Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud
The meshless algorithms, especially the smoothed particle hydrodynamics (SPH), are attempted to solve the hypervelocity impact (HVI) problem. However, several limitations of SPH exist in the current studies, such as the tensile instability, the material boundary uncertainty, and the difficulty in de...
Uloženo v:
| Vydáno v: | Acta astronautica Ročník 175; s. 99 - 117 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elmsford
Elsevier Ltd
01.10.2020
Elsevier BV |
| Témata: | |
| ISSN: | 0094-5765, 1879-2030 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The meshless algorithms, especially the smoothed particle hydrodynamics (SPH), are attempted to solve the hypervelocity impact (HVI) problem. However, several limitations of SPH exist in the current studies, such as the tensile instability, the material boundary uncertainty, and the difficulty in defining boundaries. Furthermore, it cannot accurately provide the parameters of the generated fragments. In this paper, we formulate the finite element-smoothed particle hydrodynamics (FEM-SPH) adaptive method to solve the HVI problem by LS-DYNA. It combines the advantages of FEM and SPH by transforming the failed elements into the SPH particles during the simulation. The debris cloud shape is represented by the distribution of the particles in SPH and the exact fragment parameters in FEM, including geometry, temperature, energy, and distribution. By analyzing and optimizing the implementation method, the contact and coupling algorithm, and calculation parameters, we reproduce the experimental results by Piekutowski [39,40] in the numerical simulation. Based on the proposed three typical shapes of the fragments, a systematic statistical analysis is proposed to classify the fragments and analyze their parameters, including speed, momentum, and energy. Risky fragments, i.e., the fragments with large size and high speed, are selected from the overall fragments. We further study the distribution of risky fragments with the details of the evolution in the space and time, which paves the way for further systematic research on the subsequent impact of the debris cloud. Our work shows that the method has a significant and wide application to the debris cloud simulation. The current algorithm can be applied to simulate the Whipple shields with complex structures and advanced material, e.g., sandwich materials, composite materials, foam materials, and gradient materials, or analyze the implosion and fragmentation warhead.
•FEM-SPH adaptive method to the HVI problems is established.•A set of suitable parameters are provided to simulate the HVI problems.•Fragment identification is given directly and sets a basis for statistical analysis.•A statistical method in velocity space is used to characterize risky fragments. |
|---|---|
| AbstractList | The meshless algorithms, especially the smoothed particle hydrodynamics (SPH), are attempted to solve the hypervelocity impact (HVI) problem. However, several limitations of SPH exist in the current studies, such as the tensile instability, the material boundary uncertainty, and the difficulty in defining boundaries. Furthermore, it cannot accurately provide the parameters of the generated fragments. In this paper, we formulate the finite element-smoothed particle hydrodynamics (FEM-SPH) adaptive method to solve the HVI problem by LS-DYNA. It combines the advantages of FEM and SPH by transforming the failed elements into the SPH particles during the simulation. The debris cloud shape is represented by the distribution of the particles in SPH and the exact fragment parameters in FEM, including geometry, temperature, energy, and distribution. By analyzing and optimizing the implementation method, the contact and coupling algorithm, and calculation parameters, we reproduce the experimental results by Piekutowski [39,40] in the numerical simulation. Based on the proposed three typical shapes of the fragments, a systematic statistical analysis is proposed to classify the fragments and analyze their parameters, including speed, momentum, and energy. Risky fragments, i.e., the fragments with large size and high speed, are selected from the overall fragments. We further study the distribution of risky fragments with the details of the evolution in the space and time, which paves the way for further systematic research on the subsequent impact of the debris cloud. Our work shows that the method has a significant and wide application to the debris cloud simulation. The current algorithm can be applied to simulate the Whipple shields with complex structures and advanced material, e.g., sandwich materials, composite materials, foam materials, and gradient materials, or analyze the implosion and fragmentation warhead. The meshless algorithms, especially the smoothed particle hydrodynamics (SPH), are attempted to solve the hypervelocity impact (HVI) problem. However, several limitations of SPH exist in the current studies, such as the tensile instability, the material boundary uncertainty, and the difficulty in defining boundaries. Furthermore, it cannot accurately provide the parameters of the generated fragments. In this paper, we formulate the finite element-smoothed particle hydrodynamics (FEM-SPH) adaptive method to solve the HVI problem by LS-DYNA. It combines the advantages of FEM and SPH by transforming the failed elements into the SPH particles during the simulation. The debris cloud shape is represented by the distribution of the particles in SPH and the exact fragment parameters in FEM, including geometry, temperature, energy, and distribution. By analyzing and optimizing the implementation method, the contact and coupling algorithm, and calculation parameters, we reproduce the experimental results by Piekutowski [39,40] in the numerical simulation. Based on the proposed three typical shapes of the fragments, a systematic statistical analysis is proposed to classify the fragments and analyze their parameters, including speed, momentum, and energy. Risky fragments, i.e., the fragments with large size and high speed, are selected from the overall fragments. We further study the distribution of risky fragments with the details of the evolution in the space and time, which paves the way for further systematic research on the subsequent impact of the debris cloud. Our work shows that the method has a significant and wide application to the debris cloud simulation. The current algorithm can be applied to simulate the Whipple shields with complex structures and advanced material, e.g., sandwich materials, composite materials, foam materials, and gradient materials, or analyze the implosion and fragmentation warhead. •FEM-SPH adaptive method to the HVI problems is established.•A set of suitable parameters are provided to simulate the HVI problems.•Fragment identification is given directly and sets a basis for statistical analysis.•A statistical method in velocity space is used to characterize risky fragments. |
| Author | He, Qi-Guang Chen, Xiaowei Chen, Jin-Fu |
| Author_xml | – sequence: 1 givenname: Qi-Guang surname: He fullname: He, Qi-Guang organization: State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China – sequence: 2 givenname: Xiaowei surname: Chen fullname: Chen, Xiaowei email: chenxiaoweintu@bit.edu.cn organization: State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China – sequence: 3 givenname: Jin-Fu surname: Chen fullname: Chen, Jin-Fu organization: Beijing Computational Science Research Center, Beijing, 100193, China |
| BookMark | eNqNkMFqGzEQhkVxoI6TZ4ig53VG2pXWe-jBhDopBHJpDzmJWWkcy-xKriQH_PZd49JDLw38MJf5_hm-azYLMRBjdwKWAoS-3y_RFsRcUlxKkLAENUV_YnOxartKQg0zNgfomkq1Wn1m1znvAaCVq27OXjc--EKcBhoplCqPMZYdOX7AVLwdiO9OLkV3Cjh6mzk6PBT_TnyksouO-8CzH48DFh_euKM--cztEI_uhl1tcch0-2cu2M_Ntx8PT9Xzy-P3h_VzZeumLpVGpVQvtm2jGtt0IKCXCFa6rrUN6b62W0SltRDSCWhXNYm-r7VAKy3WUtUL9uXSe0jx15FyMft4TGE6aWSjQIlmBeetr5ctm2LOibbG-jI9HUNJ6AcjwJxtmr35a9OcbRpQU_TEt__wh-RHTKcPkOsLSZOEd0_JZOspWHI-kS3GRf_fjt_IbZgl |
| CitedBy_id | crossref_primary_10_1016_j_ijimpeng_2021_104087 crossref_primary_10_1007_s10409_024_24395_x crossref_primary_10_1016_j_ijnonlinmec_2025_105123 crossref_primary_10_1016_j_compstruct_2024_118103 crossref_primary_10_1016_j_engfailanal_2023_107207 crossref_primary_10_1007_s10443_024_10303_3 crossref_primary_10_1016_j_actaastro_2022_10_041 crossref_primary_10_1016_j_dt_2022_09_010 crossref_primary_10_1063_5_0257226 crossref_primary_10_1002_dug2_12148 crossref_primary_10_1007_s00773_021_00799_w crossref_primary_10_1016_j_actaastro_2022_11_048 crossref_primary_10_1016_j_actaastro_2023_01_008 crossref_primary_10_1016_j_ijimpeng_2025_105298 crossref_primary_10_1016_j_tws_2024_111874 crossref_primary_10_1016_j_asr_2025_03_047 crossref_primary_10_1016_j_ijimpeng_2025_105413 crossref_primary_10_1016_j_ijimpeng_2024_104926 crossref_primary_10_1016_j_ijimpeng_2023_104803 crossref_primary_10_1016_j_dt_2025_09_016 crossref_primary_10_1016_j_ijimpeng_2024_104922 crossref_primary_10_1016_j_ijimpeng_2023_104733 crossref_primary_10_1016_j_oceaneng_2021_110382 crossref_primary_10_1016_j_ijimpeng_2024_105126 crossref_primary_10_1016_j_ijmecsci_2024_109205 crossref_primary_10_1016_j_ijimpeng_2024_105124 crossref_primary_10_1016_j_cma_2025_118167 crossref_primary_10_1016_j_asr_2024_03_071 crossref_primary_10_3390_met13061074 crossref_primary_10_1016_j_mechmat_2025_105454 crossref_primary_10_3390_w16223249 crossref_primary_10_1016_j_ijimpeng_2025_105340 crossref_primary_10_3390_ma18122742 crossref_primary_10_3390_aerospace10050479 crossref_primary_10_1016_j_asr_2025_05_041 crossref_primary_10_3390_aerospace12040333 crossref_primary_10_1016_j_tws_2023_111440 crossref_primary_10_1016_j_ijmecsci_2025_110004 crossref_primary_10_1016_j_ijimpeng_2025_105319 crossref_primary_10_1061_JBENF2_BEENG_7175 crossref_primary_10_1016_j_tws_2025_113192 crossref_primary_10_1016_j_actaastro_2024_08_051 crossref_primary_10_1016_j_mtcomm_2025_112468 crossref_primary_10_1016_j_dt_2024_01_005 crossref_primary_10_1016_j_engstruct_2024_118009 crossref_primary_10_3390_app15158318 crossref_primary_10_3390_polym17060762 crossref_primary_10_1007_s00193_024_01195_0 crossref_primary_10_1016_j_dt_2020_11_005 crossref_primary_10_1016_j_actaastro_2023_07_040 crossref_primary_10_1016_j_tws_2024_112861 crossref_primary_10_1016_j_actaastro_2022_11_026 crossref_primary_10_1016_j_actaastro_2024_01_029 crossref_primary_10_1016_j_finel_2023_103948 crossref_primary_10_3390_aerospace9010012 crossref_primary_10_1088_1742_6596_3080_1_012179 crossref_primary_10_1134_S0025654424604427 crossref_primary_10_1016_j_actaastro_2024_04_033 crossref_primary_10_1016_j_dt_2025_03_020 crossref_primary_10_1016_j_tws_2023_111052 crossref_primary_10_3390_app12189268 crossref_primary_10_1016_j_ijmecsci_2025_110475 crossref_primary_10_3390_aerospace12060534 crossref_primary_10_1007_s12567_025_00662_3 crossref_primary_10_1007_s12046_024_02467_2 crossref_primary_10_1016_j_jmbbm_2024_106412 crossref_primary_10_1016_j_cma_2025_118263 crossref_primary_10_1016_j_dt_2022_08_007 crossref_primary_10_1016_j_actaastro_2024_07_019 crossref_primary_10_1007_s42405_024_00838_x crossref_primary_10_1016_j_ceramint_2023_02_139 crossref_primary_10_1080_15376494_2021_1931991 crossref_primary_10_3390_nano11112953 crossref_primary_10_3390_aerospace12040354 crossref_primary_10_1016_j_actaastro_2023_11_031 crossref_primary_10_1016_j_msea_2025_148983 |
| Cites_doi | 10.1016/j.actaastro.2015.12.053 10.1016/j.actaastro.2014.08.014 10.1016/j.actaastro.2014.09.014 10.1016/S1000-9361(11)60086-1 10.2514/1.A33596 10.1016/j.ijimpeng.2006.09.076 10.1016/j.dt.2019.01.006 10.1016/0734-743X(93)90053-A 10.1016/j.actaastro.2018.11.036 10.1016/j.actaastro.2020.03.010 10.1016/j.actaastro.2009.04.003 10.1016/j.actaastro.2019.04.046 10.1016/j.ijimpeng.2008.07.039 10.1016/j.ijimpeng.2008.07.015 10.1016/j.proeng.2013.05.031 10.1016/0029-5493(94)90143-0 10.1016/S1000-9361(11)60003-4 10.1016/j.actaastro.2017.08.030 10.1016/j.actaastro.2013.06.014 10.1007/BF00364078 10.1016/S0734-743X(03)00012-5 10.1016/0010-4655(94)00176-3 10.1016/S0734-743X(01)00079-3 10.1016/j.compfluid.2014.01.002 10.1016/j.proeng.2013.05.020 10.1002/nme.1579 10.1016/j.ijimpeng.2012.07.003 10.1016/j.ijimpeng.2011.01.002 10.1016/j.actaastro.2017.10.026 10.1016/j.ijimpeng.2012.07.004 10.1016/j.proeng.2013.05.036 10.1007/s11831-010-9040-7 10.1016/j.ijimpeng.2003.10.005 10.1016/j.actaastro.2018.11.037 10.1016/j.actaastro.2016.11.011 |
| ContentType | Journal Article |
| Copyright | 2020 IAA Copyright Elsevier BV Oct 2020 |
| Copyright_xml | – notice: 2020 IAA – notice: Copyright Elsevier BV Oct 2020 |
| DBID | AAYXX CITATION 7TB 7TG 8FD FR3 H8D KL. L7M |
| DOI | 10.1016/j.actaastro.2020.05.056 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database Engineering Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2030 |
| EndPage | 117 |
| ExternalDocumentID | 10_1016_j_actaastro_2020_05_056 S0094576520303398 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BELOY BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSZ T5K T9H VH1 VOH WUQ ZMT ~02 ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD 7TB 7TG 8FD AGCQF FR3 H8D KL. L7M |
| ID | FETCH-LOGICAL-c343t-6a555b1f7454c49010b2a0c2d97c4e6b3cfaa566112d10783e1bb361ac2ca3253 |
| ISICitedReferencesCount | 85 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564829400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-5765 |
| IngestDate | Wed Aug 13 06:09:55 EDT 2025 Sat Nov 29 07:27:02 EST 2025 Tue Nov 18 22:28:11 EST 2025 Sun Apr 06 06:53:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | FEM-SPH adaptive Method Numerical simulation Distribution of risky fragment Debris cloud Contact and coupling algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c343t-6a555b1f7454c49010b2a0c2d97c4e6b3cfaa566112d10783e1bb361ac2ca3253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2450514805 |
| PQPubID | 2045287 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2450514805 crossref_citationtrail_10_1016_j_actaastro_2020_05_056 crossref_primary_10_1016_j_actaastro_2020_05_056 elsevier_sciencedirect_doi_10_1016_j_actaastro_2020_05_056 |
| PublicationCentury | 2000 |
| PublicationDate | October 2020 2020-10-00 20201001 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Elmsford |
| PublicationPlace_xml | – name: Elmsford |
| PublicationTitle | Acta astronautica |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Smirnov, Kiselev, Zakharov (bib33) 2019; 163 Adushkin, Veniaminov, Kozlov, Silnikov (bib2) 2016; 126 Piekutowski (bib40) 2003; 29 Silnikov, Guk, Nechunaev, Smirnov (bib14) 2018; 150 Hao, Long, Zhang, Chen, Gong (bib42) 2019; 33 Zhang, Jia, Huang (bib36) 2011; 24 Baluch, Park, Kim (bib12) 2014; 105 Johnson, Beissel, Gerlach (bib30) 2013; 58 Li, Perotti, Adams, Mihaly, Rosakis, Stalzer, Ortiz (bib9) 2013; 58 Zhang, Sze, Ma (bib16) 2006; 66 Swegle, Attaway (bib21) 1995; 17 Wen, Chen, Di (bib45) 2019; 15 Zhang, Jia, Huang (bib11) 2014; 93 Buslov, Komarov, Selivanov, Titov, Tovarnova, Feldstein (bib5) 2019; 163 Horner (bib6) 2008; 35 Chen, Hillman, Chi (bib8) 2017; 143 Chi (bib43) 2010 Silnikov, Guk, Mikhaylin, Nechunaev (bib15) 2018; 150 Silnikov, Guk, Nechunaev, Smirnov (bib13) 2020; 150 Johnson (bib28) 1994; 150 Wen, Chen (bib46) 2019 Jaramillo-Botero, An, Theofanis, Goddard (bib17) 2013; 58 Smirnov, Kondratyev (bib3) 2009; 65 Cherniaev, Telichev (bib23) 2016; 54 Fahrenthold, Horban (bib25) 2001; 26 Smirnov, Kiselev, Smirnova, Nikitin (bib32) 2015; 109 Wicklein, Ryan, White, Clegg (bib22) 2008; 35 Liu, Liu, Zhang (bib18) 2016; 12 Yang, Liu, Peng (bib24) 2014; 92 Di, Chen (bib31) 2018; 38 Liu, Liu (bib19) 2010; 17 Johnson, Beissel, Gerlach (bib10) 2013; 58 AUTODYN User Manual, Version 14.5[R]. Century Dynamics, Inc. Liang, Li, Chen, Huang, Liu (bib37) 2013; 56 Poniaev, Kurakin, Sedov, Bobashev, Zhukov, Nechunaev (bib27) 2017; 135 Gong, Xu, Mu, Cao (bib1) 2014; 31 Watson, Gulde, Kortmann, Higashide, Schaefer, Hiermaier (bib4) 2019; 155 Hallquist (bib44) 2006 Johnson, Beissel, Gerlach (bib29) 2011; 38 Huang, Ma, Ren, Li, Zhou, Liu (bib38) 2013; 56 Piekutowski (bib39) 1993; 14 Smirnov, Kiselev, Zakharov (bib34) 2020; 171 Johnson, Stryk (bib26) 2003; 28 Schonberg, Williamsen (bib47) 2006; 33 Addessio, Baumgardner, Dukowicz, Johnson, Kashiwa, Rauenzahn, Zemach (bib7) 1992 Benz, Asphaug (bib35) 1995; 87 Zhang, Jia, Huang (bib41) 2011; 24 Gong (10.1016/j.actaastro.2020.05.056_bib1) 2014; 31 Silnikov (10.1016/j.actaastro.2020.05.056_bib15) 2018; 150 Liu (10.1016/j.actaastro.2020.05.056_bib18) 2016; 12 Johnson (10.1016/j.actaastro.2020.05.056_bib28) 1994; 150 Zhang (10.1016/j.actaastro.2020.05.056_bib36) 2011; 24 Schonberg (10.1016/j.actaastro.2020.05.056_bib47) 2006; 33 Horner (10.1016/j.actaastro.2020.05.056_bib6) 2008; 35 Liang (10.1016/j.actaastro.2020.05.056_bib37) 2013; 56 Zhang (10.1016/j.actaastro.2020.05.056_bib11) 2014; 93 Hallquist (10.1016/j.actaastro.2020.05.056_bib44) 2006 10.1016/j.actaastro.2020.05.056_bib20 Johnson (10.1016/j.actaastro.2020.05.056_bib30) 2013; 58 Fahrenthold (10.1016/j.actaastro.2020.05.056_bib25) 2001; 26 Wicklein (10.1016/j.actaastro.2020.05.056_bib22) 2008; 35 Smirnov (10.1016/j.actaastro.2020.05.056_bib32) 2015; 109 Silnikov (10.1016/j.actaastro.2020.05.056_bib13) 2020; 150 Swegle (10.1016/j.actaastro.2020.05.056_bib21) 1995; 17 Smirnov (10.1016/j.actaastro.2020.05.056_bib34) 2020; 171 Zhang (10.1016/j.actaastro.2020.05.056_bib16) 2006; 66 Chi (10.1016/j.actaastro.2020.05.056_bib43) 2010 Wen (10.1016/j.actaastro.2020.05.056_bib46) 2019 Li (10.1016/j.actaastro.2020.05.056_bib9) 2013; 58 Yang (10.1016/j.actaastro.2020.05.056_bib24) 2014; 92 Wen (10.1016/j.actaastro.2020.05.056_bib45) 2019; 15 Smirnov (10.1016/j.actaastro.2020.05.056_bib3) 2009; 65 Silnikov (10.1016/j.actaastro.2020.05.056_bib14) 2018; 150 Adushkin (10.1016/j.actaastro.2020.05.056_bib2) 2016; 126 Zhang (10.1016/j.actaastro.2020.05.056_bib41) 2011; 24 Cherniaev (10.1016/j.actaastro.2020.05.056_bib23) 2016; 54 Piekutowski (10.1016/j.actaastro.2020.05.056_bib39) 1993; 14 Benz (10.1016/j.actaastro.2020.05.056_bib35) 1995; 87 Poniaev (10.1016/j.actaastro.2020.05.056_bib27) 2017; 135 Watson (10.1016/j.actaastro.2020.05.056_bib4) 2019; 155 Piekutowski (10.1016/j.actaastro.2020.05.056_bib40) 2003; 29 Buslov (10.1016/j.actaastro.2020.05.056_bib5) 2019; 163 Huang (10.1016/j.actaastro.2020.05.056_bib38) 2013; 56 Di (10.1016/j.actaastro.2020.05.056_bib31) 2018; 38 Liu (10.1016/j.actaastro.2020.05.056_bib19) 2010; 17 Johnson (10.1016/j.actaastro.2020.05.056_bib10) 2013; 58 Baluch (10.1016/j.actaastro.2020.05.056_bib12) 2014; 105 Chen (10.1016/j.actaastro.2020.05.056_bib8) 2017; 143 Jaramillo-Botero (10.1016/j.actaastro.2020.05.056_bib17) 2013; 58 Addessio (10.1016/j.actaastro.2020.05.056_bib7) 1992 Johnson (10.1016/j.actaastro.2020.05.056_bib26) 2003; 28 Hao (10.1016/j.actaastro.2020.05.056_bib42) 2019; 33 Johnson (10.1016/j.actaastro.2020.05.056_bib29) 2011; 38 Smirnov (10.1016/j.actaastro.2020.05.056_bib33) 2019; 163 |
| References_xml | – volume: 163 start-page: 54 year: 2019 end-page: 61 ident: bib5 article-title: Protection of inflatable modules of orbital stations against impacts of particles of space debris[J] publication-title: Acta Astronaut. – volume: 126 start-page: 510 year: 2016 end-page: 516 ident: bib2 article-title: Orbital missions safety – a survey of kinetic hazards[J] publication-title: Acta Astronaut. – year: 2006 ident: bib44 article-title: LS-DYNA Theory Manual – volume: 66 start-page: 689 year: 2006 end-page: 706 ident: bib16 article-title: An explicit material point finite element method for hyper-velocity impact[J] publication-title: Int. J. Numer. Methods Eng. – year: 2019 ident: bib46 article-title: Analysis of the Stress Wave and Rarefaction Wave Produced by Hypervelocity Impact of Sphere onto Thin Plate – volume: 33 start-page: 763 year: 2006 end-page: 770 ident: bib47 article-title: RCS-based ballistic limit curves for non-spherical projectiles impacting dual-wall spacecraft systems publication-title: Int. J. Impact Eng. – volume: 65 start-page: 1796 year: 2009 end-page: 1803 ident: bib3 article-title: Evaluation of craters formation in hypervelocity impact of debris particles on solid structures [J] publication-title: Acta Astronaut. – volume: 54 start-page: 75 year: 2016 end-page: 89 ident: bib23 article-title: Weight-efficiency of conventional shielding systems in protecting unmanned spacecraft from orbital debris[J] publication-title: J. Spacecraft Rockets – volume: 155 start-page: 111 year: 2019 end-page: 117 ident: bib4 article-title: Optical fragment tracking in hypervelocity impact experiments[J] publication-title: Acta Astronaut. – volume: 12 start-page: 241 year: 2016 end-page: 254 ident: bib18 article-title: Simulation of hyper-velocity impact on double honeycomb sandwich panel and its staggered improvement with internal-structure model[J] publication-title: Int. J. Mech. – volume: 17 start-page: 151 year: 1995 end-page: 168 ident: bib21 article-title: On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations[J] publication-title: Comput. Mech. – volume: 31 start-page: 129 year: 2014 end-page: 135 ident: bib1 article-title: The space debris environment and the active debris removal techniques publication-title: Spacecraft Environ. Eng. – volume: 58 start-page: 269 year: 2013 end-page: 278 ident: bib10 article-title: A combined particle-element method for high-velocity impact computations[J] publication-title: Procedia Eng. – volume: 28 start-page: 947 year: 2003 end-page: 966 ident: bib26 article-title: Conversion of 3D distorted elements into meshless particles during dynamic deformation[J] publication-title: Int. J. Impact Eng. – volume: 33 start-page: 79 year: 2019 end-page: 85 ident: bib42 article-title: Numerical simulation analysis of back fragmentation of sphere by hypervelocity impact publication-title: Chin. J. High Press. Phys. – volume: 38 start-page: 948 year: 2018 end-page: 956 ident: bib31 article-title: Material failure models in SPH simulation of debris cloud[J] publication-title: Explos. Shock Waves – volume: 58 start-page: 269 year: 2013 end-page: 278 ident: bib30 article-title: A combined particle-element method for high-velocity impact computations[J] publication-title: Procedia Eng. – volume: 17 start-page: 25 year: 2010 end-page: 76 ident: bib19 article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments[J] publication-title: Arch. Comput. Methods Eng. – volume: 92 start-page: 199 year: 2014 end-page: 208 ident: bib24 article-title: Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability[J] publication-title: Comput. Fluid – volume: 150 start-page: 265 year: 1994 end-page: 274 ident: bib28 article-title: Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations[J] publication-title: Nucl. Eng. Des. – volume: 56 start-page: 32 year: 2013 end-page: 39 ident: bib38 article-title: A new engineering model of debris cloud produced by hypervelocity impact[J] publication-title: Int. J. Impact Eng. – volume: 14 start-page: 573 year: 1993 end-page: 586 ident: bib39 article-title: Characteristics of debris clouds produced by hypervelocity impact of aluminum spheres with thin aluminum plates publication-title: Int. J. Impact Eng. – year: 2010 ident: bib43 article-title: Research and Modeling of Debris Cloud Produced by Hypervelocity Impact of Projectile with Thin plate[D] – volume: 26 start-page: 169 year: 2001 end-page: 178 ident: bib25 article-title: An improved hybrid particle-element method for hypervelocity impact simulation[J] publication-title: Int. J. Impact Eng. – volume: 35 start-page: 1861 year: 2008 end-page: 1869 ident: bib22 article-title: Hypervelocity impact on CFRP: testing, material modelling, and numerical simulation[J] publication-title: Int. J. Impact Eng. – volume: 24 start-page: 734 year: 2011 end-page: 740 ident: bib41 article-title: Numerical Investigation of aluminum foam shield based on fractal theory and node-separation FEM publication-title: Chin. J. Aeronaut. – volume: 105 start-page: 128 year: 2014 end-page: 135 ident: bib12 article-title: High velocity impact characterization of Al alloys for oblique impacts[J] publication-title: Acta Astronaut. – volume: 56 start-page: 27 year: 2013 end-page: 31 ident: bib37 article-title: Research on the technique of identifying debris and obtaining characteristic parameters of large-scale 3D point set[J] publication-title: Int. J. Impact Eng. – volume: 35 start-page: 1602 year: 2008 end-page: 1605 ident: bib6 article-title: A comparison of ballistic limit with adaptive-mesh Eulerian hydrocode predictions of one-and two-plate aluminum shielding protection against millimeter-sized Fe–Ni space debris[J] publication-title: Int. J. Impact Eng. – volume: 143 year: 2017 ident: bib8 article-title: Meshfree methods: progress made after 20 years[J] publication-title: J. Eng. Mech. – year: 1992 ident: bib7 article-title: CAVEAT: A Computer Code for Fluid Dynamics Problems with Large Distortion and Internal Slip. Revision 1[R] – volume: 150 start-page: 73 year: 2018 end-page: 80 ident: bib15 article-title: Efficiency of needle structure at hypervelocity impact [J] publication-title: Acta Astronaut. – volume: 135 start-page: 26 year: 2017 end-page: 33 ident: bib27 article-title: Hypervelocity impact of mm-size plastic projectile on thin aluminum plate[J] publication-title: Acta Astronaut. – volume: 58 start-page: 320 year: 2013 end-page: 327 ident: bib9 article-title: Large scale optimal transportation meshfree (OTM) simulations of hypervelocity impact publication-title: Procedia Eng. – volume: 163 start-page: 62 year: 2019 end-page: 72 ident: bib33 article-title: Numerical simulation of the high-speed collision of the ball and the spherical fluid-filled shell[J] publication-title: Acta Astronaut. – volume: 150 start-page: 56 year: 2018 end-page: 62 ident: bib14 article-title: Numerical simulation of hypervelocity impact problem for spacecraft shielding elements[J] publication-title: Acta Astronaut. – volume: 15 start-page: 457 year: 2019 end-page: 466 ident: bib45 article-title: Modeling on the shock wave in spheres hypervelocity impact on flat plates publication-title: Defence Technology – volume: 109 start-page: 144 year: 2015 end-page: 152 ident: bib32 article-title: Space traffic hazards from orbital debris mitigation strategies[J] publication-title: Acta Astronaut. – volume: 93 start-page: 112 year: 2014 end-page: 120 ident: bib11 article-title: A fast numerical approach for Whipple shield ballistic limit analysis[J] publication-title: Acta Astronaut. – reference: AUTODYN User Manual, Version 14.5[R]. Century Dynamics, Inc. – volume: 87 start-page: 253 year: 1995 end-page: 265 ident: bib35 article-title: Simulations of brittle solids using smooth particle hydrodynamics[J] publication-title: Comput. Phys. Commun. – volume: 29 start-page: 563 year: 2003 end-page: 574 ident: bib40 article-title: Fragmentation-initiation threshold for spheres impacting at hypervelocity publication-title: Int. J. Impact Eng. – volume: 38 start-page: 397 year: 2011 end-page: 405 ident: bib29 article-title: Another approach to a hybrid particle-finite element algorithm for high-velocity impact[J] publication-title: Int. J. Impact Eng. – volume: 150 start-page: 56 year: 2020 end-page: 62 ident: bib13 article-title: Numerical simulation of hypervelocity impact problem for spacecraft shielding elements[J] publication-title: Acta Astronaut. – volume: 24 start-page: 18 year: 2011 end-page: 24 ident: bib36 article-title: Fragment identification and statistics method of hypervelocity impact SPH simulation[J] publication-title: Chin. J. Aeronaut. – volume: 58 start-page: 167 year: 2013 end-page: 176 ident: bib17 article-title: Large-scale molecular simulations of hypervelocity impact of materials[J] publication-title: Procedia Eng. – volume: 171 start-page: 215 year: 2020 end-page: 224 ident: bib34 article-title: Numerical simulation of the hypervelocity impact of the ball and the spherical containment in three-material statement[J] publication-title: Acta Astronaut. – volume: 126 start-page: 510 year: 2016 ident: 10.1016/j.actaastro.2020.05.056_bib2 article-title: Orbital missions safety – a survey of kinetic hazards[J] publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2015.12.053 – volume: 105 start-page: 128 year: 2014 ident: 10.1016/j.actaastro.2020.05.056_bib12 article-title: High velocity impact characterization of Al alloys for oblique impacts[J] publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2014.08.014 – volume: 109 start-page: 144 year: 2015 ident: 10.1016/j.actaastro.2020.05.056_bib32 article-title: Space traffic hazards from orbital debris mitigation strategies[J] publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2014.09.014 – volume: 24 start-page: 734 issue: 6 year: 2011 ident: 10.1016/j.actaastro.2020.05.056_bib41 article-title: Numerical Investigation of aluminum foam shield based on fractal theory and node-separation FEM publication-title: Chin. J. Aeronaut. doi: 10.1016/S1000-9361(11)60086-1 – volume: 54 start-page: 75 issue: 1 year: 2016 ident: 10.1016/j.actaastro.2020.05.056_bib23 article-title: Weight-efficiency of conventional shielding systems in protecting unmanned spacecraft from orbital debris[J] publication-title: J. Spacecraft Rockets doi: 10.2514/1.A33596 – year: 2019 ident: 10.1016/j.actaastro.2020.05.056_bib46 – volume: 12 start-page: 241 issue: 2 year: 2016 ident: 10.1016/j.actaastro.2020.05.056_bib18 article-title: Simulation of hyper-velocity impact on double honeycomb sandwich panel and its staggered improvement with internal-structure model[J] publication-title: Int. J. Mech. – volume: 33 start-page: 763 issue: 1–12 year: 2006 ident: 10.1016/j.actaastro.2020.05.056_bib47 article-title: RCS-based ballistic limit curves for non-spherical projectiles impacting dual-wall spacecraft systems publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2006.09.076 – volume: 15 start-page: 457 issue: 4 year: 2019 ident: 10.1016/j.actaastro.2020.05.056_bib45 article-title: Modeling on the shock wave in spheres hypervelocity impact on flat plates publication-title: Defence Technology doi: 10.1016/j.dt.2019.01.006 – volume: 14 start-page: 573 issue: 1–4 year: 1993 ident: 10.1016/j.actaastro.2020.05.056_bib39 article-title: Characteristics of debris clouds produced by hypervelocity impact of aluminum spheres with thin aluminum plates publication-title: Int. J. Impact Eng. doi: 10.1016/0734-743X(93)90053-A – volume: 31 start-page: 129 issue: 2 year: 2014 ident: 10.1016/j.actaastro.2020.05.056_bib1 article-title: The space debris environment and the active debris removal techniques publication-title: Spacecraft Environ. Eng. – volume: 155 start-page: 111 year: 2019 ident: 10.1016/j.actaastro.2020.05.056_bib4 article-title: Optical fragment tracking in hypervelocity impact experiments[J] publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.11.036 – volume: 171 start-page: 215 year: 2020 ident: 10.1016/j.actaastro.2020.05.056_bib34 article-title: Numerical simulation of the hypervelocity impact of the ball and the spherical containment in three-material statement[J] publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2020.03.010 – volume: 65 start-page: 1796 year: 2009 ident: 10.1016/j.actaastro.2020.05.056_bib3 article-title: Evaluation of craters formation in hypervelocity impact of debris particles on solid structures [J] publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2009.04.003 – volume: 163 start-page: 54 year: 2019 ident: 10.1016/j.actaastro.2020.05.056_bib5 article-title: Protection of inflatable modules of orbital stations against impacts of particles of space debris[J] publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2019.04.046 – volume: 35 start-page: 1602 issue: 12 year: 2008 ident: 10.1016/j.actaastro.2020.05.056_bib6 article-title: A comparison of ballistic limit with adaptive-mesh Eulerian hydrocode predictions of one-and two-plate aluminum shielding protection against millimeter-sized Fe–Ni space debris[J] publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2008.07.039 – volume: 35 start-page: 1861 issue: 12 year: 2008 ident: 10.1016/j.actaastro.2020.05.056_bib22 article-title: Hypervelocity impact on CFRP: testing, material modelling, and numerical simulation[J] publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2008.07.015 – volume: 33 start-page: 79 issue: 2 year: 2019 ident: 10.1016/j.actaastro.2020.05.056_bib42 article-title: Numerical simulation analysis of back fragmentation of sphere by hypervelocity impact publication-title: Chin. J. High Press. Phys. – volume: 58 start-page: 269 year: 2013 ident: 10.1016/j.actaastro.2020.05.056_bib30 article-title: A combined particle-element method for high-velocity impact computations[J] publication-title: Procedia Eng. doi: 10.1016/j.proeng.2013.05.031 – year: 2010 ident: 10.1016/j.actaastro.2020.05.056_bib43 – volume: 150 start-page: 265 issue: 2–3 year: 1994 ident: 10.1016/j.actaastro.2020.05.056_bib28 article-title: Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations[J] publication-title: Nucl. Eng. Des. doi: 10.1016/0029-5493(94)90143-0 – volume: 24 start-page: 18 issue: 1 year: 2011 ident: 10.1016/j.actaastro.2020.05.056_bib36 article-title: Fragment identification and statistics method of hypervelocity impact SPH simulation[J] publication-title: Chin. J. Aeronaut. doi: 10.1016/S1000-9361(11)60003-4 – volume: 150 start-page: 56 year: 2020 ident: 10.1016/j.actaastro.2020.05.056_bib13 article-title: Numerical simulation of hypervelocity impact problem for spacecraft shielding elements[J] publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2017.08.030 – year: 1992 ident: 10.1016/j.actaastro.2020.05.056_bib7 – volume: 93 start-page: 112 year: 2014 ident: 10.1016/j.actaastro.2020.05.056_bib11 article-title: A fast numerical approach for Whipple shield ballistic limit analysis[J] publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2013.06.014 – volume: 17 start-page: 151 issue: 3 year: 1995 ident: 10.1016/j.actaastro.2020.05.056_bib21 article-title: On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations[J] publication-title: Comput. Mech. doi: 10.1007/BF00364078 – volume: 28 start-page: 947 issue: 9 year: 2003 ident: 10.1016/j.actaastro.2020.05.056_bib26 article-title: Conversion of 3D distorted elements into meshless particles during dynamic deformation[J] publication-title: Int. J. Impact Eng. doi: 10.1016/S0734-743X(03)00012-5 – volume: 150 start-page: 56 year: 2018 ident: 10.1016/j.actaastro.2020.05.056_bib14 article-title: Numerical simulation of hypervelocity impact problem for spacecraft shielding elements[J] publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2017.08.030 – volume: 87 start-page: 253 issue: 1–2 year: 1995 ident: 10.1016/j.actaastro.2020.05.056_bib35 article-title: Simulations of brittle solids using smooth particle hydrodynamics[J] publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(94)00176-3 – volume: 58 start-page: 269 year: 2013 ident: 10.1016/j.actaastro.2020.05.056_bib10 article-title: A combined particle-element method for high-velocity impact computations[J] publication-title: Procedia Eng. doi: 10.1016/j.proeng.2013.05.031 – volume: 26 start-page: 169 issue: 1–10 year: 2001 ident: 10.1016/j.actaastro.2020.05.056_bib25 article-title: An improved hybrid particle-element method for hypervelocity impact simulation[J] publication-title: Int. J. Impact Eng. doi: 10.1016/S0734-743X(01)00079-3 – volume: 92 start-page: 199 year: 2014 ident: 10.1016/j.actaastro.2020.05.056_bib24 article-title: Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability[J] publication-title: Comput. Fluid doi: 10.1016/j.compfluid.2014.01.002 – volume: 58 start-page: 167 year: 2013 ident: 10.1016/j.actaastro.2020.05.056_bib17 article-title: Large-scale molecular simulations of hypervelocity impact of materials[J] publication-title: Procedia Eng. doi: 10.1016/j.proeng.2013.05.020 – volume: 66 start-page: 689 year: 2006 ident: 10.1016/j.actaastro.2020.05.056_bib16 article-title: An explicit material point finite element method for hyper-velocity impact[J] publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1579 – volume: 56 start-page: 32 year: 2013 ident: 10.1016/j.actaastro.2020.05.056_bib38 article-title: A new engineering model of debris cloud produced by hypervelocity impact[J] publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2012.07.003 – volume: 38 start-page: 397 issue: 5 year: 2011 ident: 10.1016/j.actaastro.2020.05.056_bib29 article-title: Another approach to a hybrid particle-finite element algorithm for high-velocity impact[J] publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2011.01.002 – year: 2006 ident: 10.1016/j.actaastro.2020.05.056_bib44 – volume: 150 start-page: 73 year: 2018 ident: 10.1016/j.actaastro.2020.05.056_bib15 article-title: Efficiency of needle structure at hypervelocity impact [J] publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2017.10.026 – volume: 56 start-page: 27 year: 2013 ident: 10.1016/j.actaastro.2020.05.056_bib37 article-title: Research on the technique of identifying debris and obtaining characteristic parameters of large-scale 3D point set[J] publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2012.07.004 – volume: 143 issue: 4 year: 2017 ident: 10.1016/j.actaastro.2020.05.056_bib8 article-title: Meshfree methods: progress made after 20 years[J] publication-title: J. Eng. Mech. – volume: 58 start-page: 320 year: 2013 ident: 10.1016/j.actaastro.2020.05.056_bib9 article-title: Large scale optimal transportation meshfree (OTM) simulations of hypervelocity impact publication-title: Procedia Eng. doi: 10.1016/j.proeng.2013.05.036 – ident: 10.1016/j.actaastro.2020.05.056_bib20 – volume: 38 start-page: 948 issue: 5 year: 2018 ident: 10.1016/j.actaastro.2020.05.056_bib31 article-title: Material failure models in SPH simulation of debris cloud[J] publication-title: Explos. Shock Waves – volume: 17 start-page: 25 issue: 1 year: 2010 ident: 10.1016/j.actaastro.2020.05.056_bib19 article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments[J] publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-010-9040-7 – volume: 29 start-page: 563 issue: 1–10 year: 2003 ident: 10.1016/j.actaastro.2020.05.056_bib40 article-title: Fragmentation-initiation threshold for spheres impacting at hypervelocity publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2003.10.005 – volume: 163 start-page: 62 year: 2019 ident: 10.1016/j.actaastro.2020.05.056_bib33 article-title: Numerical simulation of the high-speed collision of the ball and the spherical fluid-filled shell[J] publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.11.037 – volume: 135 start-page: 26 year: 2017 ident: 10.1016/j.actaastro.2020.05.056_bib27 article-title: Hypervelocity impact of mm-size plastic projectile on thin aluminum plate[J] publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2016.11.011 |
| SSID | ssj0007289 |
| Score | 2.5555727 |
| Snippet | The meshless algorithms, especially the smoothed particle hydrodynamics (SPH), are attempted to solve the hypervelocity impact (HVI) problem. However, several... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 99 |
| SubjectTerms | Algorithms Clouds Composite materials Computational fluid dynamics Computer simulation Contact and coupling algorithm Debris Debris cloud Detritus Distribution of risky fragment Energy distribution FEM-SPH adaptive Method Finite element method Fluid flow Fluid mechanics Foams Fragments Hydrodynamics Hypervelocity impact Meshless methods Numerical simulation Numerical simulations Parameters Simulation Smooth particle hydrodynamics Statistical analysis |
| Title | Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud |
| URI | https://dx.doi.org/10.1016/j.actaastro.2020.05.056 https://www.proquest.com/docview/2450514805 |
| Volume | 175 |
| WOSCitedRecordID | wos000564829400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2030 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007289 issn: 0094-5765 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLag5QAHxKq2FOQDtygo8RI73EaoI-ihAlGk4WQ5jgdStZlRk6Hl3_O8ZDZABSGkKIqscZzx-_K2vAWhl0UpczbNdUprMFdBAzepzgqXsSxIJYlhjNW-2YQ4OZGTSfk-BrF3vp2AaFt5fV3O_yupYQyI7VJn_4Lcy5vCAFwD0eEMZIfzHxF-3Dg1MrEhLjztLmYuyapO5vG3ydfvNXDN0InelXTScx8-FHpJO_9H11z4pl7tl6S2LiMgMeezxUZHz5HpdaI750fX3h2-8qk6on1oUsBeFIo-eCBwt0mjZ1e22R4-btp0vFh3QIC1OYSyRa_YkBmzCkPynLZkKdgyfIPTCr7GK0NjpCh185DB-RNDD76FMwBXr_2_euUewRdb5VsltL1Q_ugWdusS4F6UlvI22iWCl8DwdkfvjibHSzEtiAy2UXzQjeC_Xy73O9VlS4h7zeT0AbofTQo8CuR9iG7Z9hG6t1Zo8jH6HECBt0GBB1DgDVDgARQ4gAI3LV6BAgdQYA-KJ-jT-Oj0zds0NtVIDWW0TwvNOa_yqWCcGeaCcyqiM0PqUhhmi4qaqdag44MeXufuG6_Nq4oWuTbEaEo4fYp22llr9xCubEFkXVmqacm0tloWmbCihC3NLOdyHxXDfikTK867xifnaggtPFPLjVZuo1XG4Sj2UbacOA9FV26e8nogiIq6Y9AJFSDp5smHAwlVfJM7RRh3vQFkxg_-5d7P0N3VS3OIdvrLhX2O7phvfdNdvoig_AGmeKTR |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+element-smoothed+particle+hydrodynamics+adaptive+method+in+simulating+debris+cloud&rft.jtitle=Acta+astronautica&rft.au=He%2C+Qi-Guang&rft.au=Chen%2C+Xiaowei&rft.au=Chen%2C+Jin-Fu&rft.date=2020-10-01&rft.pub=Elsevier+Ltd&rft.issn=0094-5765&rft.volume=175&rft.spage=99&rft.epage=117&rft_id=info:doi/10.1016%2Fj.actaastro.2020.05.056&rft.externalDocID=S0094576520303398 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon |