An adaptive online learning algorithm for distributed convex optimization with coupled constraints over unbalanced directed graphs

This paper investigates a distributed optimization problem over multi-agent networks subject to both local and coupled constraints in a non-stationary environment, where a set of agents aim to cooperatively minimize the sum of locally time-varying cost functions when the communication graphs are tim...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Franklin Institute Vol. 356; no. 13; pp. 7548 - 7570
Main Authors: Gu, Chuanye, Li, Jueyou, Wu, Zhiyou
Format: Journal Article
Language:English
Published: Elmsford Elsevier Ltd 01.09.2019
Elsevier Science Ltd
Subjects:
ISSN:0016-0032, 1879-2693, 0016-0032
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper investigates a distributed optimization problem over multi-agent networks subject to both local and coupled constraints in a non-stationary environment, where a set of agents aim to cooperatively minimize the sum of locally time-varying cost functions when the communication graphs are time-changing connected and unbalanced. Based on dual decomposition, we propose a distributed online dual push-sum learning algorithm by incorporating the push-sum protocol into dual gradient method. We then show that the regret bound has a sublinear growth of O(Tp) and the constraint violation is also sublinear with order of O(T1−p/2), where T is the time horizon and 0 < p ≤ 1/2. Finally, simulation experiments on a plug-in electric vehicle charging problem are utilized to verify the performance of the proposed algorithm. The proposed algorithm is adaptive without knowing the total number of iterations T in advance. The convergence results are established on more general unbalanced graphs without the boundedness assumption on dual variables. In addition, more privacy concerns are guaranteed since only dual variables related with coupled constraints are exchanged among agents.
AbstractList This paper investigates a distributed optimization problem over multi-agent networks subject to both local and coupled constraints in a non-stationary environment, where a set of agents aim to cooperatively minimize the sum of locally time-varying cost functions when the communication graphs are time-changing connected and unbalanced. Based on dual decomposition, we propose a distributed online dual push-sum learning algorithm by incorporating the push-sum protocol into dual gradient method. We then show that the regret bound has a sublinear growth of O(Tp) and the constraint violation is also sublinear with order of O(T1−p/2), where T is the time horizon and 0 < p ≤ 1/2. Finally, simulation experiments on a plug-in electric vehicle charging problem are utilized to verify the performance of the proposed algorithm. The proposed algorithm is adaptive without knowing the total number of iterations T in advance. The convergence results are established on more general unbalanced graphs without the boundedness assumption on dual variables. In addition, more privacy concerns are guaranteed since only dual variables related with coupled constraints are exchanged among agents.
Author Wu, Zhiyou
Gu, Chuanye
Li, Jueyou
Author_xml – sequence: 1
  givenname: Chuanye
  surname: Gu
  fullname: Gu, Chuanye
  email: chuanye.gu@postgrad.curtin.edu.au
  organization: Department of Mathematics and Statistics, Cutin University, Perth, WA 6845, Australia
– sequence: 2
  givenname: Jueyou
  surname: Li
  fullname: Li, Jueyou
  email: lijueyou@cqnu.edu.cn
  organization: School of Mathematical Sciences, Chongqing Normal University, Chongqing 400047, China
– sequence: 3
  givenname: Zhiyou
  surname: Wu
  fullname: Wu, Zhiyou
  email: zywu@cqnu.edu.cn
  organization: School of Mathematical Sciences, Chongqing Normal University, Chongqing 400047, China
BookMark eNqNkEtv3CAURlGVSpmk_Q1B6toujzEMiy5GUV9SpG7aNQJ8PcH1gAt4-lj2lwdnqi66aVbo6p7vQ_dcoYsQAyB0Q0lLCRWvx3YckglfJx9aRqhqiWgJE8_Qhu6kaphQ_AJtSEUbQji7RFc5j3WUlJAN-r0P2PRmLv4EOIZaAngCk4IPB2ymQ0y-3B_xEBPufS7J26VAj10MJ_iBY80d_S9TfAz4eyXrYpmnM1Bp40PJOJ4g4SVYM5ng6q73Cdzackhmvs8v0PPBTBle_nmv0Zd3bz_ffmjuPr3_eLu_axzf8tIItQMmmRXglJBi2CpGrOwMCC656RyznWVWAqVC9lZRYowFTgbgvRFWSX6NXp175xS_LZCLHuOSQv1SM6Z23XbbEV6pN2fKpZhzgkE7Xx4PXM-ZNCV61a5H_Ve7XrVrInTVXvPyn_yc_NGkn09I7s9JqBJOHpLOzsNq7NGX7qP_b8cDaKmoqg
CitedBy_id crossref_primary_10_1016_j_jfranklin_2021_07_015
crossref_primary_10_1007_s10957_023_02173_9
crossref_primary_10_1016_j_jfranklin_2023_09_001
crossref_primary_10_1016_j_jfranklin_2023_12_033
crossref_primary_10_1016_j_jfranklin_2021_02_017
crossref_primary_10_1016_j_jfranklin_2020_02_057
crossref_primary_10_1109_TNSE_2022_3155481
crossref_primary_10_1016_j_jfranklin_2022_03_046
crossref_primary_10_1109_ACCESS_2023_3244070
crossref_primary_10_1016_j_jfranklin_2023_10_041
crossref_primary_10_1109_JPROC_2025_3557698
crossref_primary_10_3390_en14123654
crossref_primary_10_1016_j_jfranklin_2024_106884
crossref_primary_10_1016_j_jfranklin_2024_107466
Cites_doi 10.1016/j.automatica.2017.07.003
10.1109/TNSE.2014.2363554
10.1109/90.811451
10.1016/j.automatica.2016.01.006
10.1137/090752651
10.1016/j.epsr.2009.12.012
10.1109/TAC.2017.2650563
10.1109/TIT.2012.2191450
10.1109/TWC.2006.1687734
10.1109/TAC.2014.2364096
10.1109/TSP.2009.2018648
10.1007/s10994-007-5016-8
10.1109/TAC.2016.2529285
10.1109/TKDE.2012.191
10.1007/s10589-016-9826-0
10.1109/TSMCB.2011.2160394
10.1109/TIT.2011.2142270
10.1109/TAC.2018.2849616
10.1109/ACC.2016.7526804
10.1007/s10957-010-9737-7
10.1007/s11075-019-00746-2
10.1109/TAC.2011.2167817
10.1109/TSMC.2017.2694323
10.1109/TCYB.2017.2755720
10.1109/TAC.2011.2161027
10.1016/j.automatica.2015.02.038
10.1109/TAC.2016.2525928
10.1109/TCNS.2014.2309751
10.1007/s10957-015-0758-0
10.1109/TAC.2008.2009515
10.1016/j.automatica.2019.04.004
10.1561/2200000018
10.1109/TII.2016.2632761
ContentType Journal Article
Copyright 2019
Copyright Elsevier Science Ltd. Sep 2019
Copyright_xml – notice: 2019
– notice: Copyright Elsevier Science Ltd. Sep 2019
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.jfranklin.2019.06.026
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2693
0016-0032
EndPage 7570
ExternalDocumentID 10_1016_j_jfranklin_2019_06_026
S0016003219304739
GrantInformation_xml – fundername: Natural Science Foundation of Chongqing
  grantid: cstc2017jcyjAX0253; cstc2018jcyjAX0172
  funderid: https://doi.org/10.13039/501100005230
– fundername: Chongqing Municipal Education Commission
  grantid: KJQN201800520
  funderid: https://doi.org/10.13039/501100007957
– fundername: NSFC
  grantid: 11501070; 11671062; 11871128
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
41~
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFRF
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AETEA
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
D1Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SET
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
UHS
VOH
WH7
WUQ
XOL
XPP
ZCG
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
ADXHL
AEIPS
AFJKZ
AGQPQ
AHPAA
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
KR7
SSH
ID FETCH-LOGICAL-c343t-698e272b6ec9676f4920b75ae6373a5c2b5b2b7e1167db910aabe30fe3da6b973
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000480435900034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-0032
IngestDate Fri Jul 25 03:03:21 EDT 2025
Tue Nov 18 22:23:53 EST 2025
Sat Nov 29 07:30:52 EST 2025
Fri Feb 23 02:30:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-698e272b6ec9676f4920b75ae6373a5c2b5b2b7e1167db910aabe30fe3da6b973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2298544503
PQPubID 2045917
PageCount 23
ParticipantIDs proquest_journals_2298544503
crossref_citationtrail_10_1016_j_jfranklin_2019_06_026
crossref_primary_10_1016_j_jfranklin_2019_06_026
elsevier_sciencedirect_doi_10_1016_j_jfranklin_2019_06_026
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationPlace Elmsford
PublicationPlace_xml – name: Elmsford
PublicationTitle Journal of the Franklin Institute
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Belomestny, Kolodko, Schoenmakers (bib0032) 2010; 48
Gomadam, Cadambe, Jafar (bib0005) 2011; 57
Duchi, Agarwal, Wainwright (bib0008) 2012; 57
Akbari, Gharesifard, Linder (bib0029) 2014
Yuan, Xu, Zhao (bib0011) 2011; 41
Li, Li, Xu, Dong, Wong, Huang (bib0035) 2018; 14
Madan, Lall (bib0031) 2006; 5
Vujanic, Mohajerin, Goulart, Mariethoz, Morari (bib0037) 2016; 67
Nedić, Ozdaglar (bib0006) 2009; 54
Kar, Moura, Ramanan (bib0002) 2012; 58
Liang, Wang, Yin (bib0014) 2019; 105
Xia, Elaiw (bib0036) 2010; 80
Beck, Nedić, Ozdaglar, Teboulle (bib0004) 2014; 1
Yuan, Ho, Jiang (bib0033) 2018; 48
Nedić, Olshevsky (bib0015) 2015; 60
Li, Lu, Liao, Huang (bib0018) 2018
Li, Liu, Soh, Xie (bib0016) 2018; 48
Low, Lapsley (bib0003) 1999; 7
Mateos-Núnez, Cortés (bib0027) 2014; 1
Nedić, Lee, Raginsky (bib0028) 2015; 2015
M. Zinkevich, Online convex programming and generalized infinitesimal gradient ascent, Proceedings of the 20th International Conference on Machine Learning (ICML-03) (2003) 928–936.
X. Li, X. Yi, L. Xie, Distributed online optimization for multi-agent networks with coupled inequality constraints, 2018c. arXiv
Simonetto, Jamali-Rad (bib0012) 2016; 168
S. Lee, M.M. Zavlanos, On the sublinear regret of distributed primal-dual algorithms for online constrained optimization, 2017. arXiv
Yan, Sundaram, Vishwanathan, Yuan (bib0025) 2013; 25
Hosseini, Chapman, Mesbahi (bib0026) 2016; 61
Li, Lu, Huang (bib0019) 2018
Shalev-Shwartz (bib0024) 2012; 4
Zhu, Martínez (bib0010) 2012; 57
Liang, Wang, Yin (bib0013) 2019
.
Cavalcante, Yamada, Mulgrew (bib0001) 2009; 57
Necoara, Nedelcu (bib0009) 2015; 55
Falsone, Margellos, Garatti, Prandini (bib0021) 2017; 84
Hazan, Agarwal, Kale (bib0023) 2007; 69
Nedić, Olshevsky (bib0038) 2016; 61
Li, Chen, Dong, Wu (bib0039) 2016; 64
Ram, Nedić, Veeravalli (bib0007) 2010; 147
Li, Lu, Huang (bib0017) 2019; 64
Lee, Nedić, Raginsky (bib0030) 2017; 62
C. Gu, Z. Wu, J. Li, Distributed regularized dual gradient algorithm for constrained convex optimization over time-varying directed graphs, 2018, arXiv
Yuan (10.1016/j.jfranklin.2019.06.026_bib0011) 2011; 41
Nedić (10.1016/j.jfranklin.2019.06.026_bib0015) 2015; 60
Falsone (10.1016/j.jfranklin.2019.06.026_bib0021) 2017; 84
Shalev-Shwartz (10.1016/j.jfranklin.2019.06.026_bib0024) 2012; 4
10.1016/j.jfranklin.2019.06.026_bib0022
Cavalcante (10.1016/j.jfranklin.2019.06.026_bib0001) 2009; 57
Kar (10.1016/j.jfranklin.2019.06.026_bib0002) 2012; 58
10.1016/j.jfranklin.2019.06.026_bib0020
Lee (10.1016/j.jfranklin.2019.06.026_bib0030) 2017; 62
10.1016/j.jfranklin.2019.06.026_bib0040
Nedić (10.1016/j.jfranklin.2019.06.026_bib0006) 2009; 54
Gomadam (10.1016/j.jfranklin.2019.06.026_bib0005) 2011; 57
Li (10.1016/j.jfranklin.2019.06.026_bib0016) 2018; 48
Akbari (10.1016/j.jfranklin.2019.06.026_bib0029) 2014
Simonetto (10.1016/j.jfranklin.2019.06.026_bib0012) 2016; 168
Liang (10.1016/j.jfranklin.2019.06.026_bib0013) 2019
Beck (10.1016/j.jfranklin.2019.06.026_bib0004) 2014; 1
Hazan (10.1016/j.jfranklin.2019.06.026_bib0023) 2007; 69
Hosseini (10.1016/j.jfranklin.2019.06.026_bib0026) 2016; 61
Li (10.1016/j.jfranklin.2019.06.026_bib0039) 2016; 64
Liang (10.1016/j.jfranklin.2019.06.026_bib0014) 2019; 105
Li (10.1016/j.jfranklin.2019.06.026_bib0017) 2019; 64
Yan (10.1016/j.jfranklin.2019.06.026_bib0025) 2013; 25
10.1016/j.jfranklin.2019.06.026_bib0034
Xia (10.1016/j.jfranklin.2019.06.026_bib0036) 2010; 80
Nedić (10.1016/j.jfranklin.2019.06.026_bib0038) 2016; 61
Low (10.1016/j.jfranklin.2019.06.026_bib0003) 1999; 7
Belomestny (10.1016/j.jfranklin.2019.06.026_bib0032) 2010; 48
Mateos-Núnez (10.1016/j.jfranklin.2019.06.026_bib0027) 2014; 1
Nedić (10.1016/j.jfranklin.2019.06.026_bib0028) 2015; 2015
Madan (10.1016/j.jfranklin.2019.06.026_bib0031) 2006; 5
Li (10.1016/j.jfranklin.2019.06.026_bib0019) 2018
Li (10.1016/j.jfranklin.2019.06.026_bib0035) 2018; 14
Duchi (10.1016/j.jfranklin.2019.06.026_bib0008) 2012; 57
Zhu (10.1016/j.jfranklin.2019.06.026_bib0010) 2012; 57
Li (10.1016/j.jfranklin.2019.06.026_bib0018) 2018
Vujanic (10.1016/j.jfranklin.2019.06.026_bib0037) 2016; 67
Ram (10.1016/j.jfranklin.2019.06.026_bib0007) 2010; 147
Necoara (10.1016/j.jfranklin.2019.06.026_bib0009) 2015; 55
Yuan (10.1016/j.jfranklin.2019.06.026_bib0033) 2018; 48
References_xml – volume: 1
  start-page: 23
  year: 2014
  end-page: 37
  ident: bib0027
  article-title: Distributed online convex optimization over jointly connected digraphs
  publication-title: IEEE Trans. Netw. Sci. Eng.
– volume: 58
  start-page: 3575
  year: 2012
  end-page: 3605
  ident: bib0002
  article-title: Distributed parameter estimation in sensor networks: nonlinear observation models and imperfect communication
  publication-title: IEEE Trans. Inf. Theory
– volume: 57
  start-page: 592
  year: 2012
  end-page: 606
  ident: bib0008
  article-title: Dual averaging for distributed optimization: convergence analysis and network scaling
  publication-title: IEEE Trans. Autom. Control
– volume: 67
  start-page: 144
  year: 2016
  end-page: 156
  ident: bib0037
  article-title: A decomposition method for large scale MILPs, with performance guarantees and a power system application
  publication-title: Automatica
– volume: 61
  start-page: 3545
  year: 2016
  end-page: 3550
  ident: bib0026
  article-title: Online distributed convex optimization on dynamic networks
  publication-title: IEEE Trans. Autom. Control
– year: 2019
  ident: bib0013
  article-title: Distributed smooth convex optimization with coupled constraints
  publication-title: IEEE Trans. Autom. Control
– volume: 61
  start-page: 3936
  year: 2016
  end-page: 3947
  ident: bib0038
  article-title: Stochastic gradient-push for strongly convex functions on time-varying directed graphs
  publication-title: IEEE Trans. Autom. Control
– volume: 57
  start-page: 2762
  year: 2009
  end-page: 2774
  ident: bib0001
  article-title: An adaptive projected subgradient approach to learning in diffusion networks
  publication-title: IEEE Trans. Signal Process.
– volume: 69
  start-page: 169
  year: 2007
  end-page: 192
  ident: bib0023
  article-title: Logarithmic regret algorithms for online convex optimization
  publication-title: Mach. Learn.
– volume: 4
  start-page: 107
  year: 2012
  end-page: 194
  ident: bib0024
  article-title: Online learning and online convex optimization
  publication-title: Found. Trends Mach. Learn.
– volume: 55
  start-page: 209
  year: 2015
  end-page: 216
  ident: bib0009
  article-title: On linear convergence of a distributed dual gradient algorithm for linearly constrained separable convex problems
  publication-title: Automatica
– volume: 57
  start-page: 151
  year: 2012
  end-page: 164
  ident: bib0010
  article-title: On distributed convex optimization under inequality and equality constraints
  publication-title: IEEE Trans. Autom. Control
– volume: 48
  start-page: 3562
  year: 2010
  end-page: 3588
  ident: bib0032
  article-title: Regression methods for stochastic control problems and their convergence analysis
  publication-title: SIAM J. Control Optimiz.
– volume: 5
  start-page: 2185
  year: 2006
  end-page: 2193
  ident: bib0031
  article-title: Distributed algorithms for maximum lifetime routing in wireless sensor networks
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 147
  start-page: 516
  year: 2010
  end-page: 545
  ident: bib0007
  article-title: Distributed stochastic subgradient projection algorithms for convex optimization
  publication-title: J. Optimiz. Theory Appl.
– year: 2018
  ident: bib0019
  article-title: Convergence analysis of a distributed optimization algorithm with a general unbalanced directed communication network
  publication-title: IEEE Trans. Netw. Sci. Eng.
– volume: 1
  start-page: 64
  year: 2014
  end-page: 73
  ident: bib0004
  article-title: An
  publication-title: IEEE Trans. Control Netw. Syst.
– volume: 54
  start-page: 48
  year: 2009
  end-page: 61
  ident: bib0006
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Trans. Autom. Control
– volume: 25
  start-page: 2483
  year: 2013
  end-page: 2493
  ident: bib0025
  article-title: Distributed autonomous online learning: Regrets and intrinsic privacy-preserving properties
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 48
  start-page: 3045
  year: 2018
  end-page: 3055
  ident: bib0033
  article-title: An adaptive primal-dual subgradient algorithm for online distributed constrained optimization
  publication-title: IEEE Trans. Cybern.
– reference: C. Gu, Z. Wu, J. Li, Distributed regularized dual gradient algorithm for constrained convex optimization over time-varying directed graphs, 2018, arXiv:
– volume: 7
  start-page: 861
  year: 1999
  end-page: 874
  ident: bib0003
  article-title: Optimization flow control-i: Basic algorithm and convergence
  publication-title: IEEE/ACM Trans. Netw.
– reference: X. Li, X. Yi, L. Xie, Distributed online optimization for multi-agent networks with coupled inequality constraints, 2018c. arXiv:
– volume: 14
  start-page: 301
  year: 2018
  end-page: 310
  ident: bib0035
  article-title: Noncooperative game-based distributed charging control for plug-in electric vehicles in distribution networks
  publication-title: IEEE Trans. Ind. Inf.
– volume: 57
  start-page: 3309
  year: 2011
  end-page: 3322
  ident: bib0005
  article-title: A distributed numerical approach to interference alignment and applications to wireless interference networks
  publication-title: IEEE Trans. Inf. Theory
– volume: 60
  start-page: 601
  year: 2015
  end-page: 615
  ident: bib0015
  article-title: Distributed optimization over time-varying directed graphs
  publication-title: IEEE Trans. Autom. Control
– volume: 48
  start-page: 1908
  year: 2018
  end-page: 1919
  ident: bib0016
  article-title: Event-triggered communication and data rate constraint for distributed optimization of multiagent systems
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– start-page: 264
  year: 2014
  end-page: 269
  ident: bib0029
  article-title: Distributed subgradient-push online convex optimization on time-varying directed graphs
  publication-title: Proceedings of the 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton)
– reference: .
– volume: 2015
  start-page: 4497
  year: 2015
  end-page: 4503
  ident: bib0028
  article-title: Decentralized online optimization with global objectives and local communication
  publication-title: Proceedings of the American Control Conference (ACC)
– volume: 80
  start-page: 975
  year: 2010
  end-page: 986
  ident: bib0036
  article-title: Optimal dynamic economic dispatch of generation: a review
  publication-title: Electric Power Syst. Res.
– volume: 168
  start-page: 172
  year: 2016
  end-page: 197
  ident: bib0012
  article-title: Primal recovery from consensus-based dual decomposition for distributed convex optimization
  publication-title: J. Optimiz. Theory Appl.
– volume: 62
  start-page: 6407
  year: 2017
  end-page: 6414
  ident: bib0030
  article-title: Stochastic dual averaging for decentralized online optimization on time-varying communication graphs
  publication-title: IEEE Trans. Autom. Control
– volume: 64
  start-page: 671
  year: 2016
  end-page: 697
  ident: bib0039
  article-title: A fast dual proximal-gradient method for separable convex optimization with linear coupled constraints
  publication-title: Comput. Optimiz. Appl.
– reference: M. Zinkevich, Online convex programming and generalized infinitesimal gradient ascent, Proceedings of the 20th International Conference on Machine Learning (ICML-03) (2003) 928–936.
– volume: 64
  start-page: 1309
  year: 2019
  end-page: 1316
  ident: bib0017
  article-title: Distributed projection subgradient algorithm over time-varying general unbalanced directed graphs
  publication-title: IEEE Trans. Autom. Control
– year: 2018
  ident: bib0018
  article-title: Accelerated convergence algorithm for distributed constrained optimization under time-varying general directed graphs
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– reference: S. Lee, M.M. Zavlanos, On the sublinear regret of distributed primal-dual algorithms for online constrained optimization, 2017. arXiv:
– volume: 41
  start-page: 1715
  year: 2011
  end-page: 1724
  ident: bib0011
  article-title: Distributed primal-dual subgradient method for multiagent optimization via consensus algorithms
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.)
– volume: 105
  start-page: 298
  year: 2019
  end-page: 306
  ident: bib0014
  article-title: Exponential convergence of distributed primal-dual convex optimization algorithm without strong convexity
  publication-title: Automatica
– volume: 84
  start-page: 149
  year: 2017
  end-page: 158
  ident: bib0021
  article-title: Dual decomposition for multi-agent distributed optimization with coupling constraints
  publication-title: Automatica
– year: 2018
  ident: 10.1016/j.jfranklin.2019.06.026_bib0018
  article-title: Accelerated convergence algorithm for distributed constrained optimization under time-varying general directed graphs
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 84
  start-page: 149
  year: 2017
  ident: 10.1016/j.jfranklin.2019.06.026_bib0021
  article-title: Dual decomposition for multi-agent distributed optimization with coupling constraints
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.07.003
– volume: 1
  start-page: 23
  year: 2014
  ident: 10.1016/j.jfranklin.2019.06.026_bib0027
  article-title: Distributed online convex optimization over jointly connected digraphs
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2014.2363554
– volume: 7
  start-page: 861
  year: 1999
  ident: 10.1016/j.jfranklin.2019.06.026_bib0003
  article-title: Optimization flow control-i: Basic algorithm and convergence
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/90.811451
– volume: 67
  start-page: 144
  year: 2016
  ident: 10.1016/j.jfranklin.2019.06.026_bib0037
  article-title: A decomposition method for large scale MILPs, with performance guarantees and a power system application
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.01.006
– year: 2019
  ident: 10.1016/j.jfranklin.2019.06.026_bib0013
  article-title: Distributed smooth convex optimization with coupled constraints
  publication-title: IEEE Trans. Autom. Control
– volume: 48
  start-page: 3562
  year: 2010
  ident: 10.1016/j.jfranklin.2019.06.026_bib0032
  article-title: Regression methods for stochastic control problems and their convergence analysis
  publication-title: SIAM J. Control Optimiz.
  doi: 10.1137/090752651
– ident: 10.1016/j.jfranklin.2019.06.026_bib0022
– volume: 80
  start-page: 975
  year: 2010
  ident: 10.1016/j.jfranklin.2019.06.026_bib0036
  article-title: Optimal dynamic economic dispatch of generation: a review
  publication-title: Electric Power Syst. Res.
  doi: 10.1016/j.epsr.2009.12.012
– volume: 62
  start-page: 6407
  year: 2017
  ident: 10.1016/j.jfranklin.2019.06.026_bib0030
  article-title: Stochastic dual averaging for decentralized online optimization on time-varying communication graphs
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2017.2650563
– volume: 58
  start-page: 3575
  year: 2012
  ident: 10.1016/j.jfranklin.2019.06.026_bib0002
  article-title: Distributed parameter estimation in sensor networks: nonlinear observation models and imperfect communication
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2012.2191450
– ident: 10.1016/j.jfranklin.2019.06.026_bib0020
– volume: 5
  start-page: 2185
  year: 2006
  ident: 10.1016/j.jfranklin.2019.06.026_bib0031
  article-title: Distributed algorithms for maximum lifetime routing in wireless sensor networks
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2006.1687734
– start-page: 264
  year: 2014
  ident: 10.1016/j.jfranklin.2019.06.026_bib0029
  article-title: Distributed subgradient-push online convex optimization on time-varying directed graphs
– volume: 60
  start-page: 601
  year: 2015
  ident: 10.1016/j.jfranklin.2019.06.026_bib0015
  article-title: Distributed optimization over time-varying directed graphs
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2014.2364096
– volume: 57
  start-page: 2762
  year: 2009
  ident: 10.1016/j.jfranklin.2019.06.026_bib0001
  article-title: An adaptive projected subgradient approach to learning in diffusion networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2018648
– volume: 69
  start-page: 169
  year: 2007
  ident: 10.1016/j.jfranklin.2019.06.026_bib0023
  article-title: Logarithmic regret algorithms for online convex optimization
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-007-5016-8
– volume: 61
  start-page: 3936
  year: 2016
  ident: 10.1016/j.jfranklin.2019.06.026_bib0038
  article-title: Stochastic gradient-push for strongly convex functions on time-varying directed graphs
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2016.2529285
– volume: 25
  start-page: 2483
  year: 2013
  ident: 10.1016/j.jfranklin.2019.06.026_bib0025
  article-title: Distributed autonomous online learning: Regrets and intrinsic privacy-preserving properties
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2012.191
– volume: 64
  start-page: 671
  year: 2016
  ident: 10.1016/j.jfranklin.2019.06.026_bib0039
  article-title: A fast dual proximal-gradient method for separable convex optimization with linear coupled constraints
  publication-title: Comput. Optimiz. Appl.
  doi: 10.1007/s10589-016-9826-0
– volume: 41
  start-page: 1715
  year: 2011
  ident: 10.1016/j.jfranklin.2019.06.026_bib0011
  article-title: Distributed primal-dual subgradient method for multiagent optimization via consensus algorithms
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.)
  doi: 10.1109/TSMCB.2011.2160394
– volume: 57
  start-page: 3309
  year: 2011
  ident: 10.1016/j.jfranklin.2019.06.026_bib0005
  article-title: A distributed numerical approach to interference alignment and applications to wireless interference networks
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2142270
– volume: 64
  start-page: 1309
  year: 2019
  ident: 10.1016/j.jfranklin.2019.06.026_bib0017
  article-title: Distributed projection subgradient algorithm over time-varying general unbalanced directed graphs
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2018.2849616
– ident: 10.1016/j.jfranklin.2019.06.026_bib0034
  doi: 10.1109/ACC.2016.7526804
– volume: 147
  start-page: 516
  year: 2010
  ident: 10.1016/j.jfranklin.2019.06.026_bib0007
  article-title: Distributed stochastic subgradient projection algorithms for convex optimization
  publication-title: J. Optimiz. Theory Appl.
  doi: 10.1007/s10957-010-9737-7
– ident: 10.1016/j.jfranklin.2019.06.026_bib0040
  doi: 10.1007/s11075-019-00746-2
– volume: 57
  start-page: 151
  year: 2012
  ident: 10.1016/j.jfranklin.2019.06.026_bib0010
  article-title: On distributed convex optimization under inequality and equality constraints
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2011.2167817
– volume: 48
  start-page: 1908
  year: 2018
  ident: 10.1016/j.jfranklin.2019.06.026_bib0016
  article-title: Event-triggered communication and data rate constraint for distributed optimization of multiagent systems
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2017.2694323
– volume: 48
  start-page: 3045
  year: 2018
  ident: 10.1016/j.jfranklin.2019.06.026_bib0033
  article-title: An adaptive primal-dual subgradient algorithm for online distributed constrained optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2755720
– volume: 2015
  start-page: 4497
  year: 2015
  ident: 10.1016/j.jfranklin.2019.06.026_bib0028
  article-title: Decentralized online optimization with global objectives and local communication
– volume: 57
  start-page: 592
  year: 2012
  ident: 10.1016/j.jfranklin.2019.06.026_bib0008
  article-title: Dual averaging for distributed optimization: convergence analysis and network scaling
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2011.2161027
– volume: 55
  start-page: 209
  year: 2015
  ident: 10.1016/j.jfranklin.2019.06.026_bib0009
  article-title: On linear convergence of a distributed dual gradient algorithm for linearly constrained separable convex problems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.02.038
– volume: 61
  start-page: 3545
  year: 2016
  ident: 10.1016/j.jfranklin.2019.06.026_bib0026
  article-title: Online distributed convex optimization on dynamic networks
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2016.2525928
– volume: 1
  start-page: 64
  year: 2014
  ident: 10.1016/j.jfranklin.2019.06.026_bib0004
  article-title: An o(1/k) gradient method for network resource allocation problems
  publication-title: IEEE Trans. Control Netw. Syst.
  doi: 10.1109/TCNS.2014.2309751
– volume: 168
  start-page: 172
  year: 2016
  ident: 10.1016/j.jfranklin.2019.06.026_bib0012
  article-title: Primal recovery from consensus-based dual decomposition for distributed convex optimization
  publication-title: J. Optimiz. Theory Appl.
  doi: 10.1007/s10957-015-0758-0
– volume: 54
  start-page: 48
  year: 2009
  ident: 10.1016/j.jfranklin.2019.06.026_bib0006
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.2009515
– volume: 105
  start-page: 298
  year: 2019
  ident: 10.1016/j.jfranklin.2019.06.026_bib0014
  article-title: Exponential convergence of distributed primal-dual convex optimization algorithm without strong convexity
  publication-title: Automatica
  doi: 10.1016/j.automatica.2019.04.004
– year: 2018
  ident: 10.1016/j.jfranklin.2019.06.026_bib0019
  article-title: Convergence analysis of a distributed optimization algorithm with a general unbalanced directed communication network
  publication-title: IEEE Trans. Netw. Sci. Eng.
– volume: 4
  start-page: 107
  year: 2012
  ident: 10.1016/j.jfranklin.2019.06.026_bib0024
  article-title: Online learning and online convex optimization
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000018
– volume: 14
  start-page: 301
  year: 2018
  ident: 10.1016/j.jfranklin.2019.06.026_bib0035
  article-title: Noncooperative game-based distributed charging control for plug-in electric vehicles in distribution networks
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2016.2632761
SSID ssj0017100
Score 2.307147
Snippet This paper investigates a distributed optimization problem over multi-agent networks subject to both local and coupled constraints in a non-stationary...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7548
SubjectTerms Adaptive algorithms
Algorithms
Computational geometry
Computer simulation
Convexity
Coupling
Electric vehicle charging
Electric vehicles
Graph theory
Graphs
Machine learning
Multiagent systems
Nonstationary environments
Optimization
Studies
Title An adaptive online learning algorithm for distributed convex optimization with coupled constraints over unbalanced directed graphs
URI https://dx.doi.org/10.1016/j.jfranklin.2019.06.026
https://www.proquest.com/docview/2298544503
Volume 356
WOSCitedRecordID wos000480435900034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2693
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017100
  issn: 0016-0032
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELXKLgc4ID4Fy4J8QFyqoNRu4phbhboCVBUOXaniYtmJs9uqm4a2WXWv_Ch-H-PYTgp0WThwiSI306aZ1_HUfvMGoVepjGUOE3NAIRsJ-pCyBjInOoiySIeKJKnmad1sgo3HyXTKP3c6330tzOWCFUWy3fLyv7oaxsDZpnT2H9zdvCkMwDk4HY7gdjj-leMHRVdmsqwpQVYHw7eGOOvKxdlyNducX9TswsyI5pp-Vzqz7PNtdwl2F64009PSq3JhL1jX_STMBgM8lG5VKEOLNPwBOy_CSS1_vb4m4TUpru8R35IUGgJQZXf_K4hOzeBoZitH9NWyaqaP-sIv5zM_5tYsei0pyy2k-WIaH79aBlMdpHtxAMHGBmm9Z8wFbmolyT1C6U4cZpHV7_xtgrBrFfM389x9X8Pu47WEK9kjyT3-JE5ORyMxGU4nr8uvgelWZnb1XeuWW-iQsIhDND0cfBhOPzb7V0YzyeYA9rZ_Yhbu_ezr8qJfMoQ67ZncR_ec-_DA4uwB6ujiIbq7o2L5CH0bFNgjDlvEYY843CAOA-LwDuKwRRzeRRw2iMMOcXgHcdggDreIwx5x2CLuMTo9GU7evQ9ca48gpX26CWKeaMKIinXKYxbnfU5CxSKpY8qojFKiIkUU02aXMFOQ0kqpNA1zTTMZK87oE3RQLAv9FGEWpTyROfztzsK-ZkqaWu4e1VpHNAX7Zyj2D1akTvfe3PxCeILjXDQeEcYjwlA9CRiGjWFppV9uNnnrPSdcBmufhwD83Wx87H0tXDxZC0J4YvSyQnr055efozvtL-0YHWxWlX6BbqeXm9l69dLh8wcJ9NB4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+online+learning+algorithm+for+distributed+convex+optimization+with+coupled+constraints+over+unbalanced+directed+graphs&rft.jtitle=Journal+of+the+Franklin+Institute&rft.au=Gu%2C+Chuanye&rft.au=Li%2C+Jueyou&rft.au=Wu%2C+Zhiyou&rft.date=2019-09-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0016-0032&rft.eissn=0016-0032&rft.volume=356&rft.issue=13&rft.spage=7548&rft_id=info:doi/10.1016%2Fj.jfranklin.2019.06.026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-0032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-0032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-0032&client=summon