Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide
•Novel CO gas sensor with ZnO/3D-RGO integrated on micro-heater.•Large amount and simple synthesis of ZnO/3D-RGO by hydrothermal method.•Enhance response/recovery time and low concentration detectable (<10 ppm) of CO sensor.•Fast response/recovery time of CO sensor less than ten seconds at workin...
Saved in:
| Published in: | Applied surface science Vol. 434; pp. 1048 - 1054 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
15.03.2018
|
| Subjects: | |
| ISSN: | 0169-4332, 1873-5584 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Novel CO gas sensor with ZnO/3D-RGO integrated on micro-heater.•Large amount and simple synthesis of ZnO/3D-RGO by hydrothermal method.•Enhance response/recovery time and low concentration detectable (<10 ppm) of CO sensor.•Fast response/recovery time of CO sensor less than ten seconds at working temperature of 200 oC.
Zinc oxide (ZnO) nanoparticles loaded onto 3D reduced graphene oxide (3D-RGO) for carbon monoxide (CO) sensing were synthesized using hydrothermal method. The highly porous ZnO/3D-RGO configuration was stable without collapsing and was deposited on the micro-heater of the CO gas sensor. The resulting CO gas sensor displayed high sensitivity, fast response/recovery, and good linearity. The sensor achieved a response value of 85.2% for 1000 ppm CO at a working temperature of 200 °C. The response and recovery times of the sensor were 7 and 9 s for 1000 ppm CO at 200 °C. Similarly, the response value, response time, and recovery time of the sensor at room temperature were 27.5%, 14 s, and 15 s, respectively. The sensor demonstrated a distinct response to various CO concentrations in the range of 1–1000 ppm and good selectivity toward CO gas. In addition, the sensor exhibited good repeatability in multi-cycle and long-term stability. |
|---|---|
| AbstractList | •Novel CO gas sensor with ZnO/3D-RGO integrated on micro-heater.•Large amount and simple synthesis of ZnO/3D-RGO by hydrothermal method.•Enhance response/recovery time and low concentration detectable (<10 ppm) of CO sensor.•Fast response/recovery time of CO sensor less than ten seconds at working temperature of 200 oC.
Zinc oxide (ZnO) nanoparticles loaded onto 3D reduced graphene oxide (3D-RGO) for carbon monoxide (CO) sensing were synthesized using hydrothermal method. The highly porous ZnO/3D-RGO configuration was stable without collapsing and was deposited on the micro-heater of the CO gas sensor. The resulting CO gas sensor displayed high sensitivity, fast response/recovery, and good linearity. The sensor achieved a response value of 85.2% for 1000 ppm CO at a working temperature of 200 °C. The response and recovery times of the sensor were 7 and 9 s for 1000 ppm CO at 200 °C. Similarly, the response value, response time, and recovery time of the sensor at room temperature were 27.5%, 14 s, and 15 s, respectively. The sensor demonstrated a distinct response to various CO concentrations in the range of 1–1000 ppm and good selectivity toward CO gas. In addition, the sensor exhibited good repeatability in multi-cycle and long-term stability. |
| Author | Ha, Nguyen Hai Thach, Phan Duy Thinh, Dao Duc Phuong, Nguyen Huy Huong, Nguyen Thanh Hong, Hoang Si |
| Author_xml | – sequence: 1 givenname: Nguyen Hai surname: Ha fullname: Ha, Nguyen Hai – sequence: 2 givenname: Dao Duc surname: Thinh fullname: Thinh, Dao Duc – sequence: 3 givenname: Nguyen Thanh surname: Huong fullname: Huong, Nguyen Thanh – sequence: 4 givenname: Nguyen Huy surname: Phuong fullname: Phuong, Nguyen Huy – sequence: 5 givenname: Phan Duy surname: Thach fullname: Thach, Phan Duy – sequence: 6 givenname: Hoang Si surname: Hong fullname: Hong, Hoang Si email: hong.hoangsy@hust.edu.vn |
| BookMark | eNqFkE1u2zAQRokiAeo4uUEWvIBU_kiW3EWBIm2SAgGyaTfZECNyZNO1SYFDJ_UFcu7ScFddJKvBYPi-D3wX7CzEgIxdS1FLIRefNjVMtCdbKyG7WspaNN0HNpN9p6u27ZszNivPllWjtfrILog2QkhVrjP2eguUeUKaYiDkceQW0hAD38UQ_3iHfAXECQPFRHxPPqw48LVfrbcHPsUU98QD5peYfh_hp_DIA4Q4QcrebpG4QxsTZHS8hOpvpcrtbdlWCaY1hlJ5bLlk5yNsCa_-zTn7dfv958199fB49-Pm60NldaNz1Sk3jA060Q9W6rYXrRrbthVqaRcLhA6lBLEYlFS2kUNfdquXrlEADkXXKz1nn0-5NkWihKOxPkP2MeQEfmukMEejZmNORs3RqJHSFKMFbv6Dp-R3kA7vYV9OGJaPPXtMhqzHUCT4hDYbF_3bAX8B_gmXfg |
| CitedBy_id | crossref_primary_10_1002_admi_201801689 crossref_primary_10_1002_ppsc_201800105 crossref_primary_10_1016_j_mssp_2021_106051 crossref_primary_10_1088_1742_6596_2934_1_012028 crossref_primary_10_1088_2043_6262_aca022 crossref_primary_10_1002_admi_201902062 crossref_primary_10_1007_s10854_021_06745_1 crossref_primary_10_3390_s21061958 crossref_primary_10_1016_j_snb_2019_127649 crossref_primary_10_1016_j_jallcom_2019_01_099 crossref_primary_10_1016_j_inoche_2023_111163 crossref_primary_10_1016_j_snb_2022_131917 crossref_primary_10_32604_jpm_2024_052695 crossref_primary_10_1016_j_apmt_2019_100483 crossref_primary_10_1088_1361_6528_abbca8 crossref_primary_10_1007_s10854_021_07578_8 crossref_primary_10_1016_j_jallcom_2025_182071 crossref_primary_10_1016_j_mattod_2024_12_020 crossref_primary_10_1080_20550324_2021_2008207 crossref_primary_10_1016_j_jallcom_2019_02_066 crossref_primary_10_1016_j_snb_2018_07_040 crossref_primary_10_3390_app9061167 crossref_primary_10_1002_adfm_202405260 crossref_primary_10_1016_j_sna_2022_113578 crossref_primary_10_1016_j_sna_2021_113120 crossref_primary_10_1088_1361_6528_ab6fd9 crossref_primary_10_1109_JSEN_2019_2948983 crossref_primary_10_1109_TII_2019_2963683 crossref_primary_10_1016_j_ces_2018_07_007 crossref_primary_10_1016_j_snb_2019_127012 crossref_primary_10_1109_ACCESS_2019_2949463 crossref_primary_10_3390_app11209536 crossref_primary_10_1007_s10854_023_10806_y crossref_primary_10_1016_j_ceramint_2018_12_205 crossref_primary_10_1016_j_mtcomm_2019_100826 crossref_primary_10_3390_nano11113151 crossref_primary_10_1016_j_chemosphere_2022_133772 crossref_primary_10_1016_j_mssp_2021_105904 crossref_primary_10_1007_s10854_024_13271_3 crossref_primary_10_1016_j_snb_2021_129779 crossref_primary_10_3389_fmats_2022_831725 crossref_primary_10_1007_s12598_020_01633_9 crossref_primary_10_1016_j_apsusc_2019_07_133 crossref_primary_10_3390_su142113978 crossref_primary_10_1016_j_apsusc_2019_02_195 crossref_primary_10_1016_j_ceramint_2017_12_038 crossref_primary_10_1002_adsr_202400031 crossref_primary_10_1039_C9RA03171E crossref_primary_10_1016_j_apsusc_2017_11_133 crossref_primary_10_1109_JSEN_2022_3191042 crossref_primary_10_1016_j_cplett_2023_140803 crossref_primary_10_1016_j_sna_2020_112142 crossref_primary_10_1016_j_mseb_2023_117003 crossref_primary_10_1088_2399_7532_ac1732 crossref_primary_10_3390_mi15010077 crossref_primary_10_1016_j_apsusc_2021_150272 crossref_primary_10_1002_tcr_202300350 crossref_primary_10_1016_j_tsf_2024_140442 crossref_primary_10_1016_j_jlumin_2022_119112 crossref_primary_10_3390_nano12122025 crossref_primary_10_1088_1742_6596_2653_1_012062 crossref_primary_10_1016_j_cplett_2019_137067 crossref_primary_10_1038_s41598_024_76678_2 crossref_primary_10_3389_fchem_2018_00399 crossref_primary_10_3390_s19030615 crossref_primary_10_1016_j_microc_2024_111053 crossref_primary_10_1007_s10854_020_02937_3 crossref_primary_10_1007_s10854_019_01111_8 crossref_primary_10_1016_j_mtcomm_2022_103182 crossref_primary_10_1016_j_optmat_2022_112903 crossref_primary_10_1088_1755_1315_332_3_032007 crossref_primary_10_1007_s10854_021_07409_w crossref_primary_10_1002_smtd_201900735 crossref_primary_10_1007_s10854_021_05664_5 crossref_primary_10_1016_j_apsusc_2019_144302 crossref_primary_10_1016_j_ceramint_2020_10_257 crossref_primary_10_1016_j_snb_2018_12_151 crossref_primary_10_3390_polym14235125 crossref_primary_10_1016_j_prime_2024_100496 crossref_primary_10_1016_j_matchemphys_2020_122766 crossref_primary_10_1088_2399_6528_ad777b crossref_primary_10_1088_2632_959X_ac477b crossref_primary_10_1109_ACCESS_2020_2976841 crossref_primary_10_1007_s00604_024_06326_z crossref_primary_10_1515_zna_2018_0453 crossref_primary_10_1016_j_snb_2018_11_070 crossref_primary_10_1007_s11665_025_11570_2 crossref_primary_10_1016_j_snb_2019_05_065 crossref_primary_10_1016_j_snb_2018_08_144 crossref_primary_10_1109_JSEN_2020_3027786 crossref_primary_10_1016_j_nanoen_2021_106165 crossref_primary_10_1007_s11664_022_10161_4 crossref_primary_10_1088_1742_6596_1432_1_012040 crossref_primary_10_1016_j_snb_2023_134621 crossref_primary_10_3390_ma17020303 |
| Cites_doi | 10.1016/j.snb.2012.07.092 10.1021/ja308676h 10.1016/j.snb.2008.02.034 10.1016/j.snb.2012.09.034 10.1021/nn101187z 10.1002/adma.201102838 10.1016/j.snb.2016.04.043 10.1016/j.snb.2016.12.026 10.1021/nn3003345 10.1016/j.snb.2012.05.090 10.1016/j.ijhydene.2013.08.107 10.1016/j.snb.2013.02.047 10.1002/smll.200901084 10.1016/j.snb.2008.01.030 10.1016/j.snb.2012.10.080 10.1021/jp100343d 10.1016/j.snb.2016.12.117 10.1016/j.jcis.2014.08.071 10.1021/jz101639v 10.1039/c1cc13329b 10.1039/c3ta00166k 10.1039/C3NR04555B 10.1021/jz900265j 10.1016/j.teac.2017.02.001 10.1039/c1nr10355e 10.1016/j.carbon.2011.08.050 10.1016/j.proeng.2016.11.198 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.apsusc.2017.11.047 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-5584 |
| EndPage | 1054 |
| ExternalDocumentID | 10_1016_j_apsusc_2017_11_047 S0169433217332919 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCB SDF SDG SDP SES SMS SPC SPCBC SPD SPG SSK SSM SSQ SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- SEW WUQ ~HD |
| ID | FETCH-LOGICAL-c343t-72dbf4ed08bc1358052f555029c66ea7e11a06b212c41b87e1c39d42aade07823 |
| ISICitedReferencesCount | 106 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419116600121&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0169-4332 |
| IngestDate | Tue Nov 18 22:19:34 EST 2025 Sat Nov 29 07:22:22 EST 2025 Fri Feb 23 02:45:39 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | CO gas sensor Fast response/recovery ZnO nanoparticles MEMS technology 3D-RGO |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c343t-72dbf4ed08bc1358052f555029c66ea7e11a06b212c41b87e1c39d42aade07823 |
| PageCount | 7 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_apsusc_2017_11_047 crossref_primary_10_1016_j_apsusc_2017_11_047 elsevier_sciencedirect_doi_10_1016_j_apsusc_2017_11_047 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-03-15 |
| PublicationDateYYYYMMDD | 2018-03-15 |
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied surface science |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kamat (bib0045) 2011; 2 Rakesk, Joshi (bib0125) 2010; 114 Singh (bib0130) 2012; 50 Basu, Bhattacharyya (bib0035) 2012; 173 Steinhauer (bib0140) 2013; 187 Li, Wu, Huang, Zhang (bib0005) 2017; 243 Chen, Yan (bib0055) 2011; 3 Vallejos, Gràcia, Figueras, Pizurova, Hubálek, Cané (bib0030) 2016; 168 Balamurugan, Arunkumar, Lee (bib0145) 2016; 234 Kolavennu, Gonia (bib0105) 2016 Bahrami (bib0115) 2008; 133 Pham (bib0065) 2011; 47 Li, Liu, Yang (bib0085) 2013; 1 Korotcenkov, Cho (bib0025) 2017; 244 Burckel (bib0080) 2009; 5 Luan, Tien, Hur (bib0100) 2015; 437 Phan, Chung (bib0095) 2014; 39 Choi (bib0070) 2012; 6 Jiang, Fan (bib0075) 2014; 6 Xu (bib0050) 2010; 4 Hi Gyu (bib0120) 2010; 149 Maduraiveeran, Jin (bib0020) 2017; 13 Phan, Chung (bib0010) 2013; 187 Wu (bib0090) 2012; 134 Neri (bib0110) 2008; 132 Khoang, Hong, Trung, Duy, Hoa, Thinh, Hieu (bib0015) 2013; 181 Kamat (bib0040) 2009; 1 Zeng (bib0135) 2012; 172 Chen (bib0060) 2011; 23 Burckel (10.1016/j.apsusc.2017.11.047_bib0080) 2009; 5 Wu (10.1016/j.apsusc.2017.11.047_bib0090) 2012; 134 Steinhauer (10.1016/j.apsusc.2017.11.047_bib0140) 2013; 187 Rakesk (10.1016/j.apsusc.2017.11.047_bib0125) 2010; 114 Kamat (10.1016/j.apsusc.2017.11.047_bib0045) 2011; 2 Li (10.1016/j.apsusc.2017.11.047_bib0085) 2013; 1 Luan (10.1016/j.apsusc.2017.11.047_bib0100) 2015; 437 Khoang (10.1016/j.apsusc.2017.11.047_bib0015) 2013; 181 Chen (10.1016/j.apsusc.2017.11.047_bib0055) 2011; 3 Neri (10.1016/j.apsusc.2017.11.047_bib0110) 2008; 132 Balamurugan (10.1016/j.apsusc.2017.11.047_bib0145) 2016; 234 Bahrami (10.1016/j.apsusc.2017.11.047_bib0115) 2008; 133 Phan (10.1016/j.apsusc.2017.11.047_bib0095) 2014; 39 Pham (10.1016/j.apsusc.2017.11.047_bib0065) 2011; 47 Jiang (10.1016/j.apsusc.2017.11.047_bib0075) 2014; 6 Basu (10.1016/j.apsusc.2017.11.047_bib0035) 2012; 173 Hi Gyu (10.1016/j.apsusc.2017.11.047_bib0120) 2010; 149 Xu (10.1016/j.apsusc.2017.11.047_bib0050) 2010; 4 Kolavennu (10.1016/j.apsusc.2017.11.047_bib0105) 2016 Maduraiveeran (10.1016/j.apsusc.2017.11.047_bib0020) 2017; 13 Choi (10.1016/j.apsusc.2017.11.047_bib0070) 2012; 6 Vallejos (10.1016/j.apsusc.2017.11.047_bib0030) 2016; 168 Singh (10.1016/j.apsusc.2017.11.047_bib0130) 2012; 50 Chen (10.1016/j.apsusc.2017.11.047_bib0060) 2011; 23 Kamat (10.1016/j.apsusc.2017.11.047_bib0040) 2009; 1 Zeng (10.1016/j.apsusc.2017.11.047_bib0135) 2012; 172 Phan (10.1016/j.apsusc.2017.11.047_bib0010) 2013; 187 Korotcenkov (10.1016/j.apsusc.2017.11.047_bib0025) 2017; 244 Li (10.1016/j.apsusc.2017.11.047_bib0005) 2017; 243 |
| References_xml | – volume: 437 start-page: 181 year: 2015 end-page: 186 ident: bib0100 article-title: Fabrication of 3D structured ZnO nanorod/reduced graphene oxide hydrogels and their use for photo-enhanced organic dye removal publication-title: J. Colloid Interface Sci. – volume: 133 start-page: 352 year: 2008 end-page: 356 ident: bib0115 article-title: Enhanced CO sensitivity and selectivity of gold nanoparticles-doped SnO2 sensor in presence of propane and methane publication-title: Sens. Actuators B – volume: 181 start-page: 529 year: 2013 end-page: 536 ident: bib0015 article-title: On-chip growth of wafer-scale planar-type ZnO nanorod sensors for effective detection of CO gas publication-title: Sens. Actuators B: Chem. – volume: 173 start-page: 1 year: 2012 end-page: 21 ident: bib0035 article-title: Recent developments on graphene and graphene oxide based solid state gas sensors publication-title: Sens. Actuators B – volume: 132 start-page: 224 year: 2008 end-page: 233 ident: bib0110 article-title: Resistive CO gas sensors based on In publication-title: Sens. Actuators B – volume: 50 start-page: 385 year: 2012 end-page: 394 ident: bib0130 article-title: ZnO decorated luminescent graphene as a potential gas sensor at room temperature publication-title: Carbon – volume: 6 start-page: 1922 year: 2014 end-page: 1945 ident: bib0075 article-title: Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures publication-title: Nanoscale – volume: 134 start-page: 19532 year: 2012 end-page: 19535 ident: bib0090 article-title: Three-dimensional graphene-based macro-and mesoporous frameworks for high-performance electrochemical capacitive energy storage publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 620 year: 2014 end-page: 629 ident: bib0095 article-title: Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites publication-title: Int. J. Hydrogen Energy – volume: 114 start-page: 6610 year: 2010 end-page: 6613 ident: bib0125 article-title: Graphene films and ribbons for sensing of O publication-title: J. Phys. Chem. C – volume: 23 start-page: 5679 year: 2011 end-page: 5683 ident: bib0060 article-title: Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel publication-title: Adv. Mater. – volume: 149 start-page: 2116 year: 2010 end-page: 2121 ident: bib0120 article-title: Highly sensitive CO sensor based on cross-linked TiO publication-title: Sens. Actuators B – volume: 3 start-page: 3132 year: 2011 end-page: 3137 ident: bib0055 article-title: In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures publication-title: Nanoscale – volume: 1 start-page: 3446 year: 2013 end-page: 3453 ident: bib0085 article-title: Covalent assembly of 3D graphene/polypyrrole foams for oil spill cleanup publication-title: J. Mater. Chem. A – volume: 243 start-page: 566 year: 2017 end-page: 578 ident: bib0005 article-title: Gas sensors based on membrane diffusion for environmental monitoring publication-title: Sens. Actuators B: Chem. – volume: 47 start-page: 9672 year: 2011 end-page: 9674 ident: bib0065 article-title: Synthesis of the chemically converted graphene xerogel with superior electrical conductivity publication-title: Chem. Commun. – volume: 1 start-page: 520 year: 2009 end-page: 527 ident: bib0040 article-title: Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support publication-title: J. Phys. Chem. Lett. – volume: 13 start-page: 10 year: 2017 end-page: 23 ident: bib0020 article-title: Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications publication-title: Trends Environ. Anal. Chem. – start-page: 155 year: 2016 end-page: 166 ident: bib0105 article-title: 8 – Wireless gas sensors for industrial life safety publication-title: Industrial Wireless Sensor Networks – volume: 172 start-page: 897 year: 2012 end-page: 902 ident: bib0135 article-title: Development of microstructure CO sensor based on hierarchically porous ZnO nanosheet thin films publication-title: Sens. Actuators B – volume: 187 start-page: 50 year: 2013 end-page: 57 ident: bib0140 article-title: Gas sensing properties of novel CuO nanowire devices publication-title: Sens. Actuators B – volume: 234 start-page: 155 year: 2016 end-page: 166 ident: bib0145 article-title: Hierarchical 3D nanostructure of GdInO3 and reduced-graphene-decorated GdInO3 nanocomposite for CO sensing applications publication-title: Sens. Actuators B: Chem. – volume: 2 start-page: 242 year: 2011 end-page: 251 ident: bib0045 article-title: Graphene-based nanoassemblies for energy conversion publication-title: J. Phys. Chem. Lett. – volume: 6 start-page: 4020 year: 2012 end-page: 4028 ident: bib0070 article-title: 3D macroporous graphene frameworks for supercapacitors with high energy and power densities publication-title: ACS Nano – volume: 244 start-page: 182 year: 2017 end-page: 210 ident: bib0025 article-title: Metal oxide composites in conductometric gas sensors: achievements and challenges publication-title: Sens. Actuators B: Chem. – volume: 187 start-page: 191 year: 2013 end-page: 197 ident: bib0010 article-title: Effects of defects in Ga-doped ZnO nanorods formed by a hydrothermal method on CO sensing properties publication-title: Sens. Actuators B: Chem. – volume: 5 start-page: 2792 year: 2009 end-page: 2796 ident: bib0080 article-title: Lithographically defined porous carbon electrodes publication-title: Small – volume: 168 start-page: 415 year: 2016 end-page: 418 ident: bib0030 article-title: ZnO-based gasmicrosensors sensitive to CO at room temperature byphotoactivation publication-title: Procedia Eng. – volume: 4 start-page: 4324 year: 2010 end-page: 4330 ident: bib0050 article-title: Self-assembled graphene hydrogel via a one-step hydrothermal process publication-title: ACS Nano – volume: 173 start-page: 1 year: 2012 ident: 10.1016/j.apsusc.2017.11.047_bib0035 article-title: Recent developments on graphene and graphene oxide based solid state gas sensors publication-title: Sens. Actuators B doi: 10.1016/j.snb.2012.07.092 – volume: 134 start-page: 19532 issue: 48 year: 2012 ident: 10.1016/j.apsusc.2017.11.047_bib0090 article-title: Three-dimensional graphene-based macro-and mesoporous frameworks for high-performance electrochemical capacitive energy storage publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308676h – volume: 133 start-page: 352 year: 2008 ident: 10.1016/j.apsusc.2017.11.047_bib0115 article-title: Enhanced CO sensitivity and selectivity of gold nanoparticles-doped SnO2 sensor in presence of propane and methane publication-title: Sens. Actuators B doi: 10.1016/j.snb.2008.02.034 – volume: 149 start-page: 2116 year: 2010 ident: 10.1016/j.apsusc.2017.11.047_bib0120 article-title: Highly sensitive CO sensor based on cross-linked TiO2 hollow hemispheres publication-title: Sens. Actuators B – volume: 187 start-page: 50 year: 2013 ident: 10.1016/j.apsusc.2017.11.047_bib0140 article-title: Gas sensing properties of novel CuO nanowire devices publication-title: Sens. Actuators B doi: 10.1016/j.snb.2012.09.034 – volume: 4 start-page: 4324 issue: 7 year: 2010 ident: 10.1016/j.apsusc.2017.11.047_bib0050 article-title: Self-assembled graphene hydrogel via a one-step hydrothermal process publication-title: ACS Nano doi: 10.1021/nn101187z – volume: 23 start-page: 5679 issue: 47 year: 2011 ident: 10.1016/j.apsusc.2017.11.047_bib0060 article-title: Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel publication-title: Adv. Mater. doi: 10.1002/adma.201102838 – volume: 234 start-page: 155 year: 2016 ident: 10.1016/j.apsusc.2017.11.047_bib0145 article-title: Hierarchical 3D nanostructure of GdInO3 and reduced-graphene-decorated GdInO3 nanocomposite for CO sensing applications publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2016.04.043 – volume: 243 start-page: 566 year: 2017 ident: 10.1016/j.apsusc.2017.11.047_bib0005 article-title: Gas sensors based on membrane diffusion for environmental monitoring publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2016.12.026 – volume: 6 start-page: 4020 issue: 5 year: 2012 ident: 10.1016/j.apsusc.2017.11.047_bib0070 article-title: 3D macroporous graphene frameworks for supercapacitors with high energy and power densities publication-title: ACS Nano doi: 10.1021/nn3003345 – volume: 172 start-page: 897 year: 2012 ident: 10.1016/j.apsusc.2017.11.047_bib0135 article-title: Development of microstructure CO sensor based on hierarchically porous ZnO nanosheet thin films publication-title: Sens. Actuators B doi: 10.1016/j.snb.2012.05.090 – volume: 39 start-page: 620 year: 2014 ident: 10.1016/j.apsusc.2017.11.047_bib0095 article-title: Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.08.107 – volume: 181 start-page: 529 year: 2013 ident: 10.1016/j.apsusc.2017.11.047_bib0015 article-title: On-chip growth of wafer-scale planar-type ZnO nanorod sensors for effective detection of CO gas publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2013.02.047 – volume: 5 start-page: 2792 issue: 24 year: 2009 ident: 10.1016/j.apsusc.2017.11.047_bib0080 article-title: Lithographically defined porous carbon electrodes publication-title: Small doi: 10.1002/smll.200901084 – volume: 132 start-page: 224 year: 2008 ident: 10.1016/j.apsusc.2017.11.047_bib0110 article-title: Resistive CO gas sensors based on In2O3 and InSnOx nanopowders synthesized via starch-aided sol-gel process for automotive applications publication-title: Sens. Actuators B doi: 10.1016/j.snb.2008.01.030 – volume: 187 start-page: 191 year: 2013 ident: 10.1016/j.apsusc.2017.11.047_bib0010 article-title: Effects of defects in Ga-doped ZnO nanorods formed by a hydrothermal method on CO sensing properties publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2012.10.080 – volume: 114 start-page: 6610 year: 2010 ident: 10.1016/j.apsusc.2017.11.047_bib0125 article-title: Graphene films and ribbons for sensing of O2, and 100 ppm of CO and NO2 in practical conditions publication-title: J. Phys. Chem. C doi: 10.1021/jp100343d – volume: 244 start-page: 182 year: 2017 ident: 10.1016/j.apsusc.2017.11.047_bib0025 article-title: Metal oxide composites in conductometric gas sensors: achievements and challenges publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2016.12.117 – volume: 437 start-page: 181 year: 2015 ident: 10.1016/j.apsusc.2017.11.047_bib0100 article-title: Fabrication of 3D structured ZnO nanorod/reduced graphene oxide hydrogels and their use for photo-enhanced organic dye removal publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2014.08.071 – volume: 2 start-page: 242 year: 2011 ident: 10.1016/j.apsusc.2017.11.047_bib0045 article-title: Graphene-based nanoassemblies for energy conversion publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz101639v – volume: 47 start-page: 9672 issue: 34 year: 2011 ident: 10.1016/j.apsusc.2017.11.047_bib0065 article-title: Synthesis of the chemically converted graphene xerogel with superior electrical conductivity publication-title: Chem. Commun. doi: 10.1039/c1cc13329b – volume: 1 start-page: 3446 issue: 10 year: 2013 ident: 10.1016/j.apsusc.2017.11.047_bib0085 article-title: Covalent assembly of 3D graphene/polypyrrole foams for oil spill cleanup publication-title: J. Mater. Chem. A doi: 10.1039/c3ta00166k – start-page: 155 year: 2016 ident: 10.1016/j.apsusc.2017.11.047_bib0105 article-title: 8 – Wireless gas sensors for industrial life safety – volume: 6 start-page: 1922 issue: 4 year: 2014 ident: 10.1016/j.apsusc.2017.11.047_bib0075 article-title: Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures publication-title: Nanoscale doi: 10.1039/C3NR04555B – volume: 1 start-page: 520 year: 2009 ident: 10.1016/j.apsusc.2017.11.047_bib0040 article-title: Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz900265j – volume: 13 start-page: 10 year: 2017 ident: 10.1016/j.apsusc.2017.11.047_bib0020 article-title: Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications publication-title: Trends Environ. Anal. Chem. doi: 10.1016/j.teac.2017.02.001 – volume: 3 start-page: 3132 issue: 8 year: 2011 ident: 10.1016/j.apsusc.2017.11.047_bib0055 article-title: In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures publication-title: Nanoscale doi: 10.1039/c1nr10355e – volume: 50 start-page: 385 year: 2012 ident: 10.1016/j.apsusc.2017.11.047_bib0130 article-title: ZnO decorated luminescent graphene as a potential gas sensor at room temperature publication-title: Carbon doi: 10.1016/j.carbon.2011.08.050 – volume: 168 start-page: 415 year: 2016 ident: 10.1016/j.apsusc.2017.11.047_bib0030 article-title: ZnO-based gasmicrosensors sensitive to CO at room temperature byphotoactivation publication-title: Procedia Eng. doi: 10.1016/j.proeng.2016.11.198 |
| SSID | ssj0012873 |
| Score | 2.5521295 |
| Snippet | •Novel CO gas sensor with ZnO/3D-RGO integrated on micro-heater.•Large amount and simple synthesis of ZnO/3D-RGO by hydrothermal method.•Enhance... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1048 |
| SubjectTerms | 3D-RGO CO gas sensor Fast response/recovery MEMS technology ZnO nanoparticles |
| Title | Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide |
| URI | https://dx.doi.org/10.1016/j.apsusc.2017.11.047 |
| Volume | 434 |
| WOSCitedRecordID | wos000419116600121&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5584 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012873 issn: 0169-4332 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF5M0kN7KH3SpA_20JtQsLQrrXQMTYJbShqoC6YXsbtaxQ5hbSQrOH-gP62_q7Oale0moS_oZbHlfeH5NJoZzXxLyFuRVLwSqQpZZVTIZZqECvqGaapYnCupJFLmfxSnp9lkkp8NBt_7WpirS2Fttlrli_8qargGwnals38h7vWkcAE-g9ChBbFD-0eCP5HNMqgx9bULCGhZK5AxbGC-mpUmOJdN0ID36o7ZabtQgQwca7GLc8zrjrEVc8Pd4K_2U2ClBdfaZ9AFpXNYpTNUYVJ2BEuVrUsi6KivQXMG3SrbRm9v6TZtXUlHaYv6ZKP8Okiet9fGBiM52-SqzOwU8-7nwVGrNwj0acR-yHgq7TqofTa98euovd6ObERdqR_WdmK47VbJDUZA09yVeaEKN6i1M8HCJMGz5nq1zn2QFBUzeJ3Z1kMerEp-5wMEYxkXB3LRuHPmYFviwLG8Ii3oDWruz24zbi-RgCZ37LO7sUhy0K67h--PJx_W77PAL2XIMo-b74s4u0zD22vdbSRtGT7jR-Sh91joIcr_MRkY-4Q82OKxfEq-OczRHnN0XlHEHO0xRwFz1GOOdpijkiLmKGKOesy5wYA5-hPm6BpzFCZlR9RjjvaYo90qz8iXk-Pxu1HoD_gINeNsGYq4VBU35TBTOnLv45O4SsBljnOdpkYKE0VymCqwrjSPVAbfNctLHktZGmfasudkx86teUGoKl2kAPqzTHPDS6lixYexVqWOq5hVe4T1_2ihPfu9O4TlsujTHC8KlEPh5ACOcQFy2CPhetQC2V9-01_0wir8vYSWaQH4-uXI_X8e-ZLc39w8r8jOsm7Na3JPXy1nTf3GA_EH2zLIJw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+response+of+carbon+monoxide+gas+sensors+using+a+highly+porous+network+of+ZnO+nanoparticles+decorated+on+3D+reduced+graphene+oxide&rft.jtitle=Applied+surface+science&rft.au=Ha%2C+Nguyen+Hai&rft.au=Thinh%2C+Dao+Duc&rft.au=Huong%2C+Nguyen+Thanh&rft.au=Phuong%2C+Nguyen+Huy&rft.date=2018-03-15&rft.pub=Elsevier+B.V&rft.issn=0169-4332&rft.eissn=1873-5584&rft.volume=434&rft.spage=1048&rft.epage=1054&rft_id=info:doi/10.1016%2Fj.apsusc.2017.11.047&rft.externalDocID=S0169433217332919 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon |