.021_bib22) 2019; 87
References_xml – volume: 78
  start-page: 197
  year: 2018
  end-page: 204
  ident: bib12
  article-title: Effect of cavity fueling schemes on the laser-induced plasma ignition process in a scramjet combustor
  publication-title: Aero. Sci. Technol.
– volume: 24
  start-page: 688
  year: 2008
  end-page: 696
  ident: bib14
  article-title: Flame characteristics in supersonic combustor with hydrogen injection upstream of cavity flameholder
  publication-title: J. Propul. Power
– volume: 84
  start-page: 570
  year: 2019
  end-page: 584
  ident: bib24
  article-title: Numerical investigation and optimization on the micro-ramp vortex generator within scramjet combustors with the transverse hydrogen jet
  publication-title: Aero. Sci. Technol.
– volume: 41
  start-page: 4799
  year: 2016
  end-page: 4807
  ident: bib25
  article-title: Numerical investigation on the ram-scram transition mechanism in a strut-based dual-mode scramjet combustor
  publication-title: Int. J. Hydrogen Energy
– volume: 56
  start-page: 3600
  year: 2018
  end-page: 3609
  ident: bib27
  article-title: Supersonic combustion of a scramjet engine using hydrogen fuel in shock tunnel
  publication-title: AIAA J.
– volume: 117
  start-page: 338
  year: 2015
  end-page: 355
  ident: bib35
  article-title: Accumulation of errors in numerical simulations of chemically. Reacting gas dynamics
  publication-title: Acta Astronaut.
– volume: 32
  start-page: 116108
  year: 2020
  ident: bib2
  article-title: Effects of fuel injection angle on mixing performance of scramjet pylon-cavity flameholder
  publication-title: Phys. Fluids
– volume: 30
  start-page: 1373
  year: 2017
  end-page: 1390
  ident: bib9
  article-title: Numerical simulations of turbulent flows in aeroramp injector/gas-pilot flame scramjet
  publication-title: Chin. J. Aeronaut.
– volume: 110
  start-page: 89
  year: 2015
  end-page: 98
  ident: bib7
  article-title: Nonlinear characteristics and detection of combustion modes for a hydrocarbon fueled scramjet
  publication-title: Acta Astronaut.
– volume: 159
  start-page: 584
  year: 2019
  end-page: 592
  ident: bib8
  article-title: Mixing and combustion characteristics in a cavity-based supersonic combustor with different injection schemes
  publication-title: Acta Astronaut.
– volume: 53
  start-page: 1740
  year: 2015
  end-page: 1760
  ident: bib28
  article-title: Numerical investigation into the combustion behavior of an inlet-fueled thermal-compression-like scramjet
  publication-title: AIAA J.
– volume: 43
  start-page: 90
  year: 2012
  end-page: 96
  ident: bib13
  article-title: Spark ignition process in a scramjet combustor fueled by hydrogen and equipped with multi-cavities at Mach 4 flight condition
  publication-title: Exp. Therm. Fluid Sci.
– volume: 45
  start-page: 259
  year: 2013
  end-page: 263
  ident: bib15
  article-title: Experimental study of oscillations in a scramjet combustor with cavity flameholders
  publication-title: Exp. Therm. Fluid Sci.
– volume: 161
  start-page: 125
  year: 2019
  end-page: 138
  ident: bib21
  article-title: Ignition characteristics in a thin strut-equipped dual mode combustor fueled with liquid kerosene
  publication-title: Acta Astronaut.
– volume: 39
  start-page: 10748
  year: 2014
  end-page: 10756
  ident: bib36
  article-title: Hydrogen fuel rocket engines simulation using LOGOS code
  publication-title: Int. J. Hydrogen Energy
– volume: 33
  year: 2021
  ident: bib4
  article-title: A deep learning approach for the velocity field prediction in a scramjet isolator
  publication-title: Phys. Fluids
– volume: 161
  start-page: 222
  year: 2019
  end-page: 233
  ident: bib20
  article-title: Flame oscillation characteristics in a kerosene fueled dual mode combustor equipped with thin strut flameholder
  publication-title: Acta Astronaut.
– volume: 54
  start-page: 2463
  year: 2016
  end-page: 2471
  ident: bib19
  article-title: Scramjet combustion efficiency measurement via tomographic absorption spectroscopy and particle image velocimetry
  publication-title: AIAA J.
– volume: 29
  start-page: 126102
  year: 2017
  ident: bib16
  article-title: Symmetric/asymmetric separation transition in a supersonic combustor with single-side expansion
  publication-title: Phys. Fluids
– volume: 41
  start-page: 19218
  year: 2016
  end-page: 19230
  ident: bib32
  article-title: Investigation of combustion and flame stabilization modes in a hydrogen fueled scramjet combustor
  publication-title: Int. J. Hydrogen Energy
– volume: 31
  start-page: 976~980
  year: 2015
  ident: bib18
  article-title: Flame flashback in a supersonic combustor fueled by ethylene with cavity flameholder
  publication-title: J. Propul. Power
– volume: 137
  start-page: 44
  year: 2017
  end-page: 51
  ident: bib6
  article-title: Flow field characteristics analysis and combustion modes classification for a strut/cavity dual-mode combustor
  publication-title: Acta Astronaut.
– volume: 46
  start-page: 451
  year: 2015
  end-page: 458
  ident: bib31
  article-title: Experimental and computational study on combustion performance of a kerosene fueled dual-mode scramjet engine
  publication-title: Aero. Sci. Technol.
– volume: 33
  year: 2021
  ident: bib33
  article-title: Pilot hydrogen enhanced combustion in an ethylene-fueled scramjet combustor at Mach 4
  publication-title: Phys. Fluids
– volume: 58
  start-page: 5379
  year: 2020
  end-page: 5388
  ident: bib34
  article-title: Investigation of combustion characteristics in a kerosene-fueled supersonic combustor with air throttling
  publication-title: AIAA J.
– volume: 32
  start-page: 1462
  year: 2016
  end-page: 1471
  ident: bib23
  article-title: Ignition experiments of hydrocarbons in a mach 8 shape-transitioning scramjet engine
  publication-title: J. Propul. Power
– volume: 41
  start-page: 690~703
  year: 2016
  ident: bib17
  article-title: Numerical simulation on ignition transients of hydrogen flame in a supersonic combustor with dual-cavity
  publication-title: Int. J. Hydrogen Energy
– volume: 148
  start-page: 285
  year: 2018
  end-page: 293
  ident: bib11
  article-title: Experimental investigation of supersonic combustion in a strut cavity based combustor
  publication-title: Acta Astronaut.
– volume: 179
  start-page: 74
  year: 2017
  end-page: 85
  ident: bib30
  article-title: Investigation of combustion process of a kerosene fueled combustor with air throttling
  publication-title: Combust. Flame
– volume: 215
  start-page: 238
  year: 2020
  end-page: 251
  ident: bib26
  article-title: Analysis of combustion modes in a cavity based scramjet
  publication-title: Combust. Flame
– volume: 31
  start-page: 125110
  year: 2019
  ident: bib29
  article-title: Investigation of fluctuating characteristics of wall shear stress in supersonic flow
  publication-title: Phys. Fluids
– volume: 30
  start-page: 932
  year: 2017
  end-page: 938
  ident: bib10
  article-title: Experimental research of air-throttling ignition for a scramjet at Ma 6.5
  publication-title: Chin. J. Aeronaut.
– volume: 32
  year: 2020
  ident: bib3
  article-title: Experimental investigation of unstart dynamics driven by subsonic spillage in a hypersonic scramjet intake at Mach 6
  publication-title: Phys. Fluids
– volume: 20
  start-page: 488
  year: 2007
  end-page: 494
  ident: bib1
  article-title: Experimental study on effects of fuel injection on scramjet combustor performance
  publication-title: Chin. J. Aeronaut.
– volume: 87
  start-page: 190
  year: 2019
  end-page: 206
  ident: bib22
  article-title: Investigation of flame flashback phenomenon in a supersonic crossflow with ethylene injection upstream of cavity flameholder
  publication-title: Aero. Sci. Technol.
– volume: 155
  start-page: 255
  year: 2019
  end-page: 263
  ident: bib5
  article-title: Experimental investigations of cavity parameters leading to combustion oscillation in a supersonic crossflow
  publication-title: Acta Astronaut.
– volume: 159
  start-page: 584
  year: 2019
  ident: 10.1016/j.actaastro.2021.06.021_bib8
  article-title: Mixing and combustion characteristics in a cavity-based supersonic combustor with different injection schemes
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2019.02.012
– volume: 56
  start-page: 3600
  issue: 9
  year: 2018
  ident: 10.1016/j.actaastro.2021.06.021_bib27
  article-title: Supersonic combustion of a scramjet engine using hydrogen fuel in shock tunnel
  publication-title: AIAA J.
  doi: 10.2514/1.J056761
– volume: 78
  start-page: 197
  issue: 7
  year: 2018
  ident: 10.1016/j.actaastro.2021.06.021_bib12
  article-title: Effect of cavity fueling schemes on the laser-induced plasma ignition process in a scramjet combustor
  publication-title: Aero. Sci. Technol.
  doi: 10.1016/j.ast.2018.04.016
– volume: 161
  start-page: 125
  year: 2019
  ident: 10.1016/j.actaastro.2021.06.021_bib21
  article-title: Ignition characteristics in a thin strut-equipped dual mode combustor fueled with liquid kerosene
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2019.05.013
– volume: 155
  start-page: 255
  year: 2019
  ident: 10.1016/j.actaastro.2021.06.021_bib5
  article-title: Experimental investigations of cavity parameters leading to combustion oscillation in a supersonic crossflow
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2018.12.011
– volume: 31
  start-page: 976~980
  issue: 3
  year: 2015
  ident: 10.1016/j.actaastro.2021.06.021_bib18
  article-title: Flame flashback in a supersonic combustor fueled by ethylene with cavity flameholder
  publication-title: J. Propul. Power
  doi: 10.2514/1.B35580
– volume: 46
  start-page: 451
  issue: 10–11
  year: 2015
  ident: 10.1016/j.actaastro.2021.06.021_bib31
  article-title: Experimental and computational study on combustion performance of a kerosene fueled dual-mode scramjet engine
  publication-title: Aero. Sci. Technol.
  doi: 10.1016/j.ast.2015.09.002
– volume: 84
  start-page: 570
  issue: 1
  year: 2019
  ident: 10.1016/j.actaastro.2021.06.021_bib24
  article-title: Numerical investigation and optimization on the micro-ramp vortex generator within scramjet combustors with the transverse hydrogen jet
  publication-title: Aero. Sci. Technol.
  doi: 10.1016/j.ast.2018.11.011
– volume: 41
  start-page: 19218
  issue: 42
  year: 2016
  ident: 10.1016/j.actaastro.2021.06.021_bib32
  article-title: Investigation of combustion and flame stabilization modes in a hydrogen fueled scramjet combustor
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.07.219
– volume: 39
  start-page: 10748
  year: 2014
  ident: 10.1016/j.actaastro.2021.06.021_bib36
  article-title: Hydrogen fuel rocket engines simulation using LOGOS code
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.04.150
– volume: 41
  start-page: 690~703
  issue: 1
  year: 2016
  ident: 10.1016/j.actaastro.2021.06.021_bib17
  article-title: Numerical simulation on ignition transients of hydrogen flame in a supersonic combustor with dual-cavity
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.11.115
– volume: 54
  start-page: 2463
  issue: 8
  year: 2016
  ident: 10.1016/j.actaastro.2021.06.021_bib19
  article-title: Scramjet combustion efficiency measurement via tomographic absorption spectroscopy and particle image velocimetry
  publication-title: AIAA J.
  doi: 10.2514/1.J054662
– volume: 30
  start-page: 1373
  issue: 4
  year: 2017
  ident: 10.1016/j.actaastro.2021.06.021_bib9
  article-title: Numerical simulations of turbulent flows in aeroramp injector/gas-pilot flame scramjet
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2017.06.010
– volume: 33
  year: 2021
  ident: 10.1016/j.actaastro.2021.06.021_bib33
  article-title: Pilot hydrogen enhanced combustion in an ethylene-fueled scramjet combustor at Mach 4
  publication-title: Phys. Fluids
  doi: 10.1063/5.0036592
– volume: 137
  start-page: 44
  year: 2017
  ident: 10.1016/j.actaastro.2021.06.021_bib6
  article-title: Flow field characteristics analysis and combustion modes classification for a strut/cavity dual-mode combustor
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2017.03.023
– volume: 117
  start-page: 338
  year: 2015
  ident: 10.1016/j.actaastro.2021.06.021_bib35
  article-title: Accumulation of errors in numerical simulations of chemically. Reacting gas dynamics
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2015.08.013
– volume: 32
  year: 2020
  ident: 10.1016/j.actaastro.2021.06.021_bib3
  article-title: Experimental investigation of unstart dynamics driven by subsonic spillage in a hypersonic scramjet intake at Mach 6
  publication-title: Phys. Fluids
  doi: 10.1063/1.5135096
– volume: 53
  start-page: 1740
  issue: 7
  year: 2015
  ident: 10.1016/j.actaastro.2021.06.021_bib28
  article-title: Numerical investigation into the combustion behavior of an inlet-fueled thermal-compression-like scramjet
  publication-title: AIAA J.
  doi: 10.2514/1.J053513
– volume: 58
  start-page: 5379
  year: 2020
  ident: 10.1016/j.actaastro.2021.06.021_bib34
  article-title: Investigation of combustion characteristics in a kerosene-fueled supersonic combustor with air throttling
  publication-title: AIAA J.
  doi: 10.2514/1.J059653
– volume: 45
  start-page: 259
  year: 2013
  ident: 10.1016/j.actaastro.2021.06.021_bib15
  article-title: Experimental study of oscillations in a scramjet combustor with cavity flameholders
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2012.10.013
– volume: 32
  start-page: 116108
  year: 2020
  ident: 10.1016/j.actaastro.2021.06.021_bib2
  article-title: Effects of fuel injection angle on mixing performance of scramjet pylon-cavity flameholder
  publication-title: Phys. Fluids
  doi: 10.1063/5.0026125
– volume: 29
  start-page: 126102
  issue: 12
  year: 2017
  ident: 10.1016/j.actaastro.2021.06.021_bib16
  article-title: Symmetric/asymmetric separation transition in a supersonic combustor with single-side expansion
  publication-title: Phys. Fluids
  doi: 10.1063/1.4990668
– volume: 24
  start-page: 688
  issue: 4
  year: 2008
  ident: 10.1016/j.actaastro.2021.06.021_bib14
  article-title: Flame characteristics in supersonic combustor with hydrogen injection upstream of cavity flameholder
  publication-title: J. Propul. Power
  doi: 10.2514/1.34970
– volume: 110
  start-page: 89
  year: 2015
  ident: 10.1016/j.actaastro.2021.06.021_bib7
  article-title: Nonlinear characteristics and detection of combustion modes for a hydrocarbon fueled scramjet
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2014.11.023
– volume: 30
  start-page: 932
  issue: 3
  year: 2017
  ident: 10.1016/j.actaastro.2021.06.021_bib10
  article-title: Experimental research of air-throttling ignition for a scramjet at Ma 6.5
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2017.03.017
– volume: 215
  start-page: 238
  issue: 5
  year: 2020
  ident: 10.1016/j.actaastro.2021.06.021_bib26
  article-title: Analysis of combustion modes in a cavity based scramjet
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2020.01.034
– volume: 161
  start-page: 222
  year: 2019
  ident: 10.1016/j.actaastro.2021.06.021_bib20
  article-title: Flame oscillation characteristics in a kerosene fueled dual mode combustor equipped with thin strut flameholder
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2019.05.037
– volume: 20
  start-page: 488
  year: 2007
  ident: 10.1016/j.actaastro.2021.06.021_bib1
  article-title: Experimental study on effects of fuel injection on scramjet combustor performance
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/S1000-9361(07)60072-7
– volume: 148
  start-page: 285
  issue: 7
  year: 2018
  ident: 10.1016/j.actaastro.2021.06.021_bib11
  article-title: Experimental investigation of supersonic combustion in a strut cavity based combustor
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2018.05.014
– volume: 41
  start-page: 4799
  issue: 8
  year: 2016
  ident: 10.1016/j.actaastro.2021.06.021_bib25
  article-title: Numerical investigation on the ram-scram transition mechanism in a strut-based dual-mode scramjet combustor
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.01.062
– volume: 33
  year: 2021
  ident: 10.1016/j.actaastro.2021.06.021_bib4
  article-title: A deep learning approach for the velocity field prediction in a scramjet isolator
  publication-title: Phys. Fluids
  doi: 10.1063/5.0039537
– volume: 87
  start-page: 190
  issue: 4
  year: 2019
  ident: 10.1016/j.actaastro.2021.06.021_bib22
  article-title: Investigation of flame flashback phenomenon in a supersonic crossflow with ethylene injection upstream of cavity flameholder
  publication-title: Aero. Sci. Technol.
  doi: 10.1016/j.ast.2019.02.018
– volume: 31
  start-page: 125110
  year: 2019
  ident: 10.1016/j.actaastro.2021.06.021_bib29
  article-title: Investigation of fluctuating characteristics of wall shear stress in supersonic flow
  publication-title: Phys. Fluids
  doi: 10.1063/1.5129151
– volume: 43
  start-page: 90
  issue: 11
  year: 2012
  ident: 10.1016/j.actaastro.2021.06.021_bib13
  article-title: Spark ignition process in a scramjet combustor fueled by hydrogen and equipped with multi-cavities at Mach 4 flight condition
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2012.03.028
– volume: 32
  start-page: 1462
  issue: 6
  year: 2016
  ident: 10.1016/j.actaastro.2021.06.021_bib23
  article-title: Ignition experiments of hydrocarbons in a mach 8 shape-transitioning scramjet engine
  publication-title: J. Propul. Power
  doi: 10.2514/1.B36099
– volume: 179
  start-page: 74
  issue: 5
  year: 2017
  ident: 10.1016/j.actaastro.2021.06.021_bib30
  article-title: Investigation of combustion process of a kerosene fueled combustor with air throttling
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2017.01.021
SSID ssj0007289
Score 2.444536
Snippet The combustion characteristics of a hydrogen-fueled scramjet combustor were investigated experimentally and numerically. One nonreacting case (case 1), and two...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 486
SubjectTerms Combustion
Combustion chambers
Combustion characteristics
Equivalence ratio
Hydrogen
Hydrogen combustion
Ignition
Laser induced fluorescence
Pressure distribution
Scramjet
Shear layers
Stress concentration
Subsonic combustion
Supersonic combustion
Supersonic combustion ramjet engines
Supersonic combustor
Wall pressure
Title Investigation of combustion characteristics in a hydrogen-fueled scramjet combustor
URI https://dx.doi.org/10.1016/j.actaastro.2021.06.021
https://www.proquest.com/docview/2559476868
Volume 186
WOSCitedRecordID wos000670759300043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2030
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007289
  issn: 0094-5765
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLZghgMcEKsYGFAOiEsUNImdxdwq1GFRVZCmA-VkOV6GVExS2gQN_57n2EnTsgwcuERZ9LL4fXmbn99D6KlOBY6OZBzEWqmAhEQHFAscYJ0kMc-zKM_bhcKTdDrN5nP63gVz1m07gbQss4sLuvyvrIZzwGyzdPYf2N3fFE7APjAdtsB22P4V4weVM6wtCA_JTc8uOBI75ZmL0uf-5-9yVcHtAt2ADpI-CBJ-vlB1R1ithhbsSNTc52sTQedtILz3_QsbS_3UQ-WkbRjsf9ysNnvVVDZXvzw773SmyQYqmpaycVB1UYgo7NOsXGisXx7zYShtKQnAn7Gz1soK2CylwC43F9NL4KEMJfboJ9luwwwLwFnN2898bl6krb5qF1lvV9OevmPHp5MJm43ns2fLr4FpNGYm5F3XlatoP0pjCrJ8f_RmPH_bq-80yqzP5F5-Kynwl8_-nUmzo9xbi2V2C910roY3shC5ja6o8g66MShAeRedbIHFq7S3AYu3AxavKD3u7YDF68Di9WC5h06Px7OXrwPXZiMQmOA6SAmnhIPlGEosNBj8GcaESspxhLnUUTv5LhIchTmRWqWSEK6lzDno0UTGOb6P9sqqVA-QF7cpyTLJFfjpiisqwIAXYPRmNKZEyAOUdCPFhKtBb1qhfGFdsuGC9UPMzBAzk3YZhQfoqCdc2jIsl5O86FjBnDVprUQGgLqc-LBjHnP_9poZ75uAe55kD_98-RG6vvlHDtFevWrUY3RNfKuL9eqJA9wPivmjDg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+combustion+characteristics+in+a+hydrogen-fueled+scramjet+combustor&rft.jtitle=Acta+astronautica&rft.au=Tian%2C+Ye&rft.au=Shi%2C+Wen&rft.au=Guo%2C+Mingming&rft.au=Liu%2C+Yuan&rft.date=2021-09-01&rft.pub=Elsevier+BV&rft.issn=0094-5765&rft.eissn=1879-2030&rft.volume=186&rft.spage=486&rft_id=info:doi/10.1016%2Fj.actaastro.2021.06.021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon