Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud

The meshless algorithms, especially the smoothed particle hydrodynamics (SPH), are attempted to solve the hypervelocity impact (HVI) problem. However, several limitations of SPH exist in the current studies, such as the tensile instability, the material boundary uncertainty, and the difficulty in de...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta astronautica Ročník 175; s. 99 - 117
Hlavní autoři: He, Qi-Guang, Chen, Xiaowei, Chen, Jin-Fu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elmsford Elsevier Ltd 01.10.2020
Elsevier BV
Témata:
ISSN:0094-5765, 1879-2030
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The meshless algorithms, especially the smoothed particle hydrodynamics (SPH), are attempted to solve the hypervelocity impact (HVI) problem. However, several limitations of SPH exist in the current studies, such as the tensile instability, the material boundary uncertainty, and the difficulty in defining boundaries. Furthermore, it cannot accurately provide the parameters of the generated fragments. In this paper, we formulate the finite element-smoothed particle hydrodynamics (FEM-SPH) adaptive method to solve the HVI problem by LS-DYNA. It combines the advantages of FEM and SPH by transforming the failed elements into the SPH particles during the simulation. The debris cloud shape is represented by the distribution of the particles in SPH and the exact fragment parameters in FEM, including geometry, temperature, energy, and distribution. By analyzing and optimizing the implementation method, the contact and coupling algorithm, and calculation parameters, we reproduce the experimental results by Piekutowski [39,40] in the numerical simulation. Based on the proposed three typical shapes of the fragments, a systematic statistical analysis is proposed to classify the fragments and analyze their parameters, including speed, momentum, and energy. Risky fragments, i.e., the fragments with large size and high speed, are selected from the overall fragments. We further study the distribution of risky fragments with the details of the evolution in the space and time, which paves the way for further systematic research on the subsequent impact of the debris cloud. Our work shows that the method has a significant and wide application to the debris cloud simulation. The current algorithm can be applied to simulate the Whipple shields with complex structures and advanced material, e.g., sandwich materials, composite materials, foam materials, and gradient materials, or analyze the implosion and fragmentation warhead. •FEM-SPH adaptive method to the HVI problems is established.•A set of suitable parameters are provided to simulate the HVI problems.•Fragment identification is given directly and sets a basis for statistical analysis.•A statistical method in velocity space is used to characterize risky fragments.
AbstractList The meshless algorithms, especially the smoothed particle hydrodynamics (SPH), are attempted to solve the hypervelocity impact (HVI) problem. However, several limitations of SPH exist in the current studies, such as the tensile instability, the material boundary uncertainty, and the difficulty in defining boundaries. Furthermore, it cannot accurately provide the parameters of the generated fragments. In this paper, we formulate the finite element-smoothed particle hydrodynamics (FEM-SPH) adaptive method to solve the HVI problem by LS-DYNA. It combines the advantages of FEM and SPH by transforming the failed elements into the SPH particles during the simulation. The debris cloud shape is represented by the distribution of the particles in SPH and the exact fragment parameters in FEM, including geometry, temperature, energy, and distribution. By analyzing and optimizing the implementation method, the contact and coupling algorithm, and calculation parameters, we reproduce the experimental results by Piekutowski [39,40] in the numerical simulation. Based on the proposed three typical shapes of the fragments, a systematic statistical analysis is proposed to classify the fragments and analyze their parameters, including speed, momentum, and energy. Risky fragments, i.e., the fragments with large size and high speed, are selected from the overall fragments. We further study the distribution of risky fragments with the details of the evolution in the space and time, which paves the way for further systematic research on the subsequent impact of the debris cloud. Our work shows that the method has a significant and wide application to the debris cloud simulation. The current algorithm can be applied to simulate the Whipple shields with complex structures and advanced material, e.g., sandwich materials, composite materials, foam materials, and gradient materials, or analyze the implosion and fragmentation warhead.
The meshless algorithms, especially the smoothed particle hydrodynamics (SPH), are attempted to solve the hypervelocity impact (HVI) problem. However, several limitations of SPH exist in the current studies, such as the tensile instability, the material boundary uncertainty, and the difficulty in defining boundaries. Furthermore, it cannot accurately provide the parameters of the generated fragments. In this paper, we formulate the finite element-smoothed particle hydrodynamics (FEM-SPH) adaptive method to solve the HVI problem by LS-DYNA. It combines the advantages of FEM and SPH by transforming the failed elements into the SPH particles during the simulation. The debris cloud shape is represented by the distribution of the particles in SPH and the exact fragment parameters in FEM, including geometry, temperature, energy, and distribution. By analyzing and optimizing the implementation method, the contact and coupling algorithm, and calculation parameters, we reproduce the experimental results by Piekutowski [39,40] in the numerical simulation. Based on the proposed three typical shapes of the fragments, a systematic statistical analysis is proposed to classify the fragments and analyze their parameters, including speed, momentum, and energy. Risky fragments, i.e., the fragments with large size and high speed, are selected from the overall fragments. We further study the distribution of risky fragments with the details of the evolution in the space and time, which paves the way for further systematic research on the subsequent impact of the debris cloud. Our work shows that the method has a significant and wide application to the debris cloud simulation. The current algorithm can be applied to simulate the Whipple shields with complex structures and advanced material, e.g., sandwich materials, composite materials, foam materials, and gradient materials, or analyze the implosion and fragmentation warhead. •FEM-SPH adaptive method to the HVI problems is established.•A set of suitable parameters are provided to simulate the HVI problems.•Fragment identification is given directly and sets a basis for statistical analysis.•A statistical method in velocity space is used to characterize risky fragments.
Author He, Qi-Guang
Chen, Xiaowei
Chen, Jin-Fu
Author_xml – sequence: 1
  givenname: Qi-Guang
  surname: He
  fullname: He, Qi-Guang
  organization: State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
– sequence: 2
  givenname: Xiaowei
  surname: Chen
  fullname: Chen, Xiaowei
  email: chenxiaoweintu@bit.edu.cn
  organization: State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
– sequence: 3
  givenname: Jin-Fu
  surname: Chen
  fullname: Chen, Jin-Fu
  organization: Beijing Computational Science Research Center, Beijing, 100193, China
BookMark eNqNkMFqGzEQhkVxoI6TZ4ig53VG2pXWe-jBhDopBHJpDzmJWWkcy-xKriQH_PZd49JDLw38MJf5_hm-azYLMRBjdwKWAoS-3y_RFsRcUlxKkLAENUV_YnOxartKQg0zNgfomkq1Wn1m1znvAaCVq27OXjc--EKcBhoplCqPMZYdOX7AVLwdiO9OLkV3Cjh6mzk6PBT_TnyksouO-8CzH48DFh_euKM--cztEI_uhl1tcch0-2cu2M_Ntx8PT9Xzy-P3h_VzZeumLpVGpVQvtm2jGtt0IKCXCFa6rrUN6b62W0SltRDSCWhXNYm-r7VAKy3WUtUL9uXSe0jx15FyMft4TGE6aWSjQIlmBeetr5ctm2LOibbG-jI9HUNJ6AcjwJxtmr35a9OcbRpQU_TEt__wh-RHTKcPkOsLSZOEd0_JZOspWHI-kS3GRf_fjt_IbZgl
CitedBy_id crossref_primary_10_1016_j_ijimpeng_2021_104087
crossref_primary_10_1007_s10409_024_24395_x
crossref_primary_10_1016_j_ijnonlinmec_2025_105123
crossref_primary_10_1016_j_compstruct_2024_118103
crossref_primary_10_1016_j_engfailanal_2023_107207
crossref_primary_10_1007_s10443_024_10303_3
crossref_primary_10_1016_j_actaastro_2022_10_041
crossref_primary_10_1016_j_dt_2022_09_010
crossref_primary_10_1063_5_0257226
crossref_primary_10_1002_dug2_12148
crossref_primary_10_1007_s00773_021_00799_w
crossref_primary_10_1016_j_actaastro_2022_11_048
crossref_primary_10_1016_j_actaastro_2023_01_008
crossref_primary_10_1016_j_ijimpeng_2025_105298
crossref_primary_10_1016_j_tws_2024_111874
crossref_primary_10_1016_j_asr_2025_03_047
crossref_primary_10_1016_j_ijimpeng_2025_105413
crossref_primary_10_1016_j_ijimpeng_2024_104926
crossref_primary_10_1016_j_ijimpeng_2023_104803
crossref_primary_10_1016_j_dt_2025_09_016
crossref_primary_10_1016_j_ijimpeng_2024_104922
crossref_primary_10_1016_j_ijimpeng_2023_104733
crossref_primary_10_1016_j_oceaneng_2021_110382
crossref_primary_10_1016_j_ijimpeng_2024_105126
crossref_primary_10_1016_j_ijmecsci_2024_109205
crossref_primary_10_1016_j_ijimpeng_2024_105124
crossref_primary_10_1016_j_cma_2025_118167
crossref_primary_10_1016_j_asr_2024_03_071
crossref_primary_10_3390_met13061074
crossref_primary_10_1016_j_mechmat_2025_105454
crossref_primary_10_3390_w16223249
crossref_primary_10_1016_j_ijimpeng_2025_105340
crossref_primary_10_3390_ma18122742
crossref_primary_10_3390_aerospace10050479
crossref_primary_10_1016_j_asr_2025_05_041
crossref_primary_10_3390_aerospace12040333
crossref_primary_10_1016_j_tws_2023_111440
crossref_primary_10_1016_j_ijmecsci_2025_110004
crossref_primary_10_1016_j_ijimpeng_2025_105319
crossref_primary_10_1061_JBENF2_BEENG_7175
crossref_primary_10_1016_j_tws_2025_113192
crossref_primary_10_1016_j_actaastro_2024_08_051
crossref_primary_10_1016_j_mtcomm_2025_112468
crossref_primary_10_1016_j_dt_2024_01_005
crossref_primary_10_1016_j_engstruct_2024_118009
crossref_primary_10_3390_app15158318
crossref_primary_10_3390_polym17060762
crossref_primary_10_1007_s00193_024_01195_0
crossref_primary_10_1016_j_dt_2020_11_005
crossref_primary_10_1016_j_actaastro_2023_07_040
crossref_primary_10_1016_j_tws_2024_112861
crossref_primary_10_1016_j_actaastro_2022_11_026
crossref_primary_10_1016_j_actaastro_2024_01_029
crossref_primary_10_1016_j_finel_2023_103948
crossref_primary_10_3390_aerospace9010012
crossref_primary_10_1088_1742_6596_3080_1_012179
crossref_primary_10_1134_S0025654424604427
crossref_primary_10_1016_j_actaastro_2024_04_033
crossref_primary_10_1016_j_dt_2025_03_020
crossref_primary_10_1016_j_tws_2023_111052
crossref_primary_10_3390_app12189268
crossref_primary_10_1016_j_ijmecsci_2025_110475
crossref_primary_10_3390_aerospace12060534
crossref_primary_10_1007_s12567_025_00662_3
crossref_primary_10_1007_s12046_024_02467_2
crossref_primary_10_1016_j_jmbbm_2024_106412
crossref_primary_10_1016_j_cma_2025_118263
crossref_primary_10_1016_j_dt_2022_08_007
crossref_primary_10_1016_j_actaastro_2024_07_019
crossref_primary_10_1007_s42405_024_00838_x
crossref_primary_10_1016_j_ceramint_2023_02_139
crossref_primary_10_1080_15376494_2021_1931991
crossref_primary_10_3390_nano11112953
crossref_primary_10_3390_aerospace12040354
crossref_primary_10_1016_j_actaastro_2023_11_031
crossref_primary_10_1016_j_msea_2025_148983
Cites_doi 10.1016/j.actaastro.2015.12.053
10.1016/j.actaastro.2014.08.014
10.1016/j.actaastro.2014.09.014
10.1016/S1000-9361(11)60086-1
10.2514/1.A33596
10.1016/j.ijimpeng.2006.09.076
10.1016/j.dt.2019.01.006
10.1016/0734-743X(93)90053-A
10.1016/j.actaastro.2018.11.036
10.1016/j.actaastro.2020.03.010
10.1016/j.actaastro.2009.04.003
10.1016/j.actaastro.2019.04.046
10.1016/j.ijimpeng.2008.07.039
10.1016/j.ijimpeng.2008.07.015
10.1016/j.proeng.2013.05.031
10.1016/0029-5493(94)90143-0
10.1016/S1000-9361(11)60003-4
10.1016/j.actaastro.2017.08.030
10.1016/j.actaastro.2013.06.014
10.1007/BF00364078
10.1016/S0734-743X(03)00012-5
10.1016/0010-4655(94)00176-3
10.1016/S0734-743X(01)00079-3
10.1016/j.compfluid.2014.01.002
10.1016/j.proeng.2013.05.020
10.1002/nme.1579
10.1016/j.ijimpeng.2012.07.003
10.1016/j.ijimpeng.2011.01.002
10.1016/j.actaastro.2017.10.026
10.1016/j.ijimpeng.2012.07.004
10.1016/j.proeng.2013.05.036
10.1007/s11831-010-9040-7
10.1016/j.ijimpeng.2003.10.005
10.1016/j.actaastro.2018.11.037
10.1016/j.actaastro.2016.11.011
ContentType Journal Article
Copyright 2020 IAA
Copyright Elsevier BV Oct 2020
Copyright_xml – notice: 2020 IAA
– notice: Copyright Elsevier BV Oct 2020
DBID AAYXX
CITATION
7TB
7TG
8FD
FR3
H8D
KL.
L7M
DOI 10.1016/j.actaastro.2020.05.056
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2030
EndPage 117
ExternalDocumentID 10_1016_j_actaastro_2020_05_056
S0094576520303398
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BELOY
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
T9H
VH1
VOH
WUQ
ZMT
~02
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
7TB
7TG
8FD
AGCQF
FR3
H8D
KL.
L7M
ID FETCH-LOGICAL-c343t-6a555b1f7454c49010b2a0c2d97c4e6b3cfaa566112d10783e1bb361ac2ca3253
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564829400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-5765
IngestDate Wed Aug 13 06:09:55 EDT 2025
Sat Nov 29 07:27:02 EST 2025
Tue Nov 18 22:28:11 EST 2025
Sun Apr 06 06:53:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords FEM-SPH adaptive Method
Numerical simulation
Distribution of risky fragment
Debris cloud
Contact and coupling algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-6a555b1f7454c49010b2a0c2d97c4e6b3cfaa566112d10783e1bb361ac2ca3253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2450514805
PQPubID 2045287
PageCount 19
ParticipantIDs proquest_journals_2450514805
crossref_citationtrail_10_1016_j_actaastro_2020_05_056
crossref_primary_10_1016_j_actaastro_2020_05_056
elsevier_sciencedirect_doi_10_1016_j_actaastro_2020_05_056
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace Elmsford
PublicationPlace_xml – name: Elmsford
PublicationTitle Acta astronautica
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Smirnov, Kiselev, Zakharov (bib33) 2019; 163
Adushkin, Veniaminov, Kozlov, Silnikov (bib2) 2016; 126
Piekutowski (bib40) 2003; 29
Silnikov, Guk, Nechunaev, Smirnov (bib14) 2018; 150
Hao, Long, Zhang, Chen, Gong (bib42) 2019; 33
Zhang, Jia, Huang (bib36) 2011; 24
Baluch, Park, Kim (bib12) 2014; 105
Johnson, Beissel, Gerlach (bib30) 2013; 58
Li, Perotti, Adams, Mihaly, Rosakis, Stalzer, Ortiz (bib9) 2013; 58
Zhang, Sze, Ma (bib16) 2006; 66
Swegle, Attaway (bib21) 1995; 17
Wen, Chen, Di (bib45) 2019; 15
Zhang, Jia, Huang (bib11) 2014; 93
Buslov, Komarov, Selivanov, Titov, Tovarnova, Feldstein (bib5) 2019; 163
Horner (bib6) 2008; 35
Chen, Hillman, Chi (bib8) 2017; 143
Chi (bib43) 2010
Silnikov, Guk, Mikhaylin, Nechunaev (bib15) 2018; 150
Silnikov, Guk, Nechunaev, Smirnov (bib13) 2020; 150
Johnson (bib28) 1994; 150
Wen, Chen (bib46) 2019
Jaramillo-Botero, An, Theofanis, Goddard (bib17) 2013; 58
Smirnov, Kondratyev (bib3) 2009; 65
Cherniaev, Telichev (bib23) 2016; 54
Fahrenthold, Horban (bib25) 2001; 26
Smirnov, Kiselev, Smirnova, Nikitin (bib32) 2015; 109
Wicklein, Ryan, White, Clegg (bib22) 2008; 35
Liu, Liu, Zhang (bib18) 2016; 12
Yang, Liu, Peng (bib24) 2014; 92
Di, Chen (bib31) 2018; 38
Liu, Liu (bib19) 2010; 17
Johnson, Beissel, Gerlach (bib10) 2013; 58
AUTODYN User Manual, Version 14.5[R]. Century Dynamics, Inc.
Liang, Li, Chen, Huang, Liu (bib37) 2013; 56
Poniaev, Kurakin, Sedov, Bobashev, Zhukov, Nechunaev (bib27) 2017; 135
Gong, Xu, Mu, Cao (bib1) 2014; 31
Watson, Gulde, Kortmann, Higashide, Schaefer, Hiermaier (bib4) 2019; 155
Hallquist (bib44) 2006
Johnson, Beissel, Gerlach (bib29) 2011; 38
Huang, Ma, Ren, Li, Zhou, Liu (bib38) 2013; 56
Piekutowski (bib39) 1993; 14
Smirnov, Kiselev, Zakharov (bib34) 2020; 171
Johnson, Stryk (bib26) 2003; 28
Schonberg, Williamsen (bib47) 2006; 33
Addessio, Baumgardner, Dukowicz, Johnson, Kashiwa, Rauenzahn, Zemach (bib7) 1992
Benz, Asphaug (bib35) 1995; 87
Zhang, Jia, Huang (bib41) 2011; 24
Gong (10.1016/j.actaastro.2020.05.056_bib1) 2014; 31
Silnikov (10.1016/j.actaastro.2020.05.056_bib15) 2018; 150
Liu (10.1016/j.actaastro.2020.05.056_bib18) 2016; 12
Johnson (10.1016/j.actaastro.2020.05.056_bib28) 1994; 150
Zhang (10.1016/j.actaastro.2020.05.056_bib36) 2011; 24
Schonberg (10.1016/j.actaastro.2020.05.056_bib47) 2006; 33
Horner (10.1016/j.actaastro.2020.05.056_bib6) 2008; 35
Liang (10.1016/j.actaastro.2020.05.056_bib37) 2013; 56
Zhang (10.1016/j.actaastro.2020.05.056_bib11) 2014; 93
Hallquist (10.1016/j.actaastro.2020.05.056_bib44) 2006
10.1016/j.actaastro.2020.05.056_bib20
Johnson (10.1016/j.actaastro.2020.05.056_bib30) 2013; 58
Fahrenthold (10.1016/j.actaastro.2020.05.056_bib25) 2001; 26
Wicklein (10.1016/j.actaastro.2020.05.056_bib22) 2008; 35
Smirnov (10.1016/j.actaastro.2020.05.056_bib32) 2015; 109
Silnikov (10.1016/j.actaastro.2020.05.056_bib13) 2020; 150
Swegle (10.1016/j.actaastro.2020.05.056_bib21) 1995; 17
Smirnov (10.1016/j.actaastro.2020.05.056_bib34) 2020; 171
Zhang (10.1016/j.actaastro.2020.05.056_bib16) 2006; 66
Chi (10.1016/j.actaastro.2020.05.056_bib43) 2010
Wen (10.1016/j.actaastro.2020.05.056_bib46) 2019
Li (10.1016/j.actaastro.2020.05.056_bib9) 2013; 58
Yang (10.1016/j.actaastro.2020.05.056_bib24) 2014; 92
Wen (10.1016/j.actaastro.2020.05.056_bib45) 2019; 15
Smirnov (10.1016/j.actaastro.2020.05.056_bib3) 2009; 65
Silnikov (10.1016/j.actaastro.2020.05.056_bib14) 2018; 150
Adushkin (10.1016/j.actaastro.2020.05.056_bib2) 2016; 126
Zhang (10.1016/j.actaastro.2020.05.056_bib41) 2011; 24
Cherniaev (10.1016/j.actaastro.2020.05.056_bib23) 2016; 54
Piekutowski (10.1016/j.actaastro.2020.05.056_bib39) 1993; 14
Benz (10.1016/j.actaastro.2020.05.056_bib35) 1995; 87
Poniaev (10.1016/j.actaastro.2020.05.056_bib27) 2017; 135
Watson (10.1016/j.actaastro.2020.05.056_bib4) 2019; 155
Piekutowski (10.1016/j.actaastro.2020.05.056_bib40) 2003; 29
Buslov (10.1016/j.actaastro.2020.05.056_bib5) 2019; 163
Huang (10.1016/j.actaastro.2020.05.056_bib38) 2013; 56
Di (10.1016/j.actaastro.2020.05.056_bib31) 2018; 38
Liu (10.1016/j.actaastro.2020.05.056_bib19) 2010; 17
Johnson (10.1016/j.actaastro.2020.05.056_bib10) 2013; 58
Baluch (10.1016/j.actaastro.2020.05.056_bib12) 2014; 105
Chen (10.1016/j.actaastro.2020.05.056_bib8) 2017; 143
Jaramillo-Botero (10.1016/j.actaastro.2020.05.056_bib17) 2013; 58
Addessio (10.1016/j.actaastro.2020.05.056_bib7) 1992
Johnson (10.1016/j.actaastro.2020.05.056_bib26) 2003; 28
Hao (10.1016/j.actaastro.2020.05.056_bib42) 2019; 33
Johnson (10.1016/j.actaastro.2020.05.056_bib29) 2011; 38
Smirnov (10.1016/j.actaastro.2020.05.056_bib33) 2019; 163
References_xml – volume: 163
  start-page: 54
  year: 2019
  end-page: 61
  ident: bib5
  article-title: Protection of inflatable modules of orbital stations against impacts of particles of space debris[J]
  publication-title: Acta Astronaut.
– volume: 126
  start-page: 510
  year: 2016
  end-page: 516
  ident: bib2
  article-title: Orbital missions safety – a survey of kinetic hazards[J]
  publication-title: Acta Astronaut.
– year: 2006
  ident: bib44
  article-title: LS-DYNA Theory Manual
– volume: 66
  start-page: 689
  year: 2006
  end-page: 706
  ident: bib16
  article-title: An explicit material point finite element method for hyper-velocity impact[J]
  publication-title: Int. J. Numer. Methods Eng.
– year: 2019
  ident: bib46
  article-title: Analysis of the Stress Wave and Rarefaction Wave Produced by Hypervelocity Impact of Sphere onto Thin Plate
– volume: 33
  start-page: 763
  year: 2006
  end-page: 770
  ident: bib47
  article-title: RCS-based ballistic limit curves for non-spherical projectiles impacting dual-wall spacecraft systems
  publication-title: Int. J. Impact Eng.
– volume: 65
  start-page: 1796
  year: 2009
  end-page: 1803
  ident: bib3
  article-title: Evaluation of craters formation in hypervelocity impact of debris particles on solid structures [J]
  publication-title: Acta Astronaut.
– volume: 54
  start-page: 75
  year: 2016
  end-page: 89
  ident: bib23
  article-title: Weight-efficiency of conventional shielding systems in protecting unmanned spacecraft from orbital debris[J]
  publication-title: J. Spacecraft Rockets
– volume: 155
  start-page: 111
  year: 2019
  end-page: 117
  ident: bib4
  article-title: Optical fragment tracking in hypervelocity impact experiments[J]
  publication-title: Acta Astronaut.
– volume: 12
  start-page: 241
  year: 2016
  end-page: 254
  ident: bib18
  article-title: Simulation of hyper-velocity impact on double honeycomb sandwich panel and its staggered improvement with internal-structure model[J]
  publication-title: Int. J. Mech.
– volume: 17
  start-page: 151
  year: 1995
  end-page: 168
  ident: bib21
  article-title: On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations[J]
  publication-title: Comput. Mech.
– volume: 31
  start-page: 129
  year: 2014
  end-page: 135
  ident: bib1
  article-title: The space debris environment and the active debris removal techniques
  publication-title: Spacecraft Environ. Eng.
– volume: 58
  start-page: 269
  year: 2013
  end-page: 278
  ident: bib10
  article-title: A combined particle-element method for high-velocity impact computations[J]
  publication-title: Procedia Eng.
– volume: 28
  start-page: 947
  year: 2003
  end-page: 966
  ident: bib26
  article-title: Conversion of 3D distorted elements into meshless particles during dynamic deformation[J]
  publication-title: Int. J. Impact Eng.
– volume: 33
  start-page: 79
  year: 2019
  end-page: 85
  ident: bib42
  article-title: Numerical simulation analysis of back fragmentation of sphere by hypervelocity impact
  publication-title: Chin. J. High Press. Phys.
– volume: 38
  start-page: 948
  year: 2018
  end-page: 956
  ident: bib31
  article-title: Material failure models in SPH simulation of debris cloud[J]
  publication-title: Explos. Shock Waves
– volume: 58
  start-page: 269
  year: 2013
  end-page: 278
  ident: bib30
  article-title: A combined particle-element method for high-velocity impact computations[J]
  publication-title: Procedia Eng.
– volume: 17
  start-page: 25
  year: 2010
  end-page: 76
  ident: bib19
  article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments[J]
  publication-title: Arch. Comput. Methods Eng.
– volume: 92
  start-page: 199
  year: 2014
  end-page: 208
  ident: bib24
  article-title: Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability[J]
  publication-title: Comput. Fluid
– volume: 150
  start-page: 265
  year: 1994
  end-page: 274
  ident: bib28
  article-title: Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations[J]
  publication-title: Nucl. Eng. Des.
– volume: 56
  start-page: 32
  year: 2013
  end-page: 39
  ident: bib38
  article-title: A new engineering model of debris cloud produced by hypervelocity impact[J]
  publication-title: Int. J. Impact Eng.
– volume: 14
  start-page: 573
  year: 1993
  end-page: 586
  ident: bib39
  article-title: Characteristics of debris clouds produced by hypervelocity impact of aluminum spheres with thin aluminum plates
  publication-title: Int. J. Impact Eng.
– year: 2010
  ident: bib43
  article-title: Research and Modeling of Debris Cloud Produced by Hypervelocity Impact of Projectile with Thin plate[D]
– volume: 26
  start-page: 169
  year: 2001
  end-page: 178
  ident: bib25
  article-title: An improved hybrid particle-element method for hypervelocity impact simulation[J]
  publication-title: Int. J. Impact Eng.
– volume: 35
  start-page: 1861
  year: 2008
  end-page: 1869
  ident: bib22
  article-title: Hypervelocity impact on CFRP: testing, material modelling, and numerical simulation[J]
  publication-title: Int. J. Impact Eng.
– volume: 24
  start-page: 734
  year: 2011
  end-page: 740
  ident: bib41
  article-title: Numerical Investigation of aluminum foam shield based on fractal theory and node-separation FEM
  publication-title: Chin. J. Aeronaut.
– volume: 105
  start-page: 128
  year: 2014
  end-page: 135
  ident: bib12
  article-title: High velocity impact characterization of Al alloys for oblique impacts[J]
  publication-title: Acta Astronaut.
– volume: 56
  start-page: 27
  year: 2013
  end-page: 31
  ident: bib37
  article-title: Research on the technique of identifying debris and obtaining characteristic parameters of large-scale 3D point set[J]
  publication-title: Int. J. Impact Eng.
– volume: 35
  start-page: 1602
  year: 2008
  end-page: 1605
  ident: bib6
  article-title: A comparison of ballistic limit with adaptive-mesh Eulerian hydrocode predictions of one-and two-plate aluminum shielding protection against millimeter-sized Fe–Ni space debris[J]
  publication-title: Int. J. Impact Eng.
– volume: 143
  year: 2017
  ident: bib8
  article-title: Meshfree methods: progress made after 20 years[J]
  publication-title: J. Eng. Mech.
– year: 1992
  ident: bib7
  article-title: CAVEAT: A Computer Code for Fluid Dynamics Problems with Large Distortion and Internal Slip. Revision 1[R]
– volume: 150
  start-page: 73
  year: 2018
  end-page: 80
  ident: bib15
  article-title: Efficiency of needle structure at hypervelocity impact [J]
  publication-title: Acta Astronaut.
– volume: 135
  start-page: 26
  year: 2017
  end-page: 33
  ident: bib27
  article-title: Hypervelocity impact of mm-size plastic projectile on thin aluminum plate[J]
  publication-title: Acta Astronaut.
– volume: 58
  start-page: 320
  year: 2013
  end-page: 327
  ident: bib9
  article-title: Large scale optimal transportation meshfree (OTM) simulations of hypervelocity impact
  publication-title: Procedia Eng.
– volume: 163
  start-page: 62
  year: 2019
  end-page: 72
  ident: bib33
  article-title: Numerical simulation of the high-speed collision of the ball and the spherical fluid-filled shell[J]
  publication-title: Acta Astronaut.
– volume: 150
  start-page: 56
  year: 2018
  end-page: 62
  ident: bib14
  article-title: Numerical simulation of hypervelocity impact problem for spacecraft shielding elements[J]
  publication-title: Acta Astronaut.
– volume: 15
  start-page: 457
  year: 2019
  end-page: 466
  ident: bib45
  article-title: Modeling on the shock wave in spheres hypervelocity impact on flat plates
  publication-title: Defence Technology
– volume: 109
  start-page: 144
  year: 2015
  end-page: 152
  ident: bib32
  article-title: Space traffic hazards from orbital debris mitigation strategies[J]
  publication-title: Acta Astronaut.
– volume: 93
  start-page: 112
  year: 2014
  end-page: 120
  ident: bib11
  article-title: A fast numerical approach for Whipple shield ballistic limit analysis[J]
  publication-title: Acta Astronaut.
– reference: AUTODYN User Manual, Version 14.5[R]. Century Dynamics, Inc.
– volume: 87
  start-page: 253
  year: 1995
  end-page: 265
  ident: bib35
  article-title: Simulations of brittle solids using smooth particle hydrodynamics[J]
  publication-title: Comput. Phys. Commun.
– volume: 29
  start-page: 563
  year: 2003
  end-page: 574
  ident: bib40
  article-title: Fragmentation-initiation threshold for spheres impacting at hypervelocity
  publication-title: Int. J. Impact Eng.
– volume: 38
  start-page: 397
  year: 2011
  end-page: 405
  ident: bib29
  article-title: Another approach to a hybrid particle-finite element algorithm for high-velocity impact[J]
  publication-title: Int. J. Impact Eng.
– volume: 150
  start-page: 56
  year: 2020
  end-page: 62
  ident: bib13
  article-title: Numerical simulation of hypervelocity impact problem for spacecraft shielding elements[J]
  publication-title: Acta Astronaut.
– volume: 24
  start-page: 18
  year: 2011
  end-page: 24
  ident: bib36
  article-title: Fragment identification and statistics method of hypervelocity impact SPH simulation[J]
  publication-title: Chin. J. Aeronaut.
– volume: 58
  start-page: 167
  year: 2013
  end-page: 176
  ident: bib17
  article-title: Large-scale molecular simulations of hypervelocity impact of materials[J]
  publication-title: Procedia Eng.
– volume: 171
  start-page: 215
  year: 2020
  end-page: 224
  ident: bib34
  article-title: Numerical simulation of the hypervelocity impact of the ball and the spherical containment in three-material statement[J]
  publication-title: Acta Astronaut.
– volume: 126
  start-page: 510
  year: 2016
  ident: 10.1016/j.actaastro.2020.05.056_bib2
  article-title: Orbital missions safety – a survey of kinetic hazards[J]
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2015.12.053
– volume: 105
  start-page: 128
  year: 2014
  ident: 10.1016/j.actaastro.2020.05.056_bib12
  article-title: High velocity impact characterization of Al alloys for oblique impacts[J]
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2014.08.014
– volume: 109
  start-page: 144
  year: 2015
  ident: 10.1016/j.actaastro.2020.05.056_bib32
  article-title: Space traffic hazards from orbital debris mitigation strategies[J]
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2014.09.014
– volume: 24
  start-page: 734
  issue: 6
  year: 2011
  ident: 10.1016/j.actaastro.2020.05.056_bib41
  article-title: Numerical Investigation of aluminum foam shield based on fractal theory and node-separation FEM
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/S1000-9361(11)60086-1
– volume: 54
  start-page: 75
  issue: 1
  year: 2016
  ident: 10.1016/j.actaastro.2020.05.056_bib23
  article-title: Weight-efficiency of conventional shielding systems in protecting unmanned spacecraft from orbital debris[J]
  publication-title: J. Spacecraft Rockets
  doi: 10.2514/1.A33596
– year: 2019
  ident: 10.1016/j.actaastro.2020.05.056_bib46
– volume: 12
  start-page: 241
  issue: 2
  year: 2016
  ident: 10.1016/j.actaastro.2020.05.056_bib18
  article-title: Simulation of hyper-velocity impact on double honeycomb sandwich panel and its staggered improvement with internal-structure model[J]
  publication-title: Int. J. Mech.
– volume: 33
  start-page: 763
  issue: 1–12
  year: 2006
  ident: 10.1016/j.actaastro.2020.05.056_bib47
  article-title: RCS-based ballistic limit curves for non-spherical projectiles impacting dual-wall spacecraft systems
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2006.09.076
– volume: 15
  start-page: 457
  issue: 4
  year: 2019
  ident: 10.1016/j.actaastro.2020.05.056_bib45
  article-title: Modeling on the shock wave in spheres hypervelocity impact on flat plates
  publication-title: Defence Technology
  doi: 10.1016/j.dt.2019.01.006
– volume: 14
  start-page: 573
  issue: 1–4
  year: 1993
  ident: 10.1016/j.actaastro.2020.05.056_bib39
  article-title: Characteristics of debris clouds produced by hypervelocity impact of aluminum spheres with thin aluminum plates
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/0734-743X(93)90053-A
– volume: 31
  start-page: 129
  issue: 2
  year: 2014
  ident: 10.1016/j.actaastro.2020.05.056_bib1
  article-title: The space debris environment and the active debris removal techniques
  publication-title: Spacecraft Environ. Eng.
– volume: 155
  start-page: 111
  year: 2019
  ident: 10.1016/j.actaastro.2020.05.056_bib4
  article-title: Optical fragment tracking in hypervelocity impact experiments[J]
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2018.11.036
– volume: 171
  start-page: 215
  year: 2020
  ident: 10.1016/j.actaastro.2020.05.056_bib34
  article-title: Numerical simulation of the hypervelocity impact of the ball and the spherical containment in three-material statement[J]
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2020.03.010
– volume: 65
  start-page: 1796
  year: 2009
  ident: 10.1016/j.actaastro.2020.05.056_bib3
  article-title: Evaluation of craters formation in hypervelocity impact of debris particles on solid structures [J]
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2009.04.003
– volume: 163
  start-page: 54
  year: 2019
  ident: 10.1016/j.actaastro.2020.05.056_bib5
  article-title: Protection of inflatable modules of orbital stations against impacts of particles of space debris[J]
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2019.04.046
– volume: 35
  start-page: 1602
  issue: 12
  year: 2008
  ident: 10.1016/j.actaastro.2020.05.056_bib6
  article-title: A comparison of ballistic limit with adaptive-mesh Eulerian hydrocode predictions of one-and two-plate aluminum shielding protection against millimeter-sized Fe–Ni space debris[J]
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2008.07.039
– volume: 35
  start-page: 1861
  issue: 12
  year: 2008
  ident: 10.1016/j.actaastro.2020.05.056_bib22
  article-title: Hypervelocity impact on CFRP: testing, material modelling, and numerical simulation[J]
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2008.07.015
– volume: 33
  start-page: 79
  issue: 2
  year: 2019
  ident: 10.1016/j.actaastro.2020.05.056_bib42
  article-title: Numerical simulation analysis of back fragmentation of sphere by hypervelocity impact
  publication-title: Chin. J. High Press. Phys.
– volume: 58
  start-page: 269
  year: 2013
  ident: 10.1016/j.actaastro.2020.05.056_bib30
  article-title: A combined particle-element method for high-velocity impact computations[J]
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2013.05.031
– year: 2010
  ident: 10.1016/j.actaastro.2020.05.056_bib43
– volume: 150
  start-page: 265
  issue: 2–3
  year: 1994
  ident: 10.1016/j.actaastro.2020.05.056_bib28
  article-title: Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations[J]
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(94)90143-0
– volume: 24
  start-page: 18
  issue: 1
  year: 2011
  ident: 10.1016/j.actaastro.2020.05.056_bib36
  article-title: Fragment identification and statistics method of hypervelocity impact SPH simulation[J]
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/S1000-9361(11)60003-4
– volume: 150
  start-page: 56
  year: 2020
  ident: 10.1016/j.actaastro.2020.05.056_bib13
  article-title: Numerical simulation of hypervelocity impact problem for spacecraft shielding elements[J]
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2017.08.030
– year: 1992
  ident: 10.1016/j.actaastro.2020.05.056_bib7
– volume: 93
  start-page: 112
  year: 2014
  ident: 10.1016/j.actaastro.2020.05.056_bib11
  article-title: A fast numerical approach for Whipple shield ballistic limit analysis[J]
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2013.06.014
– volume: 17
  start-page: 151
  issue: 3
  year: 1995
  ident: 10.1016/j.actaastro.2020.05.056_bib21
  article-title: On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations[J]
  publication-title: Comput. Mech.
  doi: 10.1007/BF00364078
– volume: 28
  start-page: 947
  issue: 9
  year: 2003
  ident: 10.1016/j.actaastro.2020.05.056_bib26
  article-title: Conversion of 3D distorted elements into meshless particles during dynamic deformation[J]
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/S0734-743X(03)00012-5
– volume: 150
  start-page: 56
  year: 2018
  ident: 10.1016/j.actaastro.2020.05.056_bib14
  article-title: Numerical simulation of hypervelocity impact problem for spacecraft shielding elements[J]
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2017.08.030
– volume: 87
  start-page: 253
  issue: 1–2
  year: 1995
  ident: 10.1016/j.actaastro.2020.05.056_bib35
  article-title: Simulations of brittle solids using smooth particle hydrodynamics[J]
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(94)00176-3
– volume: 58
  start-page: 269
  year: 2013
  ident: 10.1016/j.actaastro.2020.05.056_bib10
  article-title: A combined particle-element method for high-velocity impact computations[J]
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2013.05.031
– volume: 26
  start-page: 169
  issue: 1–10
  year: 2001
  ident: 10.1016/j.actaastro.2020.05.056_bib25
  article-title: An improved hybrid particle-element method for hypervelocity impact simulation[J]
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/S0734-743X(01)00079-3
– volume: 92
  start-page: 199
  year: 2014
  ident: 10.1016/j.actaastro.2020.05.056_bib24
  article-title: Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability[J]
  publication-title: Comput. Fluid
  doi: 10.1016/j.compfluid.2014.01.002
– volume: 58
  start-page: 167
  year: 2013
  ident: 10.1016/j.actaastro.2020.05.056_bib17
  article-title: Large-scale molecular simulations of hypervelocity impact of materials[J]
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2013.05.020
– volume: 66
  start-page: 689
  year: 2006
  ident: 10.1016/j.actaastro.2020.05.056_bib16
  article-title: An explicit material point finite element method for hyper-velocity impact[J]
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1579
– volume: 56
  start-page: 32
  year: 2013
  ident: 10.1016/j.actaastro.2020.05.056_bib38
  article-title: A new engineering model of debris cloud produced by hypervelocity impact[J]
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2012.07.003
– volume: 38
  start-page: 397
  issue: 5
  year: 2011
  ident: 10.1016/j.actaastro.2020.05.056_bib29
  article-title: Another approach to a hybrid particle-finite element algorithm for high-velocity impact[J]
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2011.01.002
– year: 2006
  ident: 10.1016/j.actaastro.2020.05.056_bib44
– volume: 150
  start-page: 73
  year: 2018
  ident: 10.1016/j.actaastro.2020.05.056_bib15
  article-title: Efficiency of needle structure at hypervelocity impact [J]
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2017.10.026
– volume: 56
  start-page: 27
  year: 2013
  ident: 10.1016/j.actaastro.2020.05.056_bib37
  article-title: Research on the technique of identifying debris and obtaining characteristic parameters of large-scale 3D point set[J]
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2012.07.004
– volume: 143
  issue: 4
  year: 2017
  ident: 10.1016/j.actaastro.2020.05.056_bib8
  article-title: Meshfree methods: progress made after 20 years[J]
  publication-title: J. Eng. Mech.
– volume: 58
  start-page: 320
  year: 2013
  ident: 10.1016/j.actaastro.2020.05.056_bib9
  article-title: Large scale optimal transportation meshfree (OTM) simulations of hypervelocity impact
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2013.05.036
– ident: 10.1016/j.actaastro.2020.05.056_bib20
– volume: 38
  start-page: 948
  issue: 5
  year: 2018
  ident: 10.1016/j.actaastro.2020.05.056_bib31
  article-title: Material failure models in SPH simulation of debris cloud[J]
  publication-title: Explos. Shock Waves
– volume: 17
  start-page: 25
  issue: 1
  year: 2010
  ident: 10.1016/j.actaastro.2020.05.056_bib19
  article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments[J]
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-010-9040-7
– volume: 29
  start-page: 563
  issue: 1–10
  year: 2003
  ident: 10.1016/j.actaastro.2020.05.056_bib40
  article-title: Fragmentation-initiation threshold for spheres impacting at hypervelocity
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2003.10.005
– volume: 163
  start-page: 62
  year: 2019
  ident: 10.1016/j.actaastro.2020.05.056_bib33
  article-title: Numerical simulation of the high-speed collision of the ball and the spherical fluid-filled shell[J]
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2018.11.037
– volume: 135
  start-page: 26
  year: 2017
  ident: 10.1016/j.actaastro.2020.05.056_bib27
  article-title: Hypervelocity impact of mm-size plastic projectile on thin aluminum plate[J]
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2016.11.011
SSID ssj0007289
Score 2.5555727
Snippet The meshless algorithms, especially the smoothed particle hydrodynamics (SPH), are attempted to solve the hypervelocity impact (HVI) problem. However, several...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 99
SubjectTerms Algorithms
Clouds
Composite materials
Computational fluid dynamics
Computer simulation
Contact and coupling algorithm
Debris
Debris cloud
Detritus
Distribution of risky fragment
Energy distribution
FEM-SPH adaptive Method
Finite element method
Fluid flow
Fluid mechanics
Foams
Fragments
Hydrodynamics
Hypervelocity impact
Meshless methods
Numerical simulation
Numerical simulations
Parameters
Simulation
Smooth particle hydrodynamics
Statistical analysis
Title Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud
URI https://dx.doi.org/10.1016/j.actaastro.2020.05.056
https://www.proquest.com/docview/2450514805
Volume 175
WOSCitedRecordID wos000564829400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2030
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007289
  issn: 0094-5765
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLag5QAHxKq2FOQDtygo8RI73EaoI-ihAlGk4WQ5jgdStZlRk6Hl3_O8ZDZABSGkKIqscZzx-_K2vAWhl0UpczbNdUprMFdBAzepzgqXsSxIJYlhjNW-2YQ4OZGTSfk-BrF3vp2AaFt5fV3O_yupYQyI7VJn_4Lcy5vCAFwD0eEMZIfzHxF-3Dg1MrEhLjztLmYuyapO5vG3ydfvNXDN0InelXTScx8-FHpJO_9H11z4pl7tl6S2LiMgMeezxUZHz5HpdaI750fX3h2-8qk6on1oUsBeFIo-eCBwt0mjZ1e22R4-btp0vFh3QIC1OYSyRa_YkBmzCkPynLZkKdgyfIPTCr7GK0NjpCh185DB-RNDD76FMwBXr_2_euUewRdb5VsltL1Q_ugWdusS4F6UlvI22iWCl8DwdkfvjibHSzEtiAy2UXzQjeC_Xy73O9VlS4h7zeT0AbofTQo8CuR9iG7Z9hG6t1Zo8jH6HECBt0GBB1DgDVDgARQ4gAI3LV6BAgdQYA-KJ-jT-Oj0zds0NtVIDWW0TwvNOa_yqWCcGeaCcyqiM0PqUhhmi4qaqdag44MeXufuG6_Nq4oWuTbEaEo4fYp22llr9xCubEFkXVmqacm0tloWmbCihC3NLOdyHxXDfikTK867xifnaggtPFPLjVZuo1XG4Sj2UbacOA9FV26e8nogiIq6Y9AJFSDp5smHAwlVfJM7RRh3vQFkxg_-5d7P0N3VS3OIdvrLhX2O7phvfdNdvoig_AGmeKTR
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+element-smoothed+particle+hydrodynamics+adaptive+method+in+simulating+debris+cloud&rft.jtitle=Acta+astronautica&rft.au=He%2C+Qi-Guang&rft.au=Chen%2C+Xiaowei&rft.au=Chen%2C+Jin-Fu&rft.date=2020-10-01&rft.pub=Elsevier+Ltd&rft.issn=0094-5765&rft.volume=175&rft.spage=99&rft.epage=117&rft_id=info:doi/10.1016%2Fj.actaastro.2020.05.056&rft.externalDocID=S0094576520303398
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon