A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries

A suitable model structure and matched model parameters are prerequisites for the precise estimation of the battery states. Previous studies pay little attention to whether a parameter identification method is suitable for a model. In this study, a comparative study is conducted by implementing mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta Jg. 295; S. 1057 - 1066
Hauptverfasser: Lai, Xin, Gao, Wenkai, Zheng, Yuejiu, Ouyang, Minggao, Li, Jianqiu, Han, Xuebing, Zhou, Long
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Elsevier Ltd 01.02.2019
Elsevier BV
Schlagworte:
ISSN:0013-4686, 1873-3859
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A suitable model structure and matched model parameters are prerequisites for the precise estimation of the battery states. Previous studies pay little attention to whether a parameter identification method is suitable for a model. In this study, a comparative study is conducted by implementing model parameter optimization for nine equivalent circuit models using nine optimizers in the entire SOC area. The following conclusions are drawn: (1) PNGV and the exact algorithms are an ideal combination in the low SOC area (0%–20%). (2) In the high SOC area (20–100%), exact algorithms are an ideal choice for the first-order RC models, and PSO is an ideal identification algorithm for second-order RC models. For the third- and fourth-order RC models, firefly algorithm has the highest accuracy with longer identification time. (3) Firefly algorithm has the superior capacity to identify the accurate model parameters and PSO has the best comprehensive performance for on-line parameter identification. •A comparative study on model parameter identification for nine models using nine optimizers in the entire SOC area.•PNGV and exact algorithms are an ideal combination in the low SOC area.•In the high SOC area, EAs and PSO are the ideal choice for the first- and second-order RC models, respectively.•For the third- and fourth-order RC models, firefly algorithm has the highest accuracy with longer identification time.•FA has excellent identification accuracy and PSO has the best comprehensive performance for on-line identification.
AbstractList A suitable model structure and matched model parameters are prerequisites for the precise estimation of the battery states. Previous studies pay little attention to whether a parameter identification method is suitable for a model. In this study, a comparative study is conducted by implementing model parameter optimization for nine equivalent circuit models using nine optimizers in the entire SOC area. The following conclusions are drawn: (1) PNGV and the exact algorithms are an ideal combination in the low SOC area (0%–20%). (2) In the high SOC area (20–100%), exact algorithms are an ideal choice for the first-order RC models, and PSO is an ideal identification algorithm for second-order RC models. For the third- and fourth-order RC models, firefly algorithm has the highest accuracy with longer identification time. (3) Firefly algorithm has the superior capacity to identify the accurate model parameters and PSO has the best comprehensive performance for on-line parameter identification. •A comparative study on model parameter identification for nine models using nine optimizers in the entire SOC area.•PNGV and exact algorithms are an ideal combination in the low SOC area.•In the high SOC area, EAs and PSO are the ideal choice for the first- and second-order RC models, respectively.•For the third- and fourth-order RC models, firefly algorithm has the highest accuracy with longer identification time.•FA has excellent identification accuracy and PSO has the best comprehensive performance for on-line identification.
A suitable model structure and matched model parameters are prerequisites for the precise estimation of the battery states. Previous studies pay little attention to whether a parameter identification method is suitable for a model. In this study, a comparative study is conducted by implementing model parameter optimization for nine equivalent circuit models using nine optimizers in the entire SOC area. The following conclusions are drawn: (1) PNGV and the exact algorithms are an ideal combination in the low SOC area (0%–20%). (2) In the high SOC area (20–100%), exact algorithms are an ideal choice for the first-order RC models, and PSO is an ideal identification algorithm for second-order RC models. For the third- and fourth-order RC models, firefly algorithm has the highest accuracy with longer identification time. (3) Firefly algorithm has the superior capacity to identify the accurate model parameters and PSO has the best comprehensive performance for on-line parameter identification.
Author Ouyang, Minggao
Li, Jianqiu
Han, Xuebing
Zhou, Long
Zheng, Yuejiu
Lai, Xin
Gao, Wenkai
Author_xml – sequence: 1
  givenname: Xin
  surname: Lai
  fullname: Lai, Xin
  organization: College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
– sequence: 2
  givenname: Wenkai
  surname: Gao
  fullname: Gao, Wenkai
  organization: College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
– sequence: 3
  givenname: Yuejiu
  surname: Zheng
  fullname: Zheng, Yuejiu
  email: yuejiu.zheng@usst.edu.cn
  organization: College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
– sequence: 4
  givenname: Minggao
  surname: Ouyang
  fullname: Ouyang, Minggao
  organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, PR China
– sequence: 5
  givenname: Jianqiu
  surname: Li
  fullname: Li, Jianqiu
  organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, PR China
– sequence: 6
  givenname: Xuebing
  surname: Han
  fullname: Han, Xuebing
  organization: State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, PR China
– sequence: 7
  givenname: Long
  surname: Zhou
  fullname: Zhou, Long
  organization: College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
BookMark eNqNkMuKFDEYRoOMYM_oMxhwXWVunVQvXDSDN2hwo-uQyx9NU1XpSVIN4yv40qYsceFGIZDbd76Qc4tu5jQDQi8p6Smh8vW5hxFcNW30jNChp7SnXDxBOzoo3vFhf7hBO0Io74Qc5DN0W8qZEKKkIjv044hdmi4mmxqvgEtd_CNOAX8dkzUjTpcap_i9XaYZT1C_JV9wSBmvRNtDxtHDXGOIbgs11scQILdTDA9LvJpxXbqY3RIrnpKHces4xW4lrKmtJ0J5jp4GMxZ48Xu-Q1_evf18_6E7fXr_8f546hwXvHaSS2ODpMR6Lj1x1B44E-ZAPGMmCMosB2mY2guvLLMgnAWwiu2dUcJ5yu_Qq633ktPDAqXqc1ry3J7UjA5MKCnUvqXebCmXUykZgnax_vpjzSaOmhK9-tdn_ce_Xv1rSnXz33j1F3_JcTL58T_I40Y2UXCNkHVxEWYHPuaW1z7Ff3b8BLEQq4k
CitedBy_id crossref_primary_10_1016_j_energy_2023_129462
crossref_primary_10_1016_j_apenergy_2021_118317
crossref_primary_10_1016_j_est_2022_104098
crossref_primary_10_1016_j_est_2024_113807
crossref_primary_10_1016_j_est_2022_106273
crossref_primary_10_1109_JESTIE_2022_3181507
crossref_primary_10_1016_j_est_2025_116006
crossref_primary_10_1016_j_est_2025_116523
crossref_primary_10_3390_en12214031
crossref_primary_10_3390_en18051035
crossref_primary_10_1109_TIA_2021_3069726
crossref_primary_10_1016_j_est_2019_101121
crossref_primary_10_1016_j_electacta_2021_139131
crossref_primary_10_1016_j_jpowsour_2019_03_008
crossref_primary_10_1007_s42835_020_00607_2
crossref_primary_10_1016_j_est_2024_114690
crossref_primary_10_1109_ACCESS_2023_3318121
crossref_primary_10_1002_er_6700
crossref_primary_10_1016_j_est_2019_100951
crossref_primary_10_1007_s11581_024_05968_6
crossref_primary_10_1016_j_est_2022_104535
crossref_primary_10_3390_en14030769
crossref_primary_10_1016_j_est_2021_103673
crossref_primary_10_1016_j_fub_2025_100060
crossref_primary_10_1080_02286203_2025_2523065
crossref_primary_10_1177_16878140211027735
crossref_primary_10_1016_j_jclepro_2020_120203
crossref_primary_10_1002_er_4759
crossref_primary_10_1016_j_measurement_2024_115148
crossref_primary_10_1016_j_jclepro_2021_126246
crossref_primary_10_1016_j_est_2022_106283
crossref_primary_10_3390_electronics14112201
crossref_primary_10_3390_batteries11010026
crossref_primary_10_1115_1_4067951
crossref_primary_10_3390_batteries8110222
crossref_primary_10_1016_j_egyr_2021_08_113
crossref_primary_10_1016_j_est_2023_109891
crossref_primary_10_1016_j_est_2021_103679
crossref_primary_10_3390_batteries8100155
crossref_primary_10_3390_su15075667
crossref_primary_10_3390_batteries6020032
crossref_primary_10_3390_batteries11020055
crossref_primary_10_3390_wevj15040152
crossref_primary_10_1016_j_est_2022_104700
crossref_primary_10_1016_j_est_2023_106789
crossref_primary_10_1016_j_jpowsour_2021_230716
crossref_primary_10_3390_en17133187
crossref_primary_10_1016_j_measurement_2022_112187
crossref_primary_10_1016_j_est_2020_102093
crossref_primary_10_1016_j_compeleceng_2025_110691
crossref_primary_10_1016_j_enconman_2022_116330
crossref_primary_10_1016_j_jpowsour_2020_228358
crossref_primary_10_1016_j_apenergy_2024_123297
crossref_primary_10_1002_er_6088
crossref_primary_10_1016_j_energy_2025_138441
crossref_primary_10_1016_j_energy_2024_133709
crossref_primary_10_1016_j_est_2023_108197
crossref_primary_10_3390_electronics7120366
crossref_primary_10_1016_j_energy_2023_128742
crossref_primary_10_1002_er_6921
crossref_primary_10_1002_er_7339
crossref_primary_10_3390_en17040822
crossref_primary_10_3390_su14042313
crossref_primary_10_1016_j_est_2024_115282
crossref_primary_10_1016_j_rser_2019_109405
crossref_primary_10_3390_su142315912
crossref_primary_10_1016_j_electacta_2021_138501
crossref_primary_10_1016_j_est_2021_102457
crossref_primary_10_1016_j_est_2022_105333
crossref_primary_10_1016_j_est_2025_115581
crossref_primary_10_1088_1742_6596_2567_1_012001
crossref_primary_10_3390_su15075732
crossref_primary_10_1109_TTE_2022_3180077
crossref_primary_10_1016_j_energy_2024_130942
crossref_primary_10_1002_er_7292
crossref_primary_10_1016_j_rser_2024_114857
crossref_primary_10_1016_j_isatra_2022_08_025
crossref_primary_10_1051_e3sconf_202560100033
crossref_primary_10_1016_j_rser_2024_114577
crossref_primary_10_3390_en15134556
crossref_primary_10_1002_er_6197
crossref_primary_10_1016_j_energy_2022_123423
crossref_primary_10_1149_1945_7111_adf9d1
crossref_primary_10_1002_ese3_294
crossref_primary_10_1016_j_est_2021_102843
crossref_primary_10_1109_TIE_2023_3270526
crossref_primary_10_1002_cta_3250
crossref_primary_10_1016_j_est_2023_109318
crossref_primary_10_1016_j_est_2025_116281
crossref_primary_10_1049_rpg2_12965
crossref_primary_10_3390_en14196221
crossref_primary_10_1016_j_jclepro_2025_146229
crossref_primary_10_1016_j_energy_2019_07_059
crossref_primary_10_1155_er_8883900
crossref_primary_10_1016_j_est_2023_110216
crossref_primary_10_1007_s11431_021_1837_0
crossref_primary_10_3390_electronics10131588
crossref_primary_10_1002_ente_202200151
crossref_primary_10_1002_er_7672
crossref_primary_10_1109_ACCESS_2019_2943558
crossref_primary_10_1016_j_apenergy_2019_113327
crossref_primary_10_1016_j_est_2020_101980
crossref_primary_10_1016_j_est_2021_102559
crossref_primary_10_1016_j_etran_2025_100420
crossref_primary_10_1002_er_7834
crossref_primary_10_1016_j_electacta_2021_139574
crossref_primary_10_3390_en15239251
crossref_primary_10_1016_j_electacta_2019_135239
crossref_primary_10_1002_est2_409
crossref_primary_10_1155_2020_8231243
crossref_primary_10_3390_en15197416
crossref_primary_10_1016_j_ijhydene_2020_01_067
crossref_primary_10_3390_electronics11111795
crossref_primary_10_1016_j_electacta_2024_143833
crossref_primary_10_1016_j_energy_2023_128320
crossref_primary_10_1016_j_est_2024_110982
crossref_primary_10_1007_s00202_024_02580_9
crossref_primary_10_1016_j_engappai_2022_105506
crossref_primary_10_1016_j_egyr_2021_10_086
crossref_primary_10_1016_j_energy_2022_124770
crossref_primary_10_1016_j_jelechem_2022_116011
crossref_primary_10_3390_su15064982
crossref_primary_10_1016_j_energy_2020_119233
crossref_primary_10_1002_er_5647
crossref_primary_10_1007_s12598_022_02156_1
crossref_primary_10_1016_j_est_2020_101514
crossref_primary_10_1016_j_etran_2020_100099
crossref_primary_10_1109_TIM_2024_3350117
crossref_primary_10_1007_s11581_025_06336_8
crossref_primary_10_1016_j_energy_2025_137063
crossref_primary_10_1109_TPEL_2020_3044725
crossref_primary_10_1002_ente_202300299
crossref_primary_10_3390_batteries8040029
crossref_primary_10_3390_s21030712
crossref_primary_10_1016_j_jpowsour_2020_228951
crossref_primary_10_1016_j_electacta_2022_140350
crossref_primary_10_1016_j_est_2024_113503
crossref_primary_10_1016_j_est_2024_113623
crossref_primary_10_1109_ACCESS_2020_2967563
crossref_primary_10_3390_math11092215
crossref_primary_10_1016_j_electacta_2021_139637
crossref_primary_10_1016_j_jclepro_2018_12_210
crossref_primary_10_1016_j_est_2023_108274
crossref_primary_10_3390_wevj15020038
crossref_primary_10_1002_cta_3500
crossref_primary_10_1007_s43236_022_00525_8
crossref_primary_10_1016_j_est_2023_108034
crossref_primary_10_1016_j_est_2022_103989
crossref_primary_10_1002_er_6964
crossref_primary_10_1016_j_measurement_2025_117124
crossref_primary_10_1016_j_asoc_2022_109954
crossref_primary_10_1016_j_est_2023_107345
crossref_primary_10_1016_j_electacta_2022_140916
crossref_primary_10_1016_j_est_2019_101106
crossref_primary_10_1016_j_energy_2021_120348
crossref_primary_10_1016_j_est_2022_104565
crossref_primary_10_1002_er_6719
crossref_primary_10_1016_j_rineng_2024_102437
crossref_primary_10_1016_j_ijepes_2021_107312
crossref_primary_10_1016_j_jpowsour_2020_229117
crossref_primary_10_1016_j_rser_2021_111162
crossref_primary_10_1016_j_est_2024_112304
crossref_primary_10_1016_j_est_2023_109195
crossref_primary_10_1109_TTE_2021_3125932
crossref_primary_10_1016_j_est_2024_111179
crossref_primary_10_1016_j_est_2023_109196
crossref_primary_10_3390_en15134753
crossref_primary_10_1002_eng2_70346
crossref_primary_10_1016_j_est_2025_115707
crossref_primary_10_1016_j_etran_2024_100355
crossref_primary_10_1016_j_jpowsour_2023_233431
crossref_primary_10_1109_TIE_2025_3528505
crossref_primary_10_3390_electronics7120399
crossref_primary_10_1002_er_6315
crossref_primary_10_1016_j_measurement_2024_116263
crossref_primary_10_1002_er_7401
crossref_primary_10_1016_j_electacta_2020_136576
crossref_primary_10_3390_s22239277
Cites_doi 10.1007/BF01009452
10.1016/j.electacta.2017.10.153
10.1016/j.apenergy.2016.05.065
10.3390/en4111840
10.1016/j.jpowsour.2017.11.094
10.1162/106365600568220
10.1016/j.epsr.2015.10.018
10.1016/j.enconman.2012.04.014
10.1109/TVT.2007.912176
10.1002/er.4060
10.1016/j.apenergy.2016.10.020
10.1016/j.electacta.2016.12.119
10.1162/evco.1995.3.1.1
10.1007/s00521-015-1870-7
10.1016/j.apenergy.2016.01.096
10.1016/j.ipl.2010.07.026
10.1016/j.energy.2018.06.113
10.1016/j.jpowsour.2006.12.024
10.1109/TIE.2018.2838109
10.1016/j.advengsoft.2013.12.007
10.1504/IJBIC.2010.032124
10.1016/j.electacta.2017.01.057
10.1016/j.swevo.2015.07.002
10.3390/en4040582
10.1039/c2ee21892e
10.1016/j.jpowsour.2011.10.013
10.1016/j.apenergy.2016.10.059
10.1016/j.ejor.2017.02.017
10.1155/2014/105245
10.1016/j.jpowsour.2016.03.112
10.1016/j.jpowsour.2016.03.042
10.1016/j.advengsoft.2016.01.008
10.1016/j.jpowsour.2018.04.033
10.1007/s10462-016-9486-6
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Feb 1, 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 1, 2019
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2018.11.134
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
EndPage 1066
ExternalDocumentID 10_1016_j_electacta_2018_11_134
S0013468618326173
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
SC5
SCB
SCH
SEW
T9H
VH1
WUQ
XOL
ZY4
~HD
7SR
7U5
8BQ
8FD
AFXIZ
AGCQF
AGRNS
JG9
L7M
SSH
ID FETCH-LOGICAL-c343t-636abf610bd36d0c1b9324a90d22af412b3e6a2754d7b2be4cbeeb725ca74cd13
ISICitedReferencesCount 202
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454249800121&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-4686
IngestDate Fri Jul 25 04:00:36 EDT 2025
Tue Nov 18 21:51:39 EST 2025
Sat Nov 29 07:30:05 EST 2025
Fri Feb 23 02:49:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Optimization algorithm
Equivalent circuit model
Parameter identification
Metaheuristic algorithm
Li-ion battery
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-636abf610bd36d0c1b9324a90d22af412b3e6a2754d7b2be4cbeeb725ca74cd13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2182476475
PQPubID 2045485
PageCount 10
ParticipantIDs proquest_journals_2182476475
crossref_citationtrail_10_1016_j_electacta_2018_11_134
crossref_primary_10_1016_j_electacta_2018_11_134
elsevier_sciencedirect_doi_10_1016_j_electacta_2018_11_134
PublicationCentury 2000
PublicationDate 2019-02-01
2019-02-00
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electrochimica acta
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Liu, Liu, Wang, Hu, Ma, Ren (bib11) 2016; 320
Cheng, Yao, Xing, Pecht (bib17) 2016; 9
Maniezzo, Carbonaro (bib31) 2002; 15
Fonseca (bib28) 1995; 3
Wang, Wang, Zhao, Kang, Yan, Du (bib35) 2017; 228
Zheng, Ouyang, Han, Lu, Li (bib5) 2018; 377
Zou, Zhang, Hu, Wang, Wik, Pecht (bib16) 2018; 390
Akyol, Alatas (bib26) 2017; 47
W. Gao, Y. Zheng, M. Ouyang, J. Li, X. Lai, X. Hu, IEEE Trans. Ind. Electron.
Mirjalili, Mirjalili, Hatamlou (bib38) 2016; 27
K. S (bib29) 1984; 34
Zheng, Zhu, Wang, Lu, He (bib8) 2018; 158
Service (bib34) 2010; 110
Mesbahi, Khenfri, Rizoug, Chaaban, Bartholomeus, Le Moigne (bib21) 2016; 131
Holland (bib18) 2000; 8
Lim, Bastawrous, Duong, See, Zhang, Dou (bib20) 2016; 169
Kinable, Smeulders, Delcour, Spieksma (bib25) 2017; 261
Xing, Ma, Tsui, Pecht (bib1) 2011; 4
Mirjalili, Lewis (bib37) 2016; 95
Thackeray, Wolverton, Isaacs (bib2) 2012; 5
Tian, Li, Tian, Xia (bib22) 2017; 225
Zhang, Jiang, Gao, Zhang, Liu, Hu (bib19) 2017; 194
Abedinpourshotorban, Shamsuddin, Beheshti, Jawawi (bib27) 2016; 26
Kaiser (bib6) 2007; 168
Lai, Qin, Gao, Zheng, Yi (bib7) 2018; 8
Bratton, Kennedy (bib30) 2007
Lai, Zheng, Sun (bib9) 2018; 259
Xie, Ma, Bai (bib15) 2018; 42
Tian, Lu, Wang, Tao (bib32) 2014; 2014
.
He, Xiong, Fan (bib10) 2011; 4
Dai, Xu, Zhu, Wei, Sun (bib24) 2016; 184
Nejad, Gladwin, Stone (bib3) 2016; 316
Hu, Li, Peng (bib14) 2012; 198
Lin, Mu, Xiong, Cao (bib13) 2017; 194
He, Xiong, Guo, Li (bib12) 2012; 64
Yang (bib33) 2010; 2
Mirjalili, Mirjalili, Lewis (bib36) 2014; 69
Szumanowski, Chang (bib4) 2008; 57
Akyol (10.1016/j.electacta.2018.11.134_bib26) 2017; 47
Lin (10.1016/j.electacta.2018.11.134_bib13) 2017; 194
Bratton (10.1016/j.electacta.2018.11.134_bib30) 2007
Lim (10.1016/j.electacta.2018.11.134_bib20) 2016; 169
Szumanowski (10.1016/j.electacta.2018.11.134_bib4) 2008; 57
Mirjalili (10.1016/j.electacta.2018.11.134_bib36) 2014; 69
Liu (10.1016/j.electacta.2018.11.134_bib11) 2016; 320
Xing (10.1016/j.electacta.2018.11.134_bib1) 2011; 4
Holland (10.1016/j.electacta.2018.11.134_bib18) 2000; 8
Zhang (10.1016/j.electacta.2018.11.134_bib19) 2017; 194
Service (10.1016/j.electacta.2018.11.134_bib34) 2010; 110
Kaiser (10.1016/j.electacta.2018.11.134_bib6) 2007; 168
Dai (10.1016/j.electacta.2018.11.134_bib24) 2016; 184
Yang (10.1016/j.electacta.2018.11.134_bib33) 2010; 2
Lai (10.1016/j.electacta.2018.11.134_bib9) 2018; 259
Wang (10.1016/j.electacta.2018.11.134_bib35) 2017; 228
Thackeray (10.1016/j.electacta.2018.11.134_bib2) 2012; 5
Tian (10.1016/j.electacta.2018.11.134_bib22) 2017; 225
Zheng (10.1016/j.electacta.2018.11.134_bib5) 2018; 377
Hu (10.1016/j.electacta.2018.11.134_bib14) 2012; 198
Lai (10.1016/j.electacta.2018.11.134_bib7) 2018; 8
He (10.1016/j.electacta.2018.11.134_bib12) 2012; 64
Maniezzo (10.1016/j.electacta.2018.11.134_bib31) 2002; 15
He (10.1016/j.electacta.2018.11.134_bib10) 2011; 4
Cheng (10.1016/j.electacta.2018.11.134_bib17) 2016; 9
10.1016/j.electacta.2018.11.134_bib23
Mirjalili (10.1016/j.electacta.2018.11.134_bib38) 2016; 27
Xie (10.1016/j.electacta.2018.11.134_bib15) 2018; 42
Mesbahi (10.1016/j.electacta.2018.11.134_bib21) 2016; 131
Zheng (10.1016/j.electacta.2018.11.134_bib8) 2018; 158
K. S (10.1016/j.electacta.2018.11.134_bib29) 1984; 34
Kinable (10.1016/j.electacta.2018.11.134_bib25) 2017; 261
Abedinpourshotorban (10.1016/j.electacta.2018.11.134_bib27) 2016; 26
Mirjalili (10.1016/j.electacta.2018.11.134_bib37) 2016; 95
Fonseca (10.1016/j.electacta.2018.11.134_bib28) 1995; 3
Tian (10.1016/j.electacta.2018.11.134_bib32) 2014; 2014
Nejad (10.1016/j.electacta.2018.11.134_bib3) 2016; 316
Zou (10.1016/j.electacta.2018.11.134_bib16) 2018; 390
References_xml – volume: 316
  start-page: 183
  year: 2016
  end-page: 196
  ident: bib3
  publication-title: J. Power Sources
– volume: 320
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib11
  publication-title: J. Power Sources
– start-page: 120
  year: 2007
  ident: bib30
  publication-title: 2007 Ieee Swarm Intelligence Symposium
– volume: 2
  start-page: 78
  year: 2010
  end-page: 84
  ident: bib33
  publication-title: Int. J. Bio Inspired Comput.
– volume: 64
  start-page: 113
  year: 2012
  end-page: 121
  ident: bib12
  publication-title: Energy Convers. Manag.
– volume: 8
  start-page: 373
  year: 2000
  end-page: 391
  ident: bib18
  publication-title: Evol. Comput.
– reference: W. Gao, Y. Zheng, M. Ouyang, J. Li, X. Lai, X. Hu, IEEE Trans. Ind. Electron.,
– volume: 3
  start-page: 1
  year: 1995
  end-page: 16
  ident: bib28
  publication-title: Evol. Comput.
– volume: 4
  start-page: 1840
  year: 2011
  end-page: 1857
  ident: bib1
  publication-title: Energies
– volume: 228
  start-page: 146
  year: 2017
  end-page: 159
  ident: bib35
  publication-title: Electrochim. Acta
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 10
  ident: bib32
  publication-title: Math. Probl Eng.
– volume: 225
  start-page: 225
  year: 2017
  end-page: 234
  ident: bib22
  publication-title: Electrochim. Acta
– volume: 34
  start-page: 975
  year: 1984
  end-page: 986
  ident: bib29
  publication-title: J. Stat. Phys.
– volume: 26
  start-page: 8
  year: 2016
  end-page: 22
  ident: bib27
  publication-title: Swarm Evol. Comput.
– volume: 4
  start-page: 582
  year: 2011
  end-page: 598
  ident: bib10
  publication-title: Energies
– volume: 169
  start-page: 40
  year: 2016
  end-page: 48
  ident: bib20
  publication-title: Appl. Energy
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: bib38
  publication-title: Neural Comput. Appl.
– volume: 184
  start-page: 119
  year: 2016
  end-page: 131
  ident: bib24
  publication-title: Appl. Energy
– volume: 198
  start-page: 359
  year: 2012
  end-page: 367
  ident: bib14
  publication-title: J. Power Sources
– volume: 390
  start-page: 286
  year: 2018
  end-page: 296
  ident: bib16
  publication-title: J. Power Sources
– volume: 110
  start-page: 917
  year: 2010
  end-page: 923
  ident: bib34
  publication-title: Inf. Process. Lett.
– volume: 168
  start-page: 58
  year: 2007
  end-page: 65
  ident: bib6
  publication-title: J. Power Sources
– volume: 261
  start-page: 475
  year: 2017
  end-page: 485
  ident: bib25
  publication-title: Eur. J. Oper. Res.
– volume: 47
  start-page: 417
  year: 2017
  end-page: 462
  ident: bib26
  publication-title: Artif. Intell. Rev.
– volume: 259
  start-page: 566
  year: 2018
  end-page: 577
  ident: bib9
  publication-title: Electrochim. Acta
– volume: 131
  start-page: 195
  year: 2016
  end-page: 204
  ident: bib21
  publication-title: Elec. Power Syst. Res.
– volume: 57
  start-page: 1425
  year: 2008
  end-page: 1432
  ident: bib4
  publication-title: IEEE Trans. Veh. Technol.
– volume: 158
  start-page: 1028
  year: 2018
  end-page: 1037
  ident: bib8
  publication-title: Energy
– volume: 194
  start-page: 569
  year: 2017
  end-page: 577
  ident: bib19
  publication-title: Appl. Energy
– volume: 377
  start-page: 161
  year: 2018
  end-page: 188
  ident: bib5
  publication-title: J. Power Sources
– reference: .
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: bib36
  publication-title: Adv. Eng. Software
– volume: 42
  start-page: 2710
  year: 2018
  end-page: 2727
  ident: bib15
  publication-title: Int. J. Energy Res.
– volume: 8
  year: 2018
  ident: bib7
  publication-title: Appl. Sci. Basel
– volume: 15
  start-page: 469
  year: 2002
  end-page: 492
  ident: bib31
  publication-title: Oper. Res. Comput. Sci.
– volume: 5
  start-page: 7854
  year: 2012
  end-page: 7863
  ident: bib2
  publication-title: Energy Environ. Sci.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: bib37
  publication-title: Adv. Eng. Software
– volume: 194
  start-page: 560
  year: 2017
  end-page: 568
  ident: bib13
  publication-title: Appl. Energy
– volume: 9
  year: 2016
  ident: bib17
  publication-title: Energies
– volume: 8
  year: 2018
  ident: 10.1016/j.electacta.2018.11.134_bib7
  publication-title: Appl. Sci. Basel
– volume: 9
  year: 2016
  ident: 10.1016/j.electacta.2018.11.134_bib17
  publication-title: Energies
– volume: 34
  start-page: 975
  year: 1984
  ident: 10.1016/j.electacta.2018.11.134_bib29
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01009452
– volume: 259
  start-page: 566
  year: 2018
  ident: 10.1016/j.electacta.2018.11.134_bib9
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.10.153
– volume: 194
  start-page: 560
  year: 2017
  ident: 10.1016/j.electacta.2018.11.134_bib13
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.05.065
– volume: 4
  start-page: 1840
  year: 2011
  ident: 10.1016/j.electacta.2018.11.134_bib1
  publication-title: Energies
  doi: 10.3390/en4111840
– volume: 377
  start-page: 161
  year: 2018
  ident: 10.1016/j.electacta.2018.11.134_bib5
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.11.094
– volume: 8
  start-page: 373
  year: 2000
  ident: 10.1016/j.electacta.2018.11.134_bib18
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568220
– volume: 131
  start-page: 195
  year: 2016
  ident: 10.1016/j.electacta.2018.11.134_bib21
  publication-title: Elec. Power Syst. Res.
  doi: 10.1016/j.epsr.2015.10.018
– volume: 64
  start-page: 113
  year: 2012
  ident: 10.1016/j.electacta.2018.11.134_bib12
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2012.04.014
– volume: 57
  start-page: 1425
  year: 2008
  ident: 10.1016/j.electacta.2018.11.134_bib4
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2007.912176
– volume: 42
  start-page: 2710
  year: 2018
  ident: 10.1016/j.electacta.2018.11.134_bib15
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4060
– volume: 184
  start-page: 119
  year: 2016
  ident: 10.1016/j.electacta.2018.11.134_bib24
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.10.020
– volume: 225
  start-page: 225
  year: 2017
  ident: 10.1016/j.electacta.2018.11.134_bib22
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.119
– start-page: 120
  year: 2007
  ident: 10.1016/j.electacta.2018.11.134_bib30
– volume: 3
  start-page: 1
  year: 1995
  ident: 10.1016/j.electacta.2018.11.134_bib28
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1995.3.1.1
– volume: 27
  start-page: 495
  year: 2016
  ident: 10.1016/j.electacta.2018.11.134_bib38
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– volume: 169
  start-page: 40
  year: 2016
  ident: 10.1016/j.electacta.2018.11.134_bib20
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.01.096
– volume: 110
  start-page: 917
  year: 2010
  ident: 10.1016/j.electacta.2018.11.134_bib34
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2010.07.026
– volume: 15
  start-page: 469
  year: 2002
  ident: 10.1016/j.electacta.2018.11.134_bib31
  publication-title: Oper. Res. Comput. Sci.
– volume: 158
  start-page: 1028
  year: 2018
  ident: 10.1016/j.electacta.2018.11.134_bib8
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.113
– volume: 168
  start-page: 58
  year: 2007
  ident: 10.1016/j.electacta.2018.11.134_bib6
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.12.024
– ident: 10.1016/j.electacta.2018.11.134_bib23
  doi: 10.1109/TIE.2018.2838109
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.electacta.2018.11.134_bib36
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 2
  start-page: 78
  year: 2010
  ident: 10.1016/j.electacta.2018.11.134_bib33
  publication-title: Int. J. Bio Inspired Comput.
  doi: 10.1504/IJBIC.2010.032124
– volume: 228
  start-page: 146
  year: 2017
  ident: 10.1016/j.electacta.2018.11.134_bib35
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.01.057
– volume: 26
  start-page: 8
  year: 2016
  ident: 10.1016/j.electacta.2018.11.134_bib27
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2015.07.002
– volume: 4
  start-page: 582
  year: 2011
  ident: 10.1016/j.electacta.2018.11.134_bib10
  publication-title: Energies
  doi: 10.3390/en4040582
– volume: 5
  start-page: 7854
  year: 2012
  ident: 10.1016/j.electacta.2018.11.134_bib2
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21892e
– volume: 198
  start-page: 359
  year: 2012
  ident: 10.1016/j.electacta.2018.11.134_bib14
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.10.013
– volume: 194
  start-page: 569
  year: 2017
  ident: 10.1016/j.electacta.2018.11.134_bib19
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.10.059
– volume: 261
  start-page: 475
  year: 2017
  ident: 10.1016/j.electacta.2018.11.134_bib25
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.02.017
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.electacta.2018.11.134_bib32
  publication-title: Math. Probl Eng.
  doi: 10.1155/2014/105245
– volume: 320
  start-page: 1
  year: 2016
  ident: 10.1016/j.electacta.2018.11.134_bib11
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.03.112
– volume: 316
  start-page: 183
  year: 2016
  ident: 10.1016/j.electacta.2018.11.134_bib3
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.03.042
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.electacta.2018.11.134_bib37
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 390
  start-page: 286
  year: 2018
  ident: 10.1016/j.electacta.2018.11.134_bib16
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.033
– volume: 47
  start-page: 417
  year: 2017
  ident: 10.1016/j.electacta.2018.11.134_bib26
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-016-9486-6
SSID ssj0007670
Score 2.6395113
Snippet A suitable model structure and matched model parameters are prerequisites for the precise estimation of the battery states. Previous studies pay little...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1057
SubjectTerms Algorithms
Comparative studies
Equivalent circuit model
Equivalent circuits
Global optimization
Heuristic methods
Identification methods
Li-ion battery
Lithium-ion batteries
Mathematical models
Metaheuristic algorithm
Model matching
Optimization algorithm
Parameter estimation
Parameter identification
Rechargeable batteries
Title A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries
URI https://dx.doi.org/10.1016/j.electacta.2018.11.134
https://www.proquest.com/docview/2182476475
Volume 295
WOSCitedRecordID wos000454249800121&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3859
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007670
  issn: 0013-4686
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFgk4ICggCgXtAXGJtoq9jtfmFlUpD4XCIYVwsvZhg0PrpElcld_A7-H_Met9xEGFwoGLZTmajeP5Mjs7nv0-hJ6FkEIUvVgQoSJGoiSQRFBREJYIrtJCQUzkjdgEOzpKJpP0fafzw-2FOT9hVZVcXKTz_-pquAbO1ltn_8HdflC4AOfgdDiC2-H4V44f2L5yw-i9dKTRlvljBiHi1O69tPLRDSNDV1uc6t6YbqlsB5HPJp2Kyqqbn9Ul3Kw-leVC1uXKaOmYMUYl0Rai4ex03Ymu7G_0duSXUhMUaA4PPyGMjCT2pPRAfcmbCu7HvPrKy3VtOzeB6VOdT8val4frb7bm_Ram4c981i5k6L1TG00h6x02H9oBO6Akih1btonRCaOEJpZI3AbxMO23wrAWL750fjCliul-ozGkf6lu7ktg3tgPbE11g5H76F12eDwaZePhZPx8fka0WJl-qW-VW66h7ZD1Uwim24PXw8kbnwKwmPWcdIa--43Gwku_-3dp0S8JQpP1jO-g23a5ggcGZndRJ6920I0DpxK4g261CC3voe8D3AIfbsCHZwU24MNt8GELPgzAwR58eBN82taDD6_Bhy34sAFfM4YBH_bgu4-OD4fjg1fEyn0QSSO6IjGNuSggnReKxqonAwFri4inPRWGvIiCUNA85vDAI8VEKPJIijwXLOxLziKpAvoAbVWzKn-IcAGrdKpgtaxUoicproMOZVxyARk5F7sodk87k5YLX0uynGSu6XGaeTdl2k2wUs7ATbuo5w3nhg7mapMXzp2ZzWpNtpoBKK823nMAyGyMWWZadCFiccT6j_788WN0c_1H20Nbq0WdP0HX5fmqXC6eWtD-BOCb1ig
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+global+optimization+methods+for+parameter+identification+of+different+equivalent+circuit+models+for+Li-ion+batteries&rft.jtitle=Electrochimica+acta&rft.au=Lai%2C+Xin&rft.au=Gao%2C+Wenkai&rft.au=Zheng%2C+Yuejiu&rft.au=Ouyang%2C+Minggao&rft.date=2019-02-01&rft.pub=Elsevier+BV&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=295&rft.spage=1057&rft_id=info:doi/10.1016%2Fj.electacta.2018.11.134&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon