On blowdown analysis with efficient and reliable direct time integration methods for wave propagation and fluid-structure-interaction response

•Wave propagation and fluid-structure-interaction dynamic response.•Validation of iterative and direct fluid-structure-interaction CFD and FE models.•Efficiency, accuracy and reliability of time integration methods in linear and non-linear blowdown analyses.•Bathe time integration method. In literat...

Full description

Saved in:
Bibliographic Details
Published in:Computers & structures Vol. 216; pp. 1 - 14
Main Authors: Nilsson, Kenth, Tornberg, Fredrik
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01.05.2019
Elsevier BV
Subjects:
ISSN:0045-7949, 1879-2243
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Wave propagation and fluid-structure-interaction dynamic response.•Validation of iterative and direct fluid-structure-interaction CFD and FE models.•Efficiency, accuracy and reliability of time integration methods in linear and non-linear blowdown analyses.•Bathe time integration method. In literature time integration methods are described separately for wave propagation or structural dynamic problems. In this paper we focus on implicit methods for problems that involve simultaneous wave propagation and strong fluid-structure-interaction response. As example we show methods and models for nuclear pressure vessel blowdown analysis. We present validation against measurements from literature for three different ways to perform this analysis. These are: 2-way iterative fluid-structure-interaction (FSI) between CFD and FE codes, direct 2-way FSI in the FE code and sequential 1+2-way FSI. The CFD and FE codes provide different time integration methods. Here we investigate the trapezoidal and composite methods, in the FE code the Bathe method. We show that the selected validation problem is linear and follows the principle of superposition and can be solved with the all-linear fluid-structure FE model, with the trapezoidal rule for computational efficiency. On the contrary, in applied analyses of reactor pressure vessels structural non-linearities must often be included, such as contact, friction stick-slip and plasticity. We show that for non-linear fluid-structure FE models the Bathe method is efficient and reliable. The Bathe method provides high accuracy in both the wave propagation and the fluid-structure-interaction response.
AbstractList In literature time integration methods are described separately for wave propagation or structural dynamic problems. In this paper we focus on implicit methods for problems that involve simultaneous wave propagation and strong fluid-structure-interaction response. As example we show methods and models for nuclear pressure vessel blowdown analysis. We present validation against measurements from literature for three different ways to perform this analysis. These are: 2-way iterative fluid-structure-interaction (FSI) between CFD and FE codes, direct 2-way FSI in the FE code and sequential 1+2-way FSI. The CFD and FE codes provide different time integration methods. Here we investigate the trapezoidal and composite methods, in the FE code the Bathe method. We show that the selected validation problem is linear and follows the principle of superposition and can be solved with the all-linear fluid-structure FE model, with the trapezoidal rule for computational efficiency. On the contrary, in applied analyses of reactor pressure vessels structural non-linearities must often be included, such as contact, friction stick-slip and plasticity. We show that for non-linear fluid-structure FE models the Bathe method is efficient and reliable. The Bathe method provides high accuracy in both the wave propagation and the fluid-structure-interaction response.
•Wave propagation and fluid-structure-interaction dynamic response.•Validation of iterative and direct fluid-structure-interaction CFD and FE models.•Efficiency, accuracy and reliability of time integration methods in linear and non-linear blowdown analyses.•Bathe time integration method. In literature time integration methods are described separately for wave propagation or structural dynamic problems. In this paper we focus on implicit methods for problems that involve simultaneous wave propagation and strong fluid-structure-interaction response. As example we show methods and models for nuclear pressure vessel blowdown analysis. We present validation against measurements from literature for three different ways to perform this analysis. These are: 2-way iterative fluid-structure-interaction (FSI) between CFD and FE codes, direct 2-way FSI in the FE code and sequential 1+2-way FSI. The CFD and FE codes provide different time integration methods. Here we investigate the trapezoidal and composite methods, in the FE code the Bathe method. We show that the selected validation problem is linear and follows the principle of superposition and can be solved with the all-linear fluid-structure FE model, with the trapezoidal rule for computational efficiency. On the contrary, in applied analyses of reactor pressure vessels structural non-linearities must often be included, such as contact, friction stick-slip and plasticity. We show that for non-linear fluid-structure FE models the Bathe method is efficient and reliable. The Bathe method provides high accuracy in both the wave propagation and the fluid-structure-interaction response.
Author Nilsson, Kenth
Tornberg, Fredrik
Author_xml – sequence: 1
  givenname: Kenth
  surname: Nilsson
  fullname: Nilsson, Kenth
  email: kenth.nilsson@hifi-engineering.com
  organization: Hifi Engineering, Månsagårdsvägen 12, 439 36 Onsala, Sweden
– sequence: 2
  givenname: Fredrik
  surname: Tornberg
  fullname: Tornberg, Fredrik
  email: fredrik.tornberg@onsala-ing.se
  organization: Onsala Ingenjörsbyrå AB, Energigatan 4, 434 37 Kungsbacka, Sweden
BookMark eNqNkc1u3CAUhVGUSJ0kfYYidW33Ah7Aiy6iqH9SpGzaNWLgOmHkMQ7gjPISfeba46qLbJoVEveeo3vOd0nOhzggIR8Y1AyY_LSvXTyMuaTJ1RxYW4OoAfgZ2TCt2orzRpyTDUCzrVTbtO_IZc57AJANwIb8vh_oro9HH48DtYPtX3LI9BjKI8WuCy7gUOZ_TxP2we56pD4kdIWWcEAahoIPyZYQB3rA8hh9pl1M9GifkY4pjvZhHS4OXT8FX50OLVPCahEn607zhHmMQ8ZrctHZPuP7v-8V-fX1y8_b79Xd_bcftzd3lRONKNXWA_dMauWc9tJKqYWCOZ0FKzlILplgWyu2AqSSXre40zurlLbaOtX6RlyRj6vvfOTThLmYfZzSHD8bzucWddNAO299Xrdcijkn7IwL5RSoJBt6w8AsCMze_ENgFgQGhJkRzHr1Sj-mcLDp5Q3Km1WJcwnPAZPJCwqHa_vGx_Bfjz9ZNqwz
CitedBy_id crossref_primary_10_1007_s11071_021_06720_9
crossref_primary_10_1016_j_jweia_2024_105788
crossref_primary_10_1016_j_istruc_2025_109826
crossref_primary_10_1002_nme_6859
crossref_primary_10_1016_j_compstruc_2020_106433
crossref_primary_10_1007_s13369_024_09856_z
crossref_primary_10_1016_j_cscm_2024_e03368
crossref_primary_10_1016_j_solener_2024_112729
crossref_primary_10_1007_s10409_021_09078_3
Cites_doi 10.1016/j.compstruc.2017.05.006
10.1016/j.compstruc.2013.02.006
10.1002/eqe.4290010308
10.1016/j.compstruc.2018.02.007
10.1299/jsmeicone.2011.19._ICONE1943_79
10.1016/0029-5493(77)90016-4
10.1016/S0045-7949(02)00407-8
10.1016/j.compstruc.2013.06.007
10.1016/0029-5493(82)90150-9
10.1016/j.compstruc.2018.10.008
10.1016/j.ijimpeng.2011.10.003
10.1115/PVP2015-45722
10.1016/j.compstruc.2006.09.004
10.1016/S0045-7949(02)00479-0
10.1016/0029-5493(82)90152-2
10.1016/0045-7949(85)90226-3
10.1016/j.compstruc.2018.11.001
10.1115/PVP2010-26094
10.1002/nme.5291
10.1016/j.compstruc.2017.10.002
10.1016/S0045-7949(97)00026-6
10.1016/j.compstruc.2005.08.001
10.1201/9781315641645-2
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV May 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV May 2019
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.compstruc.2019.03.002
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2243
EndPage 14
ExternalDocumentID 10_1016_j_compstruc_2019_03_002
S0045794918315396
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSV
SSW
SSZ
T5K
T9H
TAE
TN5
UAO
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
FR3
JQ2
KR7
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c343t-5d02d1687cc8d6a668370794a0a6206261315a3530676d89eb8ba778a8ac79d43
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464486800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7949
IngestDate Fri Jul 25 03:43:51 EDT 2025
Sat Nov 29 04:10:43 EST 2025
Tue Nov 18 20:36:19 EST 2025
Fri Feb 23 02:26:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Potential based fluid
Nonlinear structural dynamics
Wave propagation
Bathe method
Fluid structure interaction
Implicit time integration
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-5d02d1687cc8d6a668370794a0a6206261315a3530676d89eb8ba778a8ac79d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2220184409
PQPubID 2045492
PageCount 14
ParticipantIDs proquest_journals_2220184409
crossref_citationtrail_10_1016_j_compstruc_2019_03_002
crossref_primary_10_1016_j_compstruc_2019_03_002
elsevier_sciencedirect_doi_10_1016_j_compstruc_2019_03_002
PublicationCentury 2000
PublicationDate May 2019
2019-05-00
20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & structures
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References ADINA Theory and Modeling Guide. Volume I: ADINA Solids and Structures. ADINA R&D, Inc, Watertown, MA; 2018.
Noh, Bathe (b0035) 2012; 98–99
Kim, Choi (b0055) 2018; 196
Noh, Bathe (b0040) 2018; 202
Wen, Tao, Duan, Yan, Wei, Fang (b0045) 2017; 190
Malakiyeh, Shojaee, Bathe (b0060) 2019; 212
Andersson, Andersson, Lundwall, Sundqvist, Veber (b0100) 2002; 435
Wolf (b0135) 1982; 70
Zhang, Liu, Liu (b0050) 2017; 109
Sussman, Sundqvist (b0090) 2003; 81
Jobert N, Nilsson K, Chambrin JL, Migot B, Muller T. Flow-induced vibrations: shortcuts and pitfalls in estimating structural response to turbulence. ASME-PVP-2010-26094.
Kroyer, Nilsson, Bathe (b0120) 2017; 2016
ADINA Theory and Modeling Guide. Volume III: ADINA CFD & FSI. ADINA R&D, Inc, Watertown, MA, USA; 2018.
Andersson, Andersson, Lundwall, Sundqvist, Nilsson, Veber (b0105) 2003; 81
Krieg, Schlechtendahl, Scholl (b0125) 1977; 43
Luke O, Xu H, Liszkai T. Benchmarking of pressurized water reactor blowdown analysis using Relap5 and Ansys. ASME -PVP2015-45722.
Blevins (b0095) 1990
Ludwig, Schumann (b0130) 1982; 70
Bathe KJ. Finite element procedures, 2nd ed. Watertown, MA; 2016.
Bathe, Baig (b0020) 2005; 83
Bathe, Wilson (b0070) 1973; 1
Olson, Bathe (b0080) 1985; 21
Noh, Bathe (b0065) 2019; 212
Nilsson K. Some experiences from HDR V31.1 and applied LOCA analyses on BWR and PWR. In: 20th international conference on structural mechanics in reactor technology (SMiRT 20) 2009, Helsinki, Finland.
Andersson, Andersson (b0150) 1997; 64
Kazanci, Bathe (b0030) 2012; 42
Kähkönen J, Varpasuo P, Vuorinen M. Analyzing HDR fluid-structure-interaction pipe break case with acoustic finite element method; 2011, ICONE19-43205.
Noh, Ham, Bathe (b0025) 2013; 123
Noh, Bathe (b0010) 2013; 129
Bathe (b0015) 2007; 85
Wen (10.1016/j.compstruc.2019.03.002_b0045) 2017; 190
Blevins (10.1016/j.compstruc.2019.03.002_b0095) 1990
Noh (10.1016/j.compstruc.2019.03.002_b0040) 2018; 202
Sussman (10.1016/j.compstruc.2019.03.002_b0090) 2003; 81
Noh (10.1016/j.compstruc.2019.03.002_b0025) 2013; 123
Noh (10.1016/j.compstruc.2019.03.002_b0035) 2012; 98–99
Andersson (10.1016/j.compstruc.2019.03.002_b0150) 1997; 64
Krieg (10.1016/j.compstruc.2019.03.002_b0125) 1977; 43
Olson (10.1016/j.compstruc.2019.03.002_b0080) 1985; 21
Wolf (10.1016/j.compstruc.2019.03.002_b0135) 1982; 70
10.1016/j.compstruc.2019.03.002_b0145
Kazanci (10.1016/j.compstruc.2019.03.002_b0030) 2012; 42
10.1016/j.compstruc.2019.03.002_b0085
10.1016/j.compstruc.2019.03.002_b0140
Kim (10.1016/j.compstruc.2019.03.002_b0055) 2018; 196
Andersson (10.1016/j.compstruc.2019.03.002_b0105) 2003; 81
10.1016/j.compstruc.2019.03.002_b0005
Noh (10.1016/j.compstruc.2019.03.002_b0065) 2019; 212
Ludwig (10.1016/j.compstruc.2019.03.002_b0130) 1982; 70
Bathe (10.1016/j.compstruc.2019.03.002_b0070) 1973; 1
Andersson (10.1016/j.compstruc.2019.03.002_b0100) 2002; 435
Kroyer (10.1016/j.compstruc.2019.03.002_b0120) 2017; 2016
Zhang (10.1016/j.compstruc.2019.03.002_b0050) 2017; 109
Malakiyeh (10.1016/j.compstruc.2019.03.002_b0060) 2019; 212
Bathe (10.1016/j.compstruc.2019.03.002_b0020) 2005; 83
Noh (10.1016/j.compstruc.2019.03.002_b0010) 2013; 129
10.1016/j.compstruc.2019.03.002_b0110
10.1016/j.compstruc.2019.03.002_b0075
Bathe (10.1016/j.compstruc.2019.03.002_b0015) 2007; 85
10.1016/j.compstruc.2019.03.002_b0115
References_xml – reference: Nilsson K. Some experiences from HDR V31.1 and applied LOCA analyses on BWR and PWR. In: 20th international conference on structural mechanics in reactor technology (SMiRT 20) 2009, Helsinki, Finland.
– volume: 81
  start-page: 949
  year: 2003
  end-page: 962
  ident: b0090
  article-title: Fluid–structure interaction analysis with a subsonic potential-based fluid formulation
  publication-title: Comput Struct
– volume: 64
  start-page: 893
  year: 1997
  end-page: 907
  ident: b0150
  article-title: Some experiences in the use of ADINA in the Swedish Nuclear Industry
  publication-title: Comput Struct
– volume: 81
  start-page: 469
  year: 2003
  end-page: 476
  ident: b0105
  article-title: On the validation and application of fluid–structure interaction analysis of reactor vessel internals at loss of coolants accidents
  publication-title: Comput Struct
– volume: 43
  start-page: 419
  year: 1977
  end-page: 435
  ident: b0125
  article-title: Design of the HDR experimental program on blowdown loading and dynamic response of PWR-vessel internals
  publication-title: Nucl Eng Des
– volume: 109
  start-page: 368
  year: 2017
  end-page: 406
  ident: b0050
  article-title: Accuracy of a composite implicit time integration scheme for structural dynamics
  publication-title: Int J Numer Meth Eng
– volume: 83
  start-page: 2513
  year: 2005
  end-page: 2524
  ident: b0020
  article-title: On a composite implicit time integration procedure for nonlinear dynamics
  publication-title: Comput Struct
– volume: 21
  start-page: 21
  year: 1985
  end-page: 32
  ident: b0080
  article-title: Analysis of fluid-structure interactions. A direct symmetric coupled formulation based on the fluid velocity potential
  publication-title: Comput Struct
– reference: Jobert N, Nilsson K, Chambrin JL, Migot B, Muller T. Flow-induced vibrations: shortcuts and pitfalls in estimating structural response to turbulence. ASME-PVP-2010-26094.
– reference: Kähkönen J, Varpasuo P, Vuorinen M. Analyzing HDR fluid-structure-interaction pipe break case with acoustic finite element method; 2011, ICONE19-43205.
– volume: 212
  start-page: 299
  year: 2019
  end-page: 310
  ident: b0065
  article-title: The Bathe time integration method with controllable spectral radius: the ρ∞-Bathe method
  publication-title: Comput Struct
– reference: Bathe KJ. Finite element procedures, 2nd ed. Watertown, MA; 2016.
– volume: 123
  start-page: 93
  year: 2013
  end-page: 105
  ident: b0025
  article-title: Performance of an implicit time integration scheme in the analysis of wave propagations
  publication-title: Comput Struct
– volume: 85
  start-page: 437
  year: 2007
  end-page: 445
  ident: b0015
  article-title: Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme
  publication-title: Comput Struct
– volume: 190
  start-page: 126
  year: 2017
  end-page: 149
  ident: b0045
  article-title: A comparative study of three composite implicit schemes on structural dynamic and wave propagation analysis
  publication-title: Comput Struct
– volume: 1
  start-page: 283
  year: 1973
  end-page: 291
  ident: b0070
  article-title: Stability and accuracy analysis of direct integration methods
  publication-title: Earthq Eng Struct D
– reference: ADINA Theory and Modeling Guide. Volume I: ADINA Solids and Structures. ADINA R&D, Inc, Watertown, MA; 2018.
– volume: 129
  start-page: 178
  year: 2013
  end-page: 193
  ident: b0010
  article-title: An explicit time integration scheme for the analysis of wave propagations
  publication-title: Comput Struct
– volume: 98–99
  start-page: 1
  year: 2012
  end-page: 6
  ident: b0035
  article-title: Insight into an implicit time integration scheme for structural dynamics
  publication-title: Comput Struct
– volume: 70
  start-page: 269
  year: 1982
  end-page: 308
  ident: b0135
  article-title: Experimental results of coupled fluid-structure interactions during blowdown of the HDR-vessel and comparisons with pre- and post-test predictions
  publication-title: Nucl Eng Des
– reference: Luke O, Xu H, Liszkai T. Benchmarking of pressurized water reactor blowdown analysis using Relap5 and Ansys. ASME -PVP2015-45722.
– volume: 212
  start-page: 289
  year: 2019
  end-page: 298
  ident: b0060
  article-title: The Bathe time integration method revisited for describing desired numerical dissipation
  publication-title: Comput Struct
– volume: 42
  start-page: 80
  year: 2012
  end-page: 88
  ident: b0030
  article-title: Crushing and crashing of tubes with implicit time integration
  publication-title: Int J Impact Eng
– volume: 70
  start-page: 321
  year: 1982
  end-page: 333
  ident: b0130
  article-title: Fluid-structure analysis for the HDR blowdown and snapback experiments with FLUX
  publication-title: Nucl Eng Des
– volume: 2016
  start-page: 32
  year: 2017
  end-page: 35
  ident: b0120
  article-title: Advances in direct time integration schemes for dynamic analysis
  publication-title: Automotive CAE Companion
– volume: 196
  start-page: 341
  year: 2018
  end-page: 354
  ident: b0055
  article-title: An improved implicit time integration algorithm: The generalized composite time integration algorithm
  publication-title: Comput Struct
– reference: ADINA Theory and Modeling Guide. Volume III: ADINA CFD & FSI. ADINA R&D, Inc, Watertown, MA, USA; 2018.
– volume: 202
  start-page: 15
  year: 2018
  end-page: 24
  ident: b0040
  article-title: Further insights into an implicit time integration scheme for structural dynamics
  publication-title: Comput Struct
– volume: 435
  start-page: 47
  year: 2002
  end-page: 62
  ident: b0100
  article-title: Numerical simulation of the HDR blowdown experiment V31.1 at Karlsruhe
  publication-title: ASME-PVP
– year: 1990
  ident: b0095
  article-title: Flow-induced vibration
– volume: 190
  start-page: 126
  year: 2017
  ident: 10.1016/j.compstruc.2019.03.002_b0045
  article-title: A comparative study of three composite implicit schemes on structural dynamic and wave propagation analysis
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2017.05.006
– volume: 123
  start-page: 93
  year: 2013
  ident: 10.1016/j.compstruc.2019.03.002_b0025
  article-title: Performance of an implicit time integration scheme in the analysis of wave propagations
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2013.02.006
– volume: 1
  start-page: 283
  year: 1973
  ident: 10.1016/j.compstruc.2019.03.002_b0070
  article-title: Stability and accuracy analysis of direct integration methods
  publication-title: Earthq Eng Struct D
  doi: 10.1002/eqe.4290010308
– volume: 202
  start-page: 15
  year: 2018
  ident: 10.1016/j.compstruc.2019.03.002_b0040
  article-title: Further insights into an implicit time integration scheme for structural dynamics
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2018.02.007
– ident: 10.1016/j.compstruc.2019.03.002_b0145
  doi: 10.1299/jsmeicone.2011.19._ICONE1943_79
– ident: 10.1016/j.compstruc.2019.03.002_b0110
– volume: 43
  start-page: 419
  year: 1977
  ident: 10.1016/j.compstruc.2019.03.002_b0125
  article-title: Design of the HDR experimental program on blowdown loading and dynamic response of PWR-vessel internals
  publication-title: Nucl Eng Des
  doi: 10.1016/0029-5493(77)90016-4
– volume: 435
  start-page: 47
  year: 2002
  ident: 10.1016/j.compstruc.2019.03.002_b0100
  article-title: Numerical simulation of the HDR blowdown experiment V31.1 at Karlsruhe
  publication-title: ASME-PVP
– volume: 81
  start-page: 949
  year: 2003
  ident: 10.1016/j.compstruc.2019.03.002_b0090
  article-title: Fluid–structure interaction analysis with a subsonic potential-based fluid formulation
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(02)00407-8
– volume: 129
  start-page: 178
  year: 2013
  ident: 10.1016/j.compstruc.2019.03.002_b0010
  article-title: An explicit time integration scheme for the analysis of wave propagations
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2013.06.007
– volume: 98–99
  start-page: 1
  year: 2012
  ident: 10.1016/j.compstruc.2019.03.002_b0035
  article-title: Insight into an implicit time integration scheme for structural dynamics
  publication-title: Comput Struct
– volume: 70
  start-page: 269
  year: 1982
  ident: 10.1016/j.compstruc.2019.03.002_b0135
  article-title: Experimental results of coupled fluid-structure interactions during blowdown of the HDR-vessel and comparisons with pre- and post-test predictions
  publication-title: Nucl Eng Des
  doi: 10.1016/0029-5493(82)90150-9
– volume: 212
  start-page: 289
  year: 2019
  ident: 10.1016/j.compstruc.2019.03.002_b0060
  article-title: The Bathe time integration method revisited for describing desired numerical dissipation
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2018.10.008
– volume: 42
  start-page: 80
  year: 2012
  ident: 10.1016/j.compstruc.2019.03.002_b0030
  article-title: Crushing and crashing of tubes with implicit time integration
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2011.10.003
– ident: 10.1016/j.compstruc.2019.03.002_b0140
  doi: 10.1115/PVP2015-45722
– volume: 85
  start-page: 437
  year: 2007
  ident: 10.1016/j.compstruc.2019.03.002_b0015
  article-title: Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2006.09.004
– volume: 81
  start-page: 469
  year: 2003
  ident: 10.1016/j.compstruc.2019.03.002_b0105
  article-title: On the validation and application of fluid–structure interaction analysis of reactor vessel internals at loss of coolants accidents
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(02)00479-0
– volume: 70
  start-page: 321
  year: 1982
  ident: 10.1016/j.compstruc.2019.03.002_b0130
  article-title: Fluid-structure analysis for the HDR blowdown and snapback experiments with FLUX
  publication-title: Nucl Eng Des
  doi: 10.1016/0029-5493(82)90152-2
– volume: 21
  start-page: 21
  year: 1985
  ident: 10.1016/j.compstruc.2019.03.002_b0080
  article-title: Analysis of fluid-structure interactions. A direct symmetric coupled formulation based on the fluid velocity potential
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(85)90226-3
– volume: 212
  start-page: 299
  year: 2019
  ident: 10.1016/j.compstruc.2019.03.002_b0065
  article-title: The Bathe time integration method with controllable spectral radius: the ρ∞-Bathe method
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2018.11.001
– ident: 10.1016/j.compstruc.2019.03.002_b0115
  doi: 10.1115/PVP2010-26094
– volume: 2016
  start-page: 32
  issue: 2016
  year: 2017
  ident: 10.1016/j.compstruc.2019.03.002_b0120
  article-title: Advances in direct time integration schemes for dynamic analysis
  publication-title: Automotive CAE Companion
– ident: 10.1016/j.compstruc.2019.03.002_b0075
– volume: 109
  start-page: 368
  year: 2017
  ident: 10.1016/j.compstruc.2019.03.002_b0050
  article-title: Accuracy of a composite implicit time integration scheme for structural dynamics
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.5291
– volume: 196
  start-page: 341
  year: 2018
  ident: 10.1016/j.compstruc.2019.03.002_b0055
  article-title: An improved implicit time integration algorithm: The generalized composite time integration algorithm
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2017.10.002
– year: 1990
  ident: 10.1016/j.compstruc.2019.03.002_b0095
– volume: 64
  start-page: 893
  year: 1997
  ident: 10.1016/j.compstruc.2019.03.002_b0150
  article-title: Some experiences in the use of ADINA in the Swedish Nuclear Industry
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(97)00026-6
– volume: 83
  start-page: 2513
  year: 2005
  ident: 10.1016/j.compstruc.2019.03.002_b0020
  article-title: On a composite implicit time integration procedure for nonlinear dynamics
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2005.08.001
– ident: 10.1016/j.compstruc.2019.03.002_b0085
– ident: 10.1016/j.compstruc.2019.03.002_b0005
  doi: 10.1201/9781315641645-2
SSID ssj0006400
Score 2.3194938
Snippet •Wave propagation and fluid-structure-interaction dynamic response.•Validation of iterative and direct fluid-structure-interaction CFD and FE...
In literature time integration methods are described separately for wave propagation or structural dynamic problems. In this paper we focus on implicit methods...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Bathe method
Blowdown
Computing time
Contact pressure
Fluid structure interaction
Implicit methods
Implicit time integration
Iterative methods
Methods
Nonlinear structural dynamics
Nuclear reactor components
Potential based fluid
Pressure vessels
Propagation
Superposition (mathematics)
Time integration
Vessels
Wave propagation
Title On blowdown analysis with efficient and reliable direct time integration methods for wave propagation and fluid-structure-interaction response
URI https://dx.doi.org/10.1016/j.compstruc.2019.03.002
https://www.proquest.com/docview/2220184409
Volume 216
WOSCitedRecordID wos000464486800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2243
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006400
  issn: 0045-7949
  databaseCode: AIEXJ
  dateStart: 19950103
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWLQc4IJ6iUJAP3KpITuI4DrcKtQIOWw6LtDcrsY20ZZWustvHr-DCH2bGr6blsfTAJVo5spV4vszDO_MNIW_BSGsIlLus0WWV8dzyTNrGZpVB7pfKgg9iXLOJejqV83nzeTL5EWthLpZ138urq2b1X0UNYyBsLJ29g7jTojAAv0HocAWxw_WfBH_SYzb6pYHw-qCNlCPuuNU6uoiUVG6XC1835bSe6zKf2CMQFL65tONrOLjEJkWgbEH9-Ju4wtfl-cJknoH2fLAZTh5C7_HB597eZEIIHSTWDm9pXvLqpwvcmz6UC23SQfXsbEhpaMeDNcPi2_iwAuujYmpgVMAcGTI9S2lUwEU-VqH5yBb7-tJftLw_cDhFIa3cw2KKXiCrLa4NW_wz_5a9S1mIMcHtVKWFFC6kWKkcQeluUVcNqMrdw49H80_JwAseK5v8u9xIG_ztM_3J6bll_p1PM3tEHoZghB56ED0mE9s_IQ9GFJVPyfeTnkY40QgninCiCU4wbmiEE_VwoggnOoITDXCiACeKcKIjOLkV_gInGuH0jHw5Ppq9_5CFHh6ZLnm5gW-eFSYXstZaGtEKgWRLsGkta0XBIJrOy7xqywojV2FkYzvZtXUtW9nqujG8fE52-rPeviC00qbVzAgOTinvOttAZFDUDCx9JwyT3R4RcZOVDgT32GdlqbYIeo-wNHHlOV62T3kXpaiCq-p3VwFGt0_ej3JXQXGsFfjpLJecs-bl3R_nFbl__bXtkx24b1-Te_pis1gPbwJ-fwI7gM23
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+blowdown+analysis+with+efficient+and+reliable+direct+time+integration+methods+for+wave+propagation+and+fluid-structure-interaction+response&rft.jtitle=Computers+%26+structures&rft.au=Nilsson%2C+Kenth&rft.au=Tornberg%2C+Fredrik&rft.date=2019-05-01&rft.issn=0045-7949&rft.volume=216&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1016%2Fj.compstruc.2019.03.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compstruc_2019_03_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7949&client=summon