An adaptive online learning algorithm for distributed convex optimization with coupled constraints over unbalanced directed graphs
This paper investigates a distributed optimization problem over multi-agent networks subject to both local and coupled constraints in a non-stationary environment, where a set of agents aim to cooperatively minimize the sum of locally time-varying cost functions when the communication graphs are tim...
Saved in:
| Published in: | Journal of the Franklin Institute Vol. 356; no. 13; pp. 7548 - 7570 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elmsford
Elsevier Ltd
01.09.2019
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0016-0032, 1879-2693, 0016-0032 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper investigates a distributed optimization problem over multi-agent networks subject to both local and coupled constraints in a non-stationary environment, where a set of agents aim to cooperatively minimize the sum of locally time-varying cost functions when the communication graphs are time-changing connected and unbalanced. Based on dual decomposition, we propose a distributed online dual push-sum learning algorithm by incorporating the push-sum protocol into dual gradient method. We then show that the regret bound has a sublinear growth of O(Tp) and the constraint violation is also sublinear with order of O(T1−p/2), where T is the time horizon and 0 < p ≤ 1/2. Finally, simulation experiments on a plug-in electric vehicle charging problem are utilized to verify the performance of the proposed algorithm. The proposed algorithm is adaptive without knowing the total number of iterations T in advance. The convergence results are established on more general unbalanced graphs without the boundedness assumption on dual variables. In addition, more privacy concerns are guaranteed since only dual variables related with coupled constraints are exchanged among agents. |
|---|---|
| AbstractList | This paper investigates a distributed optimization problem over multi-agent networks subject to both local and coupled constraints in a non-stationary environment, where a set of agents aim to cooperatively minimize the sum of locally time-varying cost functions when the communication graphs are time-changing connected and unbalanced. Based on dual decomposition, we propose a distributed online dual push-sum learning algorithm by incorporating the push-sum protocol into dual gradient method. We then show that the regret bound has a sublinear growth of O(Tp) and the constraint violation is also sublinear with order of O(T1−p/2), where T is the time horizon and 0 < p ≤ 1/2. Finally, simulation experiments on a plug-in electric vehicle charging problem are utilized to verify the performance of the proposed algorithm. The proposed algorithm is adaptive without knowing the total number of iterations T in advance. The convergence results are established on more general unbalanced graphs without the boundedness assumption on dual variables. In addition, more privacy concerns are guaranteed since only dual variables related with coupled constraints are exchanged among agents. |
| Author | Wu, Zhiyou Gu, Chuanye Li, Jueyou |
| Author_xml | – sequence: 1 givenname: Chuanye surname: Gu fullname: Gu, Chuanye email: chuanye.gu@postgrad.curtin.edu.au organization: Department of Mathematics and Statistics, Cutin University, Perth, WA 6845, Australia – sequence: 2 givenname: Jueyou surname: Li fullname: Li, Jueyou email: lijueyou@cqnu.edu.cn organization: School of Mathematical Sciences, Chongqing Normal University, Chongqing 400047, China – sequence: 3 givenname: Zhiyou surname: Wu fullname: Wu, Zhiyou email: zywu@cqnu.edu.cn organization: School of Mathematical Sciences, Chongqing Normal University, Chongqing 400047, China |
| BookMark | eNqNkEtv3CAURlGVSpmk_Q1B6toujzEMiy5GUV9SpG7aNQJ8PcH1gAt4-lj2lwdnqi66aVbo6p7vQ_dcoYsQAyB0Q0lLCRWvx3YckglfJx9aRqhqiWgJE8_Qhu6kaphQ_AJtSEUbQji7RFc5j3WUlJAN-r0P2PRmLv4EOIZaAngCk4IPB2ymQ0y-3B_xEBPufS7J26VAj10MJ_iBY80d_S9TfAz4eyXrYpmnM1Bp40PJOJ4g4SVYM5ng6q73Cdzackhmvs8v0PPBTBle_nmv0Zd3bz_ffmjuPr3_eLu_axzf8tIItQMmmRXglJBi2CpGrOwMCC656RyznWVWAqVC9lZRYowFTgbgvRFWSX6NXp175xS_LZCLHuOSQv1SM6Z23XbbEV6pN2fKpZhzgkE7Xx4PXM-ZNCV61a5H_Ve7XrVrInTVXvPyn_yc_NGkn09I7s9JqBJOHpLOzsNq7NGX7qP_b8cDaKmoqg |
| CitedBy_id | crossref_primary_10_1016_j_jfranklin_2021_07_015 crossref_primary_10_1007_s10957_023_02173_9 crossref_primary_10_1016_j_jfranklin_2023_09_001 crossref_primary_10_1016_j_jfranklin_2023_12_033 crossref_primary_10_1016_j_jfranklin_2021_02_017 crossref_primary_10_1016_j_jfranklin_2020_02_057 crossref_primary_10_1109_TNSE_2022_3155481 crossref_primary_10_1016_j_jfranklin_2022_03_046 crossref_primary_10_1109_ACCESS_2023_3244070 crossref_primary_10_1016_j_jfranklin_2023_10_041 crossref_primary_10_1109_JPROC_2025_3557698 crossref_primary_10_3390_en14123654 crossref_primary_10_1016_j_jfranklin_2024_106884 crossref_primary_10_1016_j_jfranklin_2024_107466 |
| Cites_doi | 10.1016/j.automatica.2017.07.003 10.1109/TNSE.2014.2363554 10.1109/90.811451 10.1016/j.automatica.2016.01.006 10.1137/090752651 10.1016/j.epsr.2009.12.012 10.1109/TAC.2017.2650563 10.1109/TIT.2012.2191450 10.1109/TWC.2006.1687734 10.1109/TAC.2014.2364096 10.1109/TSP.2009.2018648 10.1007/s10994-007-5016-8 10.1109/TAC.2016.2529285 10.1109/TKDE.2012.191 10.1007/s10589-016-9826-0 10.1109/TSMCB.2011.2160394 10.1109/TIT.2011.2142270 10.1109/TAC.2018.2849616 10.1109/ACC.2016.7526804 10.1007/s10957-010-9737-7 10.1007/s11075-019-00746-2 10.1109/TAC.2011.2167817 10.1109/TSMC.2017.2694323 10.1109/TCYB.2017.2755720 10.1109/TAC.2011.2161027 10.1016/j.automatica.2015.02.038 10.1109/TAC.2016.2525928 10.1109/TCNS.2014.2309751 10.1007/s10957-015-0758-0 10.1109/TAC.2008.2009515 10.1016/j.automatica.2019.04.004 10.1561/2200000018 10.1109/TII.2016.2632761 |
| ContentType | Journal Article |
| Copyright | 2019 Copyright Elsevier Science Ltd. Sep 2019 |
| Copyright_xml | – notice: 2019 – notice: Copyright Elsevier Science Ltd. Sep 2019 |
| DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
| DOI | 10.1016/j.jfranklin.2019.06.026 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2693 0016-0032 |
| EndPage | 7570 |
| ExternalDocumentID | 10_1016_j_jfranklin_2019_06_026 S0016003219304739 |
| GrantInformation_xml | – fundername: Natural Science Foundation of Chongqing grantid: cstc2017jcyjAX0253; cstc2018jcyjAX0172 funderid: https://doi.org/10.13039/501100005230 – fundername: Chongqing Municipal Education Commission grantid: KJQN201800520 funderid: https://doi.org/10.13039/501100007957 – fundername: NSFC grantid: 11501070; 11671062; 11871128 funderid: https://doi.org/10.13039/501100001809 |
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 41~ 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFRF ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACCUC ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ACZNC ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AETEA AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 D1Z EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HAMUX HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M26 M41 MHUIS MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SES SET SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 UHS VOH WH7 WUQ XOL XPP ZCG ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO ADXHL AEIPS AFJKZ AGQPQ AHPAA AIIUN ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD AFXIZ AGCQF AGRNS FR3 KR7 SSH |
| ID | FETCH-LOGICAL-c343t-698e272b6ec9676f4920b75ae6373a5c2b5b2b7e1167db910aabe30fe3da6b973 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000480435900034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0016-0032 |
| IngestDate | Fri Jul 25 03:03:21 EDT 2025 Tue Nov 18 22:23:53 EST 2025 Sat Nov 29 07:30:52 EST 2025 Fri Feb 23 02:30:47 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c343t-698e272b6ec9676f4920b75ae6373a5c2b5b2b7e1167db910aabe30fe3da6b973 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2298544503 |
| PQPubID | 2045917 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2298544503 crossref_citationtrail_10_1016_j_jfranklin_2019_06_026 crossref_primary_10_1016_j_jfranklin_2019_06_026 elsevier_sciencedirect_doi_10_1016_j_jfranklin_2019_06_026 |
| PublicationCentury | 2000 |
| PublicationDate | September 2019 2019-09-00 20190901 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Elmsford |
| PublicationPlace_xml | – name: Elmsford |
| PublicationTitle | Journal of the Franklin Institute |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Belomestny, Kolodko, Schoenmakers (bib0032) 2010; 48 Gomadam, Cadambe, Jafar (bib0005) 2011; 57 Duchi, Agarwal, Wainwright (bib0008) 2012; 57 Akbari, Gharesifard, Linder (bib0029) 2014 Yuan, Xu, Zhao (bib0011) 2011; 41 Li, Li, Xu, Dong, Wong, Huang (bib0035) 2018; 14 Madan, Lall (bib0031) 2006; 5 Vujanic, Mohajerin, Goulart, Mariethoz, Morari (bib0037) 2016; 67 Nedić, Ozdaglar (bib0006) 2009; 54 Kar, Moura, Ramanan (bib0002) 2012; 58 Liang, Wang, Yin (bib0014) 2019; 105 Xia, Elaiw (bib0036) 2010; 80 Beck, Nedić, Ozdaglar, Teboulle (bib0004) 2014; 1 Yuan, Ho, Jiang (bib0033) 2018; 48 Nedić, Olshevsky (bib0015) 2015; 60 Li, Lu, Liao, Huang (bib0018) 2018 Li, Liu, Soh, Xie (bib0016) 2018; 48 Low, Lapsley (bib0003) 1999; 7 Mateos-Núnez, Cortés (bib0027) 2014; 1 Nedić, Lee, Raginsky (bib0028) 2015; 2015 M. Zinkevich, Online convex programming and generalized infinitesimal gradient ascent, Proceedings of the 20th International Conference on Machine Learning (ICML-03) (2003) 928–936. X. Li, X. Yi, L. Xie, Distributed online optimization for multi-agent networks with coupled inequality constraints, 2018c. arXiv Simonetto, Jamali-Rad (bib0012) 2016; 168 S. Lee, M.M. Zavlanos, On the sublinear regret of distributed primal-dual algorithms for online constrained optimization, 2017. arXiv Yan, Sundaram, Vishwanathan, Yuan (bib0025) 2013; 25 Hosseini, Chapman, Mesbahi (bib0026) 2016; 61 Li, Lu, Huang (bib0019) 2018 Shalev-Shwartz (bib0024) 2012; 4 Zhu, Martínez (bib0010) 2012; 57 Liang, Wang, Yin (bib0013) 2019 . Cavalcante, Yamada, Mulgrew (bib0001) 2009; 57 Necoara, Nedelcu (bib0009) 2015; 55 Falsone, Margellos, Garatti, Prandini (bib0021) 2017; 84 Hazan, Agarwal, Kale (bib0023) 2007; 69 Nedić, Olshevsky (bib0038) 2016; 61 Li, Chen, Dong, Wu (bib0039) 2016; 64 Ram, Nedić, Veeravalli (bib0007) 2010; 147 Li, Lu, Huang (bib0017) 2019; 64 Lee, Nedić, Raginsky (bib0030) 2017; 62 C. Gu, Z. Wu, J. Li, Distributed regularized dual gradient algorithm for constrained convex optimization over time-varying directed graphs, 2018, arXiv Yuan (10.1016/j.jfranklin.2019.06.026_bib0011) 2011; 41 Nedić (10.1016/j.jfranklin.2019.06.026_bib0015) 2015; 60 Falsone (10.1016/j.jfranklin.2019.06.026_bib0021) 2017; 84 Shalev-Shwartz (10.1016/j.jfranklin.2019.06.026_bib0024) 2012; 4 10.1016/j.jfranklin.2019.06.026_bib0022 Cavalcante (10.1016/j.jfranklin.2019.06.026_bib0001) 2009; 57 Kar (10.1016/j.jfranklin.2019.06.026_bib0002) 2012; 58 10.1016/j.jfranklin.2019.06.026_bib0020 Lee (10.1016/j.jfranklin.2019.06.026_bib0030) 2017; 62 10.1016/j.jfranklin.2019.06.026_bib0040 Nedić (10.1016/j.jfranklin.2019.06.026_bib0006) 2009; 54 Gomadam (10.1016/j.jfranklin.2019.06.026_bib0005) 2011; 57 Li (10.1016/j.jfranklin.2019.06.026_bib0016) 2018; 48 Akbari (10.1016/j.jfranklin.2019.06.026_bib0029) 2014 Simonetto (10.1016/j.jfranklin.2019.06.026_bib0012) 2016; 168 Liang (10.1016/j.jfranklin.2019.06.026_bib0013) 2019 Beck (10.1016/j.jfranklin.2019.06.026_bib0004) 2014; 1 Hazan (10.1016/j.jfranklin.2019.06.026_bib0023) 2007; 69 Hosseini (10.1016/j.jfranklin.2019.06.026_bib0026) 2016; 61 Li (10.1016/j.jfranklin.2019.06.026_bib0039) 2016; 64 Liang (10.1016/j.jfranklin.2019.06.026_bib0014) 2019; 105 Li (10.1016/j.jfranklin.2019.06.026_bib0017) 2019; 64 Yan (10.1016/j.jfranklin.2019.06.026_bib0025) 2013; 25 10.1016/j.jfranklin.2019.06.026_bib0034 Xia (10.1016/j.jfranklin.2019.06.026_bib0036) 2010; 80 Nedić (10.1016/j.jfranklin.2019.06.026_bib0038) 2016; 61 Low (10.1016/j.jfranklin.2019.06.026_bib0003) 1999; 7 Belomestny (10.1016/j.jfranklin.2019.06.026_bib0032) 2010; 48 Mateos-Núnez (10.1016/j.jfranklin.2019.06.026_bib0027) 2014; 1 Nedić (10.1016/j.jfranklin.2019.06.026_bib0028) 2015; 2015 Madan (10.1016/j.jfranklin.2019.06.026_bib0031) 2006; 5 Li (10.1016/j.jfranklin.2019.06.026_bib0019) 2018 Li (10.1016/j.jfranklin.2019.06.026_bib0035) 2018; 14 Duchi (10.1016/j.jfranklin.2019.06.026_bib0008) 2012; 57 Zhu (10.1016/j.jfranklin.2019.06.026_bib0010) 2012; 57 Li (10.1016/j.jfranklin.2019.06.026_bib0018) 2018 Vujanic (10.1016/j.jfranklin.2019.06.026_bib0037) 2016; 67 Ram (10.1016/j.jfranklin.2019.06.026_bib0007) 2010; 147 Necoara (10.1016/j.jfranklin.2019.06.026_bib0009) 2015; 55 Yuan (10.1016/j.jfranklin.2019.06.026_bib0033) 2018; 48 |
| References_xml | – volume: 1 start-page: 23 year: 2014 end-page: 37 ident: bib0027 article-title: Distributed online convex optimization over jointly connected digraphs publication-title: IEEE Trans. Netw. Sci. Eng. – volume: 58 start-page: 3575 year: 2012 end-page: 3605 ident: bib0002 article-title: Distributed parameter estimation in sensor networks: nonlinear observation models and imperfect communication publication-title: IEEE Trans. Inf. Theory – volume: 57 start-page: 592 year: 2012 end-page: 606 ident: bib0008 article-title: Dual averaging for distributed optimization: convergence analysis and network scaling publication-title: IEEE Trans. Autom. Control – volume: 67 start-page: 144 year: 2016 end-page: 156 ident: bib0037 article-title: A decomposition method for large scale MILPs, with performance guarantees and a power system application publication-title: Automatica – volume: 61 start-page: 3545 year: 2016 end-page: 3550 ident: bib0026 article-title: Online distributed convex optimization on dynamic networks publication-title: IEEE Trans. Autom. Control – year: 2019 ident: bib0013 article-title: Distributed smooth convex optimization with coupled constraints publication-title: IEEE Trans. Autom. Control – volume: 61 start-page: 3936 year: 2016 end-page: 3947 ident: bib0038 article-title: Stochastic gradient-push for strongly convex functions on time-varying directed graphs publication-title: IEEE Trans. Autom. Control – volume: 57 start-page: 2762 year: 2009 end-page: 2774 ident: bib0001 article-title: An adaptive projected subgradient approach to learning in diffusion networks publication-title: IEEE Trans. Signal Process. – volume: 69 start-page: 169 year: 2007 end-page: 192 ident: bib0023 article-title: Logarithmic regret algorithms for online convex optimization publication-title: Mach. Learn. – volume: 4 start-page: 107 year: 2012 end-page: 194 ident: bib0024 article-title: Online learning and online convex optimization publication-title: Found. Trends Mach. Learn. – volume: 55 start-page: 209 year: 2015 end-page: 216 ident: bib0009 article-title: On linear convergence of a distributed dual gradient algorithm for linearly constrained separable convex problems publication-title: Automatica – volume: 57 start-page: 151 year: 2012 end-page: 164 ident: bib0010 article-title: On distributed convex optimization under inequality and equality constraints publication-title: IEEE Trans. Autom. Control – volume: 48 start-page: 3562 year: 2010 end-page: 3588 ident: bib0032 article-title: Regression methods for stochastic control problems and their convergence analysis publication-title: SIAM J. Control Optimiz. – volume: 5 start-page: 2185 year: 2006 end-page: 2193 ident: bib0031 article-title: Distributed algorithms for maximum lifetime routing in wireless sensor networks publication-title: IEEE Trans. Wirel. Commun. – volume: 147 start-page: 516 year: 2010 end-page: 545 ident: bib0007 article-title: Distributed stochastic subgradient projection algorithms for convex optimization publication-title: J. Optimiz. Theory Appl. – year: 2018 ident: bib0019 article-title: Convergence analysis of a distributed optimization algorithm with a general unbalanced directed communication network publication-title: IEEE Trans. Netw. Sci. Eng. – volume: 1 start-page: 64 year: 2014 end-page: 73 ident: bib0004 article-title: An publication-title: IEEE Trans. Control Netw. Syst. – volume: 54 start-page: 48 year: 2009 end-page: 61 ident: bib0006 article-title: Distributed subgradient methods for multi-agent optimization publication-title: IEEE Trans. Autom. Control – volume: 25 start-page: 2483 year: 2013 end-page: 2493 ident: bib0025 article-title: Distributed autonomous online learning: Regrets and intrinsic privacy-preserving properties publication-title: IEEE Trans. Knowl. Data Eng. – volume: 48 start-page: 3045 year: 2018 end-page: 3055 ident: bib0033 article-title: An adaptive primal-dual subgradient algorithm for online distributed constrained optimization publication-title: IEEE Trans. Cybern. – reference: C. Gu, Z. Wu, J. Li, Distributed regularized dual gradient algorithm for constrained convex optimization over time-varying directed graphs, 2018, arXiv: – volume: 7 start-page: 861 year: 1999 end-page: 874 ident: bib0003 article-title: Optimization flow control-i: Basic algorithm and convergence publication-title: IEEE/ACM Trans. Netw. – reference: X. Li, X. Yi, L. Xie, Distributed online optimization for multi-agent networks with coupled inequality constraints, 2018c. arXiv: – volume: 14 start-page: 301 year: 2018 end-page: 310 ident: bib0035 article-title: Noncooperative game-based distributed charging control for plug-in electric vehicles in distribution networks publication-title: IEEE Trans. Ind. Inf. – volume: 57 start-page: 3309 year: 2011 end-page: 3322 ident: bib0005 article-title: A distributed numerical approach to interference alignment and applications to wireless interference networks publication-title: IEEE Trans. Inf. Theory – volume: 60 start-page: 601 year: 2015 end-page: 615 ident: bib0015 article-title: Distributed optimization over time-varying directed graphs publication-title: IEEE Trans. Autom. Control – volume: 48 start-page: 1908 year: 2018 end-page: 1919 ident: bib0016 article-title: Event-triggered communication and data rate constraint for distributed optimization of multiagent systems publication-title: IEEE Trans. Syst. Man Cybern. Syst. – start-page: 264 year: 2014 end-page: 269 ident: bib0029 article-title: Distributed subgradient-push online convex optimization on time-varying directed graphs publication-title: Proceedings of the 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton) – reference: . – volume: 2015 start-page: 4497 year: 2015 end-page: 4503 ident: bib0028 article-title: Decentralized online optimization with global objectives and local communication publication-title: Proceedings of the American Control Conference (ACC) – volume: 80 start-page: 975 year: 2010 end-page: 986 ident: bib0036 article-title: Optimal dynamic economic dispatch of generation: a review publication-title: Electric Power Syst. Res. – volume: 168 start-page: 172 year: 2016 end-page: 197 ident: bib0012 article-title: Primal recovery from consensus-based dual decomposition for distributed convex optimization publication-title: J. Optimiz. Theory Appl. – volume: 62 start-page: 6407 year: 2017 end-page: 6414 ident: bib0030 article-title: Stochastic dual averaging for decentralized online optimization on time-varying communication graphs publication-title: IEEE Trans. Autom. Control – volume: 64 start-page: 671 year: 2016 end-page: 697 ident: bib0039 article-title: A fast dual proximal-gradient method for separable convex optimization with linear coupled constraints publication-title: Comput. Optimiz. Appl. – reference: M. Zinkevich, Online convex programming and generalized infinitesimal gradient ascent, Proceedings of the 20th International Conference on Machine Learning (ICML-03) (2003) 928–936. – volume: 64 start-page: 1309 year: 2019 end-page: 1316 ident: bib0017 article-title: Distributed projection subgradient algorithm over time-varying general unbalanced directed graphs publication-title: IEEE Trans. Autom. Control – year: 2018 ident: bib0018 article-title: Accelerated convergence algorithm for distributed constrained optimization under time-varying general directed graphs publication-title: IEEE Trans. Syst. Man Cybern. Syst. – reference: S. Lee, M.M. Zavlanos, On the sublinear regret of distributed primal-dual algorithms for online constrained optimization, 2017. arXiv: – volume: 41 start-page: 1715 year: 2011 end-page: 1724 ident: bib0011 article-title: Distributed primal-dual subgradient method for multiagent optimization via consensus algorithms publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.) – volume: 105 start-page: 298 year: 2019 end-page: 306 ident: bib0014 article-title: Exponential convergence of distributed primal-dual convex optimization algorithm without strong convexity publication-title: Automatica – volume: 84 start-page: 149 year: 2017 end-page: 158 ident: bib0021 article-title: Dual decomposition for multi-agent distributed optimization with coupling constraints publication-title: Automatica – year: 2018 ident: 10.1016/j.jfranklin.2019.06.026_bib0018 article-title: Accelerated convergence algorithm for distributed constrained optimization under time-varying general directed graphs publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 84 start-page: 149 year: 2017 ident: 10.1016/j.jfranklin.2019.06.026_bib0021 article-title: Dual decomposition for multi-agent distributed optimization with coupling constraints publication-title: Automatica doi: 10.1016/j.automatica.2017.07.003 – volume: 1 start-page: 23 year: 2014 ident: 10.1016/j.jfranklin.2019.06.026_bib0027 article-title: Distributed online convex optimization over jointly connected digraphs publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2014.2363554 – volume: 7 start-page: 861 year: 1999 ident: 10.1016/j.jfranklin.2019.06.026_bib0003 article-title: Optimization flow control-i: Basic algorithm and convergence publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/90.811451 – volume: 67 start-page: 144 year: 2016 ident: 10.1016/j.jfranklin.2019.06.026_bib0037 article-title: A decomposition method for large scale MILPs, with performance guarantees and a power system application publication-title: Automatica doi: 10.1016/j.automatica.2016.01.006 – year: 2019 ident: 10.1016/j.jfranklin.2019.06.026_bib0013 article-title: Distributed smooth convex optimization with coupled constraints publication-title: IEEE Trans. Autom. Control – volume: 48 start-page: 3562 year: 2010 ident: 10.1016/j.jfranklin.2019.06.026_bib0032 article-title: Regression methods for stochastic control problems and their convergence analysis publication-title: SIAM J. Control Optimiz. doi: 10.1137/090752651 – ident: 10.1016/j.jfranklin.2019.06.026_bib0022 – volume: 80 start-page: 975 year: 2010 ident: 10.1016/j.jfranklin.2019.06.026_bib0036 article-title: Optimal dynamic economic dispatch of generation: a review publication-title: Electric Power Syst. Res. doi: 10.1016/j.epsr.2009.12.012 – volume: 62 start-page: 6407 year: 2017 ident: 10.1016/j.jfranklin.2019.06.026_bib0030 article-title: Stochastic dual averaging for decentralized online optimization on time-varying communication graphs publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2017.2650563 – volume: 58 start-page: 3575 year: 2012 ident: 10.1016/j.jfranklin.2019.06.026_bib0002 article-title: Distributed parameter estimation in sensor networks: nonlinear observation models and imperfect communication publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2012.2191450 – ident: 10.1016/j.jfranklin.2019.06.026_bib0020 – volume: 5 start-page: 2185 year: 2006 ident: 10.1016/j.jfranklin.2019.06.026_bib0031 article-title: Distributed algorithms for maximum lifetime routing in wireless sensor networks publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2006.1687734 – start-page: 264 year: 2014 ident: 10.1016/j.jfranklin.2019.06.026_bib0029 article-title: Distributed subgradient-push online convex optimization on time-varying directed graphs – volume: 60 start-page: 601 year: 2015 ident: 10.1016/j.jfranklin.2019.06.026_bib0015 article-title: Distributed optimization over time-varying directed graphs publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2014.2364096 – volume: 57 start-page: 2762 year: 2009 ident: 10.1016/j.jfranklin.2019.06.026_bib0001 article-title: An adaptive projected subgradient approach to learning in diffusion networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2018648 – volume: 69 start-page: 169 year: 2007 ident: 10.1016/j.jfranklin.2019.06.026_bib0023 article-title: Logarithmic regret algorithms for online convex optimization publication-title: Mach. Learn. doi: 10.1007/s10994-007-5016-8 – volume: 61 start-page: 3936 year: 2016 ident: 10.1016/j.jfranklin.2019.06.026_bib0038 article-title: Stochastic gradient-push for strongly convex functions on time-varying directed graphs publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2016.2529285 – volume: 25 start-page: 2483 year: 2013 ident: 10.1016/j.jfranklin.2019.06.026_bib0025 article-title: Distributed autonomous online learning: Regrets and intrinsic privacy-preserving properties publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2012.191 – volume: 64 start-page: 671 year: 2016 ident: 10.1016/j.jfranklin.2019.06.026_bib0039 article-title: A fast dual proximal-gradient method for separable convex optimization with linear coupled constraints publication-title: Comput. Optimiz. Appl. doi: 10.1007/s10589-016-9826-0 – volume: 41 start-page: 1715 year: 2011 ident: 10.1016/j.jfranklin.2019.06.026_bib0011 article-title: Distributed primal-dual subgradient method for multiagent optimization via consensus algorithms publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.) doi: 10.1109/TSMCB.2011.2160394 – volume: 57 start-page: 3309 year: 2011 ident: 10.1016/j.jfranklin.2019.06.026_bib0005 article-title: A distributed numerical approach to interference alignment and applications to wireless interference networks publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2011.2142270 – volume: 64 start-page: 1309 year: 2019 ident: 10.1016/j.jfranklin.2019.06.026_bib0017 article-title: Distributed projection subgradient algorithm over time-varying general unbalanced directed graphs publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2018.2849616 – ident: 10.1016/j.jfranklin.2019.06.026_bib0034 doi: 10.1109/ACC.2016.7526804 – volume: 147 start-page: 516 year: 2010 ident: 10.1016/j.jfranklin.2019.06.026_bib0007 article-title: Distributed stochastic subgradient projection algorithms for convex optimization publication-title: J. Optimiz. Theory Appl. doi: 10.1007/s10957-010-9737-7 – ident: 10.1016/j.jfranklin.2019.06.026_bib0040 doi: 10.1007/s11075-019-00746-2 – volume: 57 start-page: 151 year: 2012 ident: 10.1016/j.jfranklin.2019.06.026_bib0010 article-title: On distributed convex optimization under inequality and equality constraints publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2011.2167817 – volume: 48 start-page: 1908 year: 2018 ident: 10.1016/j.jfranklin.2019.06.026_bib0016 article-title: Event-triggered communication and data rate constraint for distributed optimization of multiagent systems publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2017.2694323 – volume: 48 start-page: 3045 year: 2018 ident: 10.1016/j.jfranklin.2019.06.026_bib0033 article-title: An adaptive primal-dual subgradient algorithm for online distributed constrained optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2755720 – volume: 2015 start-page: 4497 year: 2015 ident: 10.1016/j.jfranklin.2019.06.026_bib0028 article-title: Decentralized online optimization with global objectives and local communication – volume: 57 start-page: 592 year: 2012 ident: 10.1016/j.jfranklin.2019.06.026_bib0008 article-title: Dual averaging for distributed optimization: convergence analysis and network scaling publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2011.2161027 – volume: 55 start-page: 209 year: 2015 ident: 10.1016/j.jfranklin.2019.06.026_bib0009 article-title: On linear convergence of a distributed dual gradient algorithm for linearly constrained separable convex problems publication-title: Automatica doi: 10.1016/j.automatica.2015.02.038 – volume: 61 start-page: 3545 year: 2016 ident: 10.1016/j.jfranklin.2019.06.026_bib0026 article-title: Online distributed convex optimization on dynamic networks publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2016.2525928 – volume: 1 start-page: 64 year: 2014 ident: 10.1016/j.jfranklin.2019.06.026_bib0004 article-title: An o(1/k) gradient method for network resource allocation problems publication-title: IEEE Trans. Control Netw. Syst. doi: 10.1109/TCNS.2014.2309751 – volume: 168 start-page: 172 year: 2016 ident: 10.1016/j.jfranklin.2019.06.026_bib0012 article-title: Primal recovery from consensus-based dual decomposition for distributed convex optimization publication-title: J. Optimiz. Theory Appl. doi: 10.1007/s10957-015-0758-0 – volume: 54 start-page: 48 year: 2009 ident: 10.1016/j.jfranklin.2019.06.026_bib0006 article-title: Distributed subgradient methods for multi-agent optimization publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2008.2009515 – volume: 105 start-page: 298 year: 2019 ident: 10.1016/j.jfranklin.2019.06.026_bib0014 article-title: Exponential convergence of distributed primal-dual convex optimization algorithm without strong convexity publication-title: Automatica doi: 10.1016/j.automatica.2019.04.004 – year: 2018 ident: 10.1016/j.jfranklin.2019.06.026_bib0019 article-title: Convergence analysis of a distributed optimization algorithm with a general unbalanced directed communication network publication-title: IEEE Trans. Netw. Sci. Eng. – volume: 4 start-page: 107 year: 2012 ident: 10.1016/j.jfranklin.2019.06.026_bib0024 article-title: Online learning and online convex optimization publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000018 – volume: 14 start-page: 301 year: 2018 ident: 10.1016/j.jfranklin.2019.06.026_bib0035 article-title: Noncooperative game-based distributed charging control for plug-in electric vehicles in distribution networks publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2016.2632761 |
| SSID | ssj0017100 |
| Score | 2.307147 |
| Snippet | This paper investigates a distributed optimization problem over multi-agent networks subject to both local and coupled constraints in a non-stationary... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7548 |
| SubjectTerms | Adaptive algorithms Algorithms Computational geometry Computer simulation Convexity Coupling Electric vehicle charging Electric vehicles Graph theory Graphs Machine learning Multiagent systems Nonstationary environments Optimization Studies |
| Title | An adaptive online learning algorithm for distributed convex optimization with coupled constraints over unbalanced directed graphs |
| URI | https://dx.doi.org/10.1016/j.jfranklin.2019.06.026 https://www.proquest.com/docview/2298544503 |
| Volume | 356 |
| WOSCitedRecordID | wos000480435900034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2693 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017100 issn: 0016-0032 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELXKLgc4ID4Fy4J8QFyqoNRu4phbhboCVBUOXaniYtmJs9uqm4a2WXWv_Ch-H-PYTgp0WThwiSI306aZ1_HUfvMGoVepjGUOE3NAIRsJ-pCyBjInOoiySIeKJKnmad1sgo3HyXTKP3c6330tzOWCFUWy3fLyv7oaxsDZpnT2H9zdvCkMwDk4HY7gdjj-leMHRVdmsqwpQVYHw7eGOOvKxdlyNducX9TswsyI5pp-Vzqz7PNtdwl2F64009PSq3JhL1jX_STMBgM8lG5VKEOLNPwBOy_CSS1_vb4m4TUpru8R35IUGgJQZXf_K4hOzeBoZitH9NWyaqaP-sIv5zM_5tYsei0pyy2k-WIaH79aBlMdpHtxAMHGBmm9Z8wFbmolyT1C6U4cZpHV7_xtgrBrFfM389x9X8Pu47WEK9kjyT3-JE5ORyMxGU4nr8uvgelWZnb1XeuWW-iQsIhDND0cfBhOPzb7V0YzyeYA9rZ_Yhbu_ezr8qJfMoQ67ZncR_ec-_DA4uwB6ujiIbq7o2L5CH0bFNgjDlvEYY843CAOA-LwDuKwRRzeRRw2iMMOcXgHcdggDreIwx5x2CLuMTo9GU7evQ9ca48gpX26CWKeaMKIinXKYxbnfU5CxSKpY8qojFKiIkUU02aXMFOQ0kqpNA1zTTMZK87oE3RQLAv9FGEWpTyROfztzsK-ZkqaWu4e1VpHNAX7Zyj2D1akTvfe3PxCeILjXDQeEcYjwlA9CRiGjWFppV9uNnnrPSdcBmufhwD83Wx87H0tXDxZC0J4YvSyQnr055efozvtL-0YHWxWlX6BbqeXm9l69dLh8wcJ9NB4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+online+learning+algorithm+for+distributed+convex+optimization+with+coupled+constraints+over+unbalanced+directed+graphs&rft.jtitle=Journal+of+the+Franklin+Institute&rft.au=Gu%2C+Chuanye&rft.au=Li%2C+Jueyou&rft.au=Wu%2C+Zhiyou&rft.date=2019-09-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0016-0032&rft.eissn=0016-0032&rft.volume=356&rft.issue=13&rft.spage=7548&rft_id=info:doi/10.1016%2Fj.jfranklin.2019.06.026&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-0032&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-0032&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-0032&client=summon |