A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries
A suitable model structure and matched model parameters are prerequisites for the precise estimation of the battery states. Previous studies pay little attention to whether a parameter identification method is suitable for a model. In this study, a comparative study is conducted by implementing mode...
Uložené v:
| Vydané v: | Electrochimica acta Ročník 295; s. 1057 - 1066 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Elsevier Ltd
01.02.2019
Elsevier BV |
| Predmet: | |
| ISSN: | 0013-4686, 1873-3859 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A suitable model structure and matched model parameters are prerequisites for the precise estimation of the battery states. Previous studies pay little attention to whether a parameter identification method is suitable for a model. In this study, a comparative study is conducted by implementing model parameter optimization for nine equivalent circuit models using nine optimizers in the entire SOC area. The following conclusions are drawn: (1) PNGV and the exact algorithms are an ideal combination in the low SOC area (0%–20%). (2) In the high SOC area (20–100%), exact algorithms are an ideal choice for the first-order RC models, and PSO is an ideal identification algorithm for second-order RC models. For the third- and fourth-order RC models, firefly algorithm has the highest accuracy with longer identification time. (3) Firefly algorithm has the superior capacity to identify the accurate model parameters and PSO has the best comprehensive performance for on-line parameter identification.
•A comparative study on model parameter identification for nine models using nine optimizers in the entire SOC area.•PNGV and exact algorithms are an ideal combination in the low SOC area.•In the high SOC area, EAs and PSO are the ideal choice for the first- and second-order RC models, respectively.•For the third- and fourth-order RC models, firefly algorithm has the highest accuracy with longer identification time.•FA has excellent identification accuracy and PSO has the best comprehensive performance for on-line identification. |
|---|---|
| AbstractList | A suitable model structure and matched model parameters are prerequisites for the precise estimation of the battery states. Previous studies pay little attention to whether a parameter identification method is suitable for a model. In this study, a comparative study is conducted by implementing model parameter optimization for nine equivalent circuit models using nine optimizers in the entire SOC area. The following conclusions are drawn: (1) PNGV and the exact algorithms are an ideal combination in the low SOC area (0%–20%). (2) In the high SOC area (20–100%), exact algorithms are an ideal choice for the first-order RC models, and PSO is an ideal identification algorithm for second-order RC models. For the third- and fourth-order RC models, firefly algorithm has the highest accuracy with longer identification time. (3) Firefly algorithm has the superior capacity to identify the accurate model parameters and PSO has the best comprehensive performance for on-line parameter identification.
•A comparative study on model parameter identification for nine models using nine optimizers in the entire SOC area.•PNGV and exact algorithms are an ideal combination in the low SOC area.•In the high SOC area, EAs and PSO are the ideal choice for the first- and second-order RC models, respectively.•For the third- and fourth-order RC models, firefly algorithm has the highest accuracy with longer identification time.•FA has excellent identification accuracy and PSO has the best comprehensive performance for on-line identification. A suitable model structure and matched model parameters are prerequisites for the precise estimation of the battery states. Previous studies pay little attention to whether a parameter identification method is suitable for a model. In this study, a comparative study is conducted by implementing model parameter optimization for nine equivalent circuit models using nine optimizers in the entire SOC area. The following conclusions are drawn: (1) PNGV and the exact algorithms are an ideal combination in the low SOC area (0%–20%). (2) In the high SOC area (20–100%), exact algorithms are an ideal choice for the first-order RC models, and PSO is an ideal identification algorithm for second-order RC models. For the third- and fourth-order RC models, firefly algorithm has the highest accuracy with longer identification time. (3) Firefly algorithm has the superior capacity to identify the accurate model parameters and PSO has the best comprehensive performance for on-line parameter identification. |
| Author | Ouyang, Minggao Li, Jianqiu Han, Xuebing Zhou, Long Zheng, Yuejiu Lai, Xin Gao, Wenkai |
| Author_xml | – sequence: 1 givenname: Xin surname: Lai fullname: Lai, Xin organization: College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China – sequence: 2 givenname: Wenkai surname: Gao fullname: Gao, Wenkai organization: College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China – sequence: 3 givenname: Yuejiu surname: Zheng fullname: Zheng, Yuejiu email: yuejiu.zheng@usst.edu.cn organization: College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China – sequence: 4 givenname: Minggao surname: Ouyang fullname: Ouyang, Minggao organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, PR China – sequence: 5 givenname: Jianqiu surname: Li fullname: Li, Jianqiu organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, PR China – sequence: 6 givenname: Xuebing surname: Han fullname: Han, Xuebing organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, PR China – sequence: 7 givenname: Long surname: Zhou fullname: Zhou, Long organization: College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China |
| BookMark | eNqNkMuKFDEYRoOMYM_oMxhwXWVunVQvXDSDN2hwo-uQyx9NU1XpSVIN4yv40qYsceFGIZDbd76Qc4tu5jQDQi8p6Smh8vW5hxFcNW30jNChp7SnXDxBOzoo3vFhf7hBO0Io74Qc5DN0W8qZEKKkIjv044hdmi4mmxqvgEtd_CNOAX8dkzUjTpcap_i9XaYZT1C_JV9wSBmvRNtDxtHDXGOIbgs11scQILdTDA9LvJpxXbqY3RIrnpKHces4xW4lrKmtJ0J5jp4GMxZ48Xu-Q1_evf18_6E7fXr_8f546hwXvHaSS2ODpMR6Lj1x1B44E-ZAPGMmCMosB2mY2guvLLMgnAWwiu2dUcJ5yu_Qq633ktPDAqXqc1ry3J7UjA5MKCnUvqXebCmXUykZgnax_vpjzSaOmhK9-tdn_ce_Xv1rSnXz33j1F3_JcTL58T_I40Y2UXCNkHVxEWYHPuaW1z7Ff3b8BLEQq4k |
| CitedBy_id | crossref_primary_10_1016_j_energy_2023_129462 crossref_primary_10_1016_j_apenergy_2021_118317 crossref_primary_10_1016_j_est_2022_104098 crossref_primary_10_1016_j_est_2024_113807 crossref_primary_10_1016_j_est_2022_106273 crossref_primary_10_1109_JESTIE_2022_3181507 crossref_primary_10_1016_j_est_2025_116006 crossref_primary_10_1016_j_est_2025_116523 crossref_primary_10_3390_en12214031 crossref_primary_10_3390_en18051035 crossref_primary_10_1109_TIA_2021_3069726 crossref_primary_10_1016_j_est_2019_101121 crossref_primary_10_1016_j_electacta_2021_139131 crossref_primary_10_1016_j_jpowsour_2019_03_008 crossref_primary_10_1007_s42835_020_00607_2 crossref_primary_10_1016_j_est_2024_114690 crossref_primary_10_1109_ACCESS_2023_3318121 crossref_primary_10_1002_er_6700 crossref_primary_10_1016_j_est_2019_100951 crossref_primary_10_1007_s11581_024_05968_6 crossref_primary_10_1016_j_est_2022_104535 crossref_primary_10_3390_en14030769 crossref_primary_10_1016_j_est_2021_103673 crossref_primary_10_1016_j_fub_2025_100060 crossref_primary_10_1080_02286203_2025_2523065 crossref_primary_10_1177_16878140211027735 crossref_primary_10_1016_j_jclepro_2020_120203 crossref_primary_10_1002_er_4759 crossref_primary_10_1016_j_measurement_2024_115148 crossref_primary_10_1016_j_jclepro_2021_126246 crossref_primary_10_1016_j_est_2022_106283 crossref_primary_10_3390_electronics14112201 crossref_primary_10_3390_batteries11010026 crossref_primary_10_1115_1_4067951 crossref_primary_10_3390_batteries8110222 crossref_primary_10_1016_j_egyr_2021_08_113 crossref_primary_10_1016_j_est_2023_109891 crossref_primary_10_1016_j_est_2021_103679 crossref_primary_10_3390_batteries8100155 crossref_primary_10_3390_su15075667 crossref_primary_10_3390_batteries6020032 crossref_primary_10_3390_batteries11020055 crossref_primary_10_3390_wevj15040152 crossref_primary_10_1016_j_est_2022_104700 crossref_primary_10_1016_j_est_2023_106789 crossref_primary_10_1016_j_jpowsour_2021_230716 crossref_primary_10_3390_en17133187 crossref_primary_10_1016_j_measurement_2022_112187 crossref_primary_10_1016_j_est_2020_102093 crossref_primary_10_1016_j_compeleceng_2025_110691 crossref_primary_10_1016_j_enconman_2022_116330 crossref_primary_10_1016_j_jpowsour_2020_228358 crossref_primary_10_1016_j_apenergy_2024_123297 crossref_primary_10_1002_er_6088 crossref_primary_10_1016_j_energy_2025_138441 crossref_primary_10_1016_j_energy_2024_133709 crossref_primary_10_1016_j_est_2023_108197 crossref_primary_10_3390_electronics7120366 crossref_primary_10_1016_j_energy_2023_128742 crossref_primary_10_1002_er_6921 crossref_primary_10_1002_er_7339 crossref_primary_10_3390_en17040822 crossref_primary_10_3390_su14042313 crossref_primary_10_1016_j_est_2024_115282 crossref_primary_10_1016_j_rser_2019_109405 crossref_primary_10_3390_su142315912 crossref_primary_10_1016_j_electacta_2021_138501 crossref_primary_10_1016_j_est_2021_102457 crossref_primary_10_1016_j_est_2022_105333 crossref_primary_10_1016_j_est_2025_115581 crossref_primary_10_1088_1742_6596_2567_1_012001 crossref_primary_10_3390_su15075732 crossref_primary_10_1109_TTE_2022_3180077 crossref_primary_10_1016_j_energy_2024_130942 crossref_primary_10_1002_er_7292 crossref_primary_10_1016_j_rser_2024_114857 crossref_primary_10_1016_j_isatra_2022_08_025 crossref_primary_10_1051_e3sconf_202560100033 crossref_primary_10_1016_j_rser_2024_114577 crossref_primary_10_3390_en15134556 crossref_primary_10_1002_er_6197 crossref_primary_10_1016_j_energy_2022_123423 crossref_primary_10_1149_1945_7111_adf9d1 crossref_primary_10_1002_ese3_294 crossref_primary_10_1016_j_est_2021_102843 crossref_primary_10_1109_TIE_2023_3270526 crossref_primary_10_1002_cta_3250 crossref_primary_10_1016_j_est_2023_109318 crossref_primary_10_1016_j_est_2025_116281 crossref_primary_10_1049_rpg2_12965 crossref_primary_10_3390_en14196221 crossref_primary_10_1016_j_jclepro_2025_146229 crossref_primary_10_1016_j_energy_2019_07_059 crossref_primary_10_1155_er_8883900 crossref_primary_10_1016_j_est_2023_110216 crossref_primary_10_1007_s11431_021_1837_0 crossref_primary_10_3390_electronics10131588 crossref_primary_10_1002_ente_202200151 crossref_primary_10_1002_er_7672 crossref_primary_10_1109_ACCESS_2019_2943558 crossref_primary_10_1016_j_apenergy_2019_113327 crossref_primary_10_1016_j_est_2020_101980 crossref_primary_10_1016_j_est_2021_102559 crossref_primary_10_1016_j_etran_2025_100420 crossref_primary_10_1002_er_7834 crossref_primary_10_1016_j_electacta_2021_139574 crossref_primary_10_3390_en15239251 crossref_primary_10_1016_j_electacta_2019_135239 crossref_primary_10_1002_est2_409 crossref_primary_10_1155_2020_8231243 crossref_primary_10_3390_en15197416 crossref_primary_10_1016_j_ijhydene_2020_01_067 crossref_primary_10_3390_electronics11111795 crossref_primary_10_1016_j_electacta_2024_143833 crossref_primary_10_1016_j_energy_2023_128320 crossref_primary_10_1016_j_est_2024_110982 crossref_primary_10_1007_s00202_024_02580_9 crossref_primary_10_1016_j_engappai_2022_105506 crossref_primary_10_1016_j_egyr_2021_10_086 crossref_primary_10_1016_j_energy_2022_124770 crossref_primary_10_1016_j_jelechem_2022_116011 crossref_primary_10_3390_su15064982 crossref_primary_10_1016_j_energy_2020_119233 crossref_primary_10_1002_er_5647 crossref_primary_10_1007_s12598_022_02156_1 crossref_primary_10_1016_j_est_2020_101514 crossref_primary_10_1016_j_etran_2020_100099 crossref_primary_10_1109_TIM_2024_3350117 crossref_primary_10_1007_s11581_025_06336_8 crossref_primary_10_1016_j_energy_2025_137063 crossref_primary_10_1109_TPEL_2020_3044725 crossref_primary_10_1002_ente_202300299 crossref_primary_10_3390_batteries8040029 crossref_primary_10_3390_s21030712 crossref_primary_10_1016_j_jpowsour_2020_228951 crossref_primary_10_1016_j_electacta_2022_140350 crossref_primary_10_1016_j_est_2024_113503 crossref_primary_10_1016_j_est_2024_113623 crossref_primary_10_1109_ACCESS_2020_2967563 crossref_primary_10_3390_math11092215 crossref_primary_10_1016_j_electacta_2021_139637 crossref_primary_10_1016_j_jclepro_2018_12_210 crossref_primary_10_1016_j_est_2023_108274 crossref_primary_10_3390_wevj15020038 crossref_primary_10_1002_cta_3500 crossref_primary_10_1007_s43236_022_00525_8 crossref_primary_10_1016_j_est_2023_108034 crossref_primary_10_1016_j_est_2022_103989 crossref_primary_10_1002_er_6964 crossref_primary_10_1016_j_measurement_2025_117124 crossref_primary_10_1016_j_asoc_2022_109954 crossref_primary_10_1016_j_est_2023_107345 crossref_primary_10_1016_j_electacta_2022_140916 crossref_primary_10_1016_j_est_2019_101106 crossref_primary_10_1016_j_energy_2021_120348 crossref_primary_10_1016_j_est_2022_104565 crossref_primary_10_1002_er_6719 crossref_primary_10_1016_j_rineng_2024_102437 crossref_primary_10_1016_j_ijepes_2021_107312 crossref_primary_10_1016_j_jpowsour_2020_229117 crossref_primary_10_1016_j_rser_2021_111162 crossref_primary_10_1016_j_est_2024_112304 crossref_primary_10_1016_j_est_2023_109195 crossref_primary_10_1109_TTE_2021_3125932 crossref_primary_10_1016_j_est_2024_111179 crossref_primary_10_1016_j_est_2023_109196 crossref_primary_10_3390_en15134753 crossref_primary_10_1002_eng2_70346 crossref_primary_10_1016_j_est_2025_115707 crossref_primary_10_1016_j_etran_2024_100355 crossref_primary_10_1016_j_jpowsour_2023_233431 crossref_primary_10_1109_TIE_2025_3528505 crossref_primary_10_3390_electronics7120399 crossref_primary_10_1002_er_6315 crossref_primary_10_1016_j_measurement_2024_116263 crossref_primary_10_1002_er_7401 crossref_primary_10_1016_j_electacta_2020_136576 crossref_primary_10_3390_s22239277 |
| Cites_doi | 10.1007/BF01009452 10.1016/j.electacta.2017.10.153 10.1016/j.apenergy.2016.05.065 10.3390/en4111840 10.1016/j.jpowsour.2017.11.094 10.1162/106365600568220 10.1016/j.epsr.2015.10.018 10.1016/j.enconman.2012.04.014 10.1109/TVT.2007.912176 10.1002/er.4060 10.1016/j.apenergy.2016.10.020 10.1016/j.electacta.2016.12.119 10.1162/evco.1995.3.1.1 10.1007/s00521-015-1870-7 10.1016/j.apenergy.2016.01.096 10.1016/j.ipl.2010.07.026 10.1016/j.energy.2018.06.113 10.1016/j.jpowsour.2006.12.024 10.1109/TIE.2018.2838109 10.1016/j.advengsoft.2013.12.007 10.1504/IJBIC.2010.032124 10.1016/j.electacta.2017.01.057 10.1016/j.swevo.2015.07.002 10.3390/en4040582 10.1039/c2ee21892e 10.1016/j.jpowsour.2011.10.013 10.1016/j.apenergy.2016.10.059 10.1016/j.ejor.2017.02.017 10.1155/2014/105245 10.1016/j.jpowsour.2016.03.112 10.1016/j.jpowsour.2016.03.042 10.1016/j.advengsoft.2016.01.008 10.1016/j.jpowsour.2018.04.033 10.1007/s10462-016-9486-6 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Feb 1, 2019 |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Feb 1, 2019 |
| DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1016/j.electacta.2018.11.134 |
| DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1873-3859 |
| EndPage | 1066 |
| ExternalDocumentID | 10_1016_j_electacta_2018_11_134 S0013468618326173 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW T9H VH1 WUQ XOL ZY4 ~HD 7SR 7U5 8BQ 8FD AFXIZ AGCQF AGRNS JG9 L7M SSH |
| ID | FETCH-LOGICAL-c343t-636abf610bd36d0c1b9324a90d22af412b3e6a2754d7b2be4cbeeb725ca74cd13 |
| ISICitedReferencesCount | 202 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454249800121&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-4686 |
| IngestDate | Fri Jul 25 04:00:36 EDT 2025 Tue Nov 18 21:51:39 EST 2025 Sat Nov 29 07:30:05 EST 2025 Fri Feb 23 02:49:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Optimization algorithm Equivalent circuit model Parameter identification Metaheuristic algorithm Li-ion battery |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c343t-636abf610bd36d0c1b9324a90d22af412b3e6a2754d7b2be4cbeeb725ca74cd13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2182476475 |
| PQPubID | 2045485 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2182476475 crossref_citationtrail_10_1016_j_electacta_2018_11_134 crossref_primary_10_1016_j_electacta_2018_11_134 elsevier_sciencedirect_doi_10_1016_j_electacta_2018_11_134 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-01 2019-02-00 20190201 |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Electrochimica acta |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Liu, Liu, Wang, Hu, Ma, Ren (bib11) 2016; 320 Cheng, Yao, Xing, Pecht (bib17) 2016; 9 Maniezzo, Carbonaro (bib31) 2002; 15 Fonseca (bib28) 1995; 3 Wang, Wang, Zhao, Kang, Yan, Du (bib35) 2017; 228 Zheng, Ouyang, Han, Lu, Li (bib5) 2018; 377 Zou, Zhang, Hu, Wang, Wik, Pecht (bib16) 2018; 390 Akyol, Alatas (bib26) 2017; 47 W. Gao, Y. Zheng, M. Ouyang, J. Li, X. Lai, X. Hu, IEEE Trans. Ind. Electron. Mirjalili, Mirjalili, Hatamlou (bib38) 2016; 27 K. S (bib29) 1984; 34 Zheng, Zhu, Wang, Lu, He (bib8) 2018; 158 Service (bib34) 2010; 110 Mesbahi, Khenfri, Rizoug, Chaaban, Bartholomeus, Le Moigne (bib21) 2016; 131 Holland (bib18) 2000; 8 Lim, Bastawrous, Duong, See, Zhang, Dou (bib20) 2016; 169 Kinable, Smeulders, Delcour, Spieksma (bib25) 2017; 261 Xing, Ma, Tsui, Pecht (bib1) 2011; 4 Mirjalili, Lewis (bib37) 2016; 95 Thackeray, Wolverton, Isaacs (bib2) 2012; 5 Tian, Li, Tian, Xia (bib22) 2017; 225 Zhang, Jiang, Gao, Zhang, Liu, Hu (bib19) 2017; 194 Abedinpourshotorban, Shamsuddin, Beheshti, Jawawi (bib27) 2016; 26 Kaiser (bib6) 2007; 168 Lai, Qin, Gao, Zheng, Yi (bib7) 2018; 8 Bratton, Kennedy (bib30) 2007 Lai, Zheng, Sun (bib9) 2018; 259 Xie, Ma, Bai (bib15) 2018; 42 Tian, Lu, Wang, Tao (bib32) 2014; 2014 . He, Xiong, Fan (bib10) 2011; 4 Dai, Xu, Zhu, Wei, Sun (bib24) 2016; 184 Nejad, Gladwin, Stone (bib3) 2016; 316 Hu, Li, Peng (bib14) 2012; 198 Lin, Mu, Xiong, Cao (bib13) 2017; 194 He, Xiong, Guo, Li (bib12) 2012; 64 Yang (bib33) 2010; 2 Mirjalili, Mirjalili, Lewis (bib36) 2014; 69 Szumanowski, Chang (bib4) 2008; 57 Akyol (10.1016/j.electacta.2018.11.134_bib26) 2017; 47 Lin (10.1016/j.electacta.2018.11.134_bib13) 2017; 194 Bratton (10.1016/j.electacta.2018.11.134_bib30) 2007 Lim (10.1016/j.electacta.2018.11.134_bib20) 2016; 169 Szumanowski (10.1016/j.electacta.2018.11.134_bib4) 2008; 57 Mirjalili (10.1016/j.electacta.2018.11.134_bib36) 2014; 69 Liu (10.1016/j.electacta.2018.11.134_bib11) 2016; 320 Xing (10.1016/j.electacta.2018.11.134_bib1) 2011; 4 Holland (10.1016/j.electacta.2018.11.134_bib18) 2000; 8 Zhang (10.1016/j.electacta.2018.11.134_bib19) 2017; 194 Service (10.1016/j.electacta.2018.11.134_bib34) 2010; 110 Kaiser (10.1016/j.electacta.2018.11.134_bib6) 2007; 168 Dai (10.1016/j.electacta.2018.11.134_bib24) 2016; 184 Yang (10.1016/j.electacta.2018.11.134_bib33) 2010; 2 Lai (10.1016/j.electacta.2018.11.134_bib9) 2018; 259 Wang (10.1016/j.electacta.2018.11.134_bib35) 2017; 228 Thackeray (10.1016/j.electacta.2018.11.134_bib2) 2012; 5 Tian (10.1016/j.electacta.2018.11.134_bib22) 2017; 225 Zheng (10.1016/j.electacta.2018.11.134_bib5) 2018; 377 Hu (10.1016/j.electacta.2018.11.134_bib14) 2012; 198 Lai (10.1016/j.electacta.2018.11.134_bib7) 2018; 8 He (10.1016/j.electacta.2018.11.134_bib12) 2012; 64 Maniezzo (10.1016/j.electacta.2018.11.134_bib31) 2002; 15 He (10.1016/j.electacta.2018.11.134_bib10) 2011; 4 Cheng (10.1016/j.electacta.2018.11.134_bib17) 2016; 9 10.1016/j.electacta.2018.11.134_bib23 Mirjalili (10.1016/j.electacta.2018.11.134_bib38) 2016; 27 Xie (10.1016/j.electacta.2018.11.134_bib15) 2018; 42 Mesbahi (10.1016/j.electacta.2018.11.134_bib21) 2016; 131 Zheng (10.1016/j.electacta.2018.11.134_bib8) 2018; 158 K. S (10.1016/j.electacta.2018.11.134_bib29) 1984; 34 Kinable (10.1016/j.electacta.2018.11.134_bib25) 2017; 261 Abedinpourshotorban (10.1016/j.electacta.2018.11.134_bib27) 2016; 26 Mirjalili (10.1016/j.electacta.2018.11.134_bib37) 2016; 95 Fonseca (10.1016/j.electacta.2018.11.134_bib28) 1995; 3 Tian (10.1016/j.electacta.2018.11.134_bib32) 2014; 2014 Nejad (10.1016/j.electacta.2018.11.134_bib3) 2016; 316 Zou (10.1016/j.electacta.2018.11.134_bib16) 2018; 390 |
| References_xml | – volume: 316 start-page: 183 year: 2016 end-page: 196 ident: bib3 publication-title: J. Power Sources – volume: 320 start-page: 1 year: 2016 end-page: 12 ident: bib11 publication-title: J. Power Sources – start-page: 120 year: 2007 ident: bib30 publication-title: 2007 Ieee Swarm Intelligence Symposium – volume: 2 start-page: 78 year: 2010 end-page: 84 ident: bib33 publication-title: Int. J. Bio Inspired Comput. – volume: 64 start-page: 113 year: 2012 end-page: 121 ident: bib12 publication-title: Energy Convers. Manag. – volume: 8 start-page: 373 year: 2000 end-page: 391 ident: bib18 publication-title: Evol. Comput. – reference: W. Gao, Y. Zheng, M. Ouyang, J. Li, X. Lai, X. Hu, IEEE Trans. Ind. Electron., – volume: 3 start-page: 1 year: 1995 end-page: 16 ident: bib28 publication-title: Evol. Comput. – volume: 4 start-page: 1840 year: 2011 end-page: 1857 ident: bib1 publication-title: Energies – volume: 228 start-page: 146 year: 2017 end-page: 159 ident: bib35 publication-title: Electrochim. Acta – volume: 2014 start-page: 1 year: 2014 end-page: 10 ident: bib32 publication-title: Math. Probl Eng. – volume: 225 start-page: 225 year: 2017 end-page: 234 ident: bib22 publication-title: Electrochim. Acta – volume: 34 start-page: 975 year: 1984 end-page: 986 ident: bib29 publication-title: J. Stat. Phys. – volume: 26 start-page: 8 year: 2016 end-page: 22 ident: bib27 publication-title: Swarm Evol. Comput. – volume: 4 start-page: 582 year: 2011 end-page: 598 ident: bib10 publication-title: Energies – volume: 169 start-page: 40 year: 2016 end-page: 48 ident: bib20 publication-title: Appl. Energy – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: bib38 publication-title: Neural Comput. Appl. – volume: 184 start-page: 119 year: 2016 end-page: 131 ident: bib24 publication-title: Appl. Energy – volume: 198 start-page: 359 year: 2012 end-page: 367 ident: bib14 publication-title: J. Power Sources – volume: 390 start-page: 286 year: 2018 end-page: 296 ident: bib16 publication-title: J. Power Sources – volume: 110 start-page: 917 year: 2010 end-page: 923 ident: bib34 publication-title: Inf. Process. Lett. – volume: 168 start-page: 58 year: 2007 end-page: 65 ident: bib6 publication-title: J. Power Sources – volume: 261 start-page: 475 year: 2017 end-page: 485 ident: bib25 publication-title: Eur. J. Oper. Res. – volume: 47 start-page: 417 year: 2017 end-page: 462 ident: bib26 publication-title: Artif. Intell. Rev. – volume: 259 start-page: 566 year: 2018 end-page: 577 ident: bib9 publication-title: Electrochim. Acta – volume: 131 start-page: 195 year: 2016 end-page: 204 ident: bib21 publication-title: Elec. Power Syst. Res. – volume: 57 start-page: 1425 year: 2008 end-page: 1432 ident: bib4 publication-title: IEEE Trans. Veh. Technol. – volume: 158 start-page: 1028 year: 2018 end-page: 1037 ident: bib8 publication-title: Energy – volume: 194 start-page: 569 year: 2017 end-page: 577 ident: bib19 publication-title: Appl. Energy – volume: 377 start-page: 161 year: 2018 end-page: 188 ident: bib5 publication-title: J. Power Sources – reference: . – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: bib36 publication-title: Adv. Eng. Software – volume: 42 start-page: 2710 year: 2018 end-page: 2727 ident: bib15 publication-title: Int. J. Energy Res. – volume: 8 year: 2018 ident: bib7 publication-title: Appl. Sci. Basel – volume: 15 start-page: 469 year: 2002 end-page: 492 ident: bib31 publication-title: Oper. Res. Comput. Sci. – volume: 5 start-page: 7854 year: 2012 end-page: 7863 ident: bib2 publication-title: Energy Environ. Sci. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: bib37 publication-title: Adv. Eng. Software – volume: 194 start-page: 560 year: 2017 end-page: 568 ident: bib13 publication-title: Appl. Energy – volume: 9 year: 2016 ident: bib17 publication-title: Energies – volume: 8 year: 2018 ident: 10.1016/j.electacta.2018.11.134_bib7 publication-title: Appl. Sci. Basel – volume: 9 year: 2016 ident: 10.1016/j.electacta.2018.11.134_bib17 publication-title: Energies – volume: 34 start-page: 975 year: 1984 ident: 10.1016/j.electacta.2018.11.134_bib29 publication-title: J. Stat. Phys. doi: 10.1007/BF01009452 – volume: 259 start-page: 566 year: 2018 ident: 10.1016/j.electacta.2018.11.134_bib9 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.153 – volume: 194 start-page: 560 year: 2017 ident: 10.1016/j.electacta.2018.11.134_bib13 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.05.065 – volume: 4 start-page: 1840 year: 2011 ident: 10.1016/j.electacta.2018.11.134_bib1 publication-title: Energies doi: 10.3390/en4111840 – volume: 377 start-page: 161 year: 2018 ident: 10.1016/j.electacta.2018.11.134_bib5 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.11.094 – volume: 8 start-page: 373 year: 2000 ident: 10.1016/j.electacta.2018.11.134_bib18 publication-title: Evol. Comput. doi: 10.1162/106365600568220 – volume: 131 start-page: 195 year: 2016 ident: 10.1016/j.electacta.2018.11.134_bib21 publication-title: Elec. Power Syst. Res. doi: 10.1016/j.epsr.2015.10.018 – volume: 64 start-page: 113 year: 2012 ident: 10.1016/j.electacta.2018.11.134_bib12 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2012.04.014 – volume: 57 start-page: 1425 year: 2008 ident: 10.1016/j.electacta.2018.11.134_bib4 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2007.912176 – volume: 42 start-page: 2710 year: 2018 ident: 10.1016/j.electacta.2018.11.134_bib15 publication-title: Int. J. Energy Res. doi: 10.1002/er.4060 – volume: 184 start-page: 119 year: 2016 ident: 10.1016/j.electacta.2018.11.134_bib24 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.10.020 – volume: 225 start-page: 225 year: 2017 ident: 10.1016/j.electacta.2018.11.134_bib22 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.119 – start-page: 120 year: 2007 ident: 10.1016/j.electacta.2018.11.134_bib30 – volume: 3 start-page: 1 year: 1995 ident: 10.1016/j.electacta.2018.11.134_bib28 publication-title: Evol. Comput. doi: 10.1162/evco.1995.3.1.1 – volume: 27 start-page: 495 year: 2016 ident: 10.1016/j.electacta.2018.11.134_bib38 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – volume: 169 start-page: 40 year: 2016 ident: 10.1016/j.electacta.2018.11.134_bib20 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.01.096 – volume: 110 start-page: 917 year: 2010 ident: 10.1016/j.electacta.2018.11.134_bib34 publication-title: Inf. Process. Lett. doi: 10.1016/j.ipl.2010.07.026 – volume: 15 start-page: 469 year: 2002 ident: 10.1016/j.electacta.2018.11.134_bib31 publication-title: Oper. Res. Comput. Sci. – volume: 158 start-page: 1028 year: 2018 ident: 10.1016/j.electacta.2018.11.134_bib8 publication-title: Energy doi: 10.1016/j.energy.2018.06.113 – volume: 168 start-page: 58 year: 2007 ident: 10.1016/j.electacta.2018.11.134_bib6 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.12.024 – ident: 10.1016/j.electacta.2018.11.134_bib23 doi: 10.1109/TIE.2018.2838109 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.electacta.2018.11.134_bib36 publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 2 start-page: 78 year: 2010 ident: 10.1016/j.electacta.2018.11.134_bib33 publication-title: Int. J. Bio Inspired Comput. doi: 10.1504/IJBIC.2010.032124 – volume: 228 start-page: 146 year: 2017 ident: 10.1016/j.electacta.2018.11.134_bib35 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.01.057 – volume: 26 start-page: 8 year: 2016 ident: 10.1016/j.electacta.2018.11.134_bib27 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2015.07.002 – volume: 4 start-page: 582 year: 2011 ident: 10.1016/j.electacta.2018.11.134_bib10 publication-title: Energies doi: 10.3390/en4040582 – volume: 5 start-page: 7854 year: 2012 ident: 10.1016/j.electacta.2018.11.134_bib2 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21892e – volume: 198 start-page: 359 year: 2012 ident: 10.1016/j.electacta.2018.11.134_bib14 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.10.013 – volume: 194 start-page: 569 year: 2017 ident: 10.1016/j.electacta.2018.11.134_bib19 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.10.059 – volume: 261 start-page: 475 year: 2017 ident: 10.1016/j.electacta.2018.11.134_bib25 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2017.02.017 – volume: 2014 start-page: 1 year: 2014 ident: 10.1016/j.electacta.2018.11.134_bib32 publication-title: Math. Probl Eng. doi: 10.1155/2014/105245 – volume: 320 start-page: 1 year: 2016 ident: 10.1016/j.electacta.2018.11.134_bib11 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.03.112 – volume: 316 start-page: 183 year: 2016 ident: 10.1016/j.electacta.2018.11.134_bib3 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.03.042 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.electacta.2018.11.134_bib37 publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 390 start-page: 286 year: 2018 ident: 10.1016/j.electacta.2018.11.134_bib16 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.033 – volume: 47 start-page: 417 year: 2017 ident: 10.1016/j.electacta.2018.11.134_bib26 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-016-9486-6 |
| SSID | ssj0007670 |
| Score | 2.6395113 |
| Snippet | A suitable model structure and matched model parameters are prerequisites for the precise estimation of the battery states. Previous studies pay little... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1057 |
| SubjectTerms | Algorithms Comparative studies Equivalent circuit model Equivalent circuits Global optimization Heuristic methods Identification methods Li-ion battery Lithium-ion batteries Mathematical models Metaheuristic algorithm Model matching Optimization algorithm Parameter estimation Parameter identification Rechargeable batteries |
| Title | A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries |
| URI | https://dx.doi.org/10.1016/j.electacta.2018.11.134 https://www.proquest.com/docview/2182476475 |
| Volume | 295 |
| WOSCitedRecordID | wos000454249800121&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007670 issn: 0013-4686 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FFolyQFBALRS0B8QlcmV7ba_NLapSPhQChxTCaeVdb8ChddIkrspv4Pfw_5j1fsRBhcKBi2U5mo3jeZmdHc--h9AzWFMIlbp6YR6kXpQUgQe4iT3CwzzjWUaFEI3YBB0O0_E4e9_p_LB7YS5OaVWll5fZ_L-6Gq6Bs9XW2X9wtxsULsA5OB2O4HY4_pXje6avXDN6Ly1ptGH-mEGIODN7L418dMPI0FUWZ6o3plsWpoPIZZNWRWXVled1CTerTkW5EHW50lo6eoxB6SkL3nB22u5EW_bXejviS6kIChSHh5sQBloSe1w6oL7MmwruR1l9zct1bVvqwPSpltOyduXh-pupeb-FafhzPmsXMtTeqY2mkPUOmw_tgB0QQJBly9YxOqXEI6khEjdBPMziVhhW4sVXzg-6VDE9bDSG1C9VzX0pzBuHgampbjByD9-x45PBgI3649Hz-bmnxMrUS32j3HIDbYc0ziCYbvde98dvXApAE-pb6Qx19xuNhVd-9-_Sol8ShCbrGd1Fd8xyBfc0zO6hjqx20a0jqxK4i263CC3vo-893AIfbsCHZxOswYfb4MMGfBiAgx348Cb4lK0DH16DDxvwYQ2-ZgwNPuzA9wCdHPdHR688I_fhCRKRlZeQJOcTSOd5QZLCFwGHtUWUZ34RhvkkCkJOZJLDA48KykMuI8Gl5DSMRU4jUQTkIdqqZpXcQzieED8tfCkjyD6TTKQiDmFhHlAZcJoLvo8S-7SZMFz4SpLllNmmxylzbmLKTbBSZuCmfeQ7w7mmg7ne5IV1JzNZrc5WGYDyeuMDCwBmYsySKdGFiCYRjR_9-ePHaGf9RztAW6tFLZ-gm-JiVS4XTw1ofwI0gdTw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+global+optimization+methods+for+parameter+identification+of+different+equivalent+circuit+models+for+Li-ion+batteries&rft.jtitle=Electrochimica+acta&rft.au=Lai%2C+Xin&rft.au=Gao%2C+Wenkai&rft.au=Zheng%2C+Yuejiu&rft.au=Ouyang%2C+Minggao&rft.date=2019-02-01&rft.pub=Elsevier+BV&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=295&rft.spage=1057&rft_id=info:doi/10.1016%2Fj.electacta.2018.11.134&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |