On blowdown analysis with efficient and reliable direct time integration methods for wave propagation and fluid-structure-interaction response
•Wave propagation and fluid-structure-interaction dynamic response.•Validation of iterative and direct fluid-structure-interaction CFD and FE models.•Efficiency, accuracy and reliability of time integration methods in linear and non-linear blowdown analyses.•Bathe time integration method. In literat...
Saved in:
| Published in: | Computers & structures Vol. 216; pp. 1 - 14 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Elsevier Ltd
01.05.2019
Elsevier BV |
| Subjects: | |
| ISSN: | 0045-7949, 1879-2243 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Wave propagation and fluid-structure-interaction dynamic response.•Validation of iterative and direct fluid-structure-interaction CFD and FE models.•Efficiency, accuracy and reliability of time integration methods in linear and non-linear blowdown analyses.•Bathe time integration method.
In literature time integration methods are described separately for wave propagation or structural dynamic problems. In this paper we focus on implicit methods for problems that involve simultaneous wave propagation and strong fluid-structure-interaction response. As example we show methods and models for nuclear pressure vessel blowdown analysis.
We present validation against measurements from literature for three different ways to perform this analysis. These are: 2-way iterative fluid-structure-interaction (FSI) between CFD and FE codes, direct 2-way FSI in the FE code and sequential 1+2-way FSI. The CFD and FE codes provide different time integration methods. Here we investigate the trapezoidal and composite methods, in the FE code the Bathe method.
We show that the selected validation problem is linear and follows the principle of superposition and can be solved with the all-linear fluid-structure FE model, with the trapezoidal rule for computational efficiency.
On the contrary, in applied analyses of reactor pressure vessels structural non-linearities must often be included, such as contact, friction stick-slip and plasticity. We show that for non-linear fluid-structure FE models the Bathe method is efficient and reliable. The Bathe method provides high accuracy in both the wave propagation and the fluid-structure-interaction response. |
|---|---|
| AbstractList | In literature time integration methods are described separately for wave propagation or structural dynamic problems. In this paper we focus on implicit methods for problems that involve simultaneous wave propagation and strong fluid-structure-interaction response. As example we show methods and models for nuclear pressure vessel blowdown analysis. We present validation against measurements from literature for three different ways to perform this analysis. These are: 2-way iterative fluid-structure-interaction (FSI) between CFD and FE codes, direct 2-way FSI in the FE code and sequential 1+2-way FSI. The CFD and FE codes provide different time integration methods. Here we investigate the trapezoidal and composite methods, in the FE code the Bathe method. We show that the selected validation problem is linear and follows the principle of superposition and can be solved with the all-linear fluid-structure FE model, with the trapezoidal rule for computational efficiency. On the contrary, in applied analyses of reactor pressure vessels structural non-linearities must often be included, such as contact, friction stick-slip and plasticity. We show that for non-linear fluid-structure FE models the Bathe method is efficient and reliable. The Bathe method provides high accuracy in both the wave propagation and the fluid-structure-interaction response. •Wave propagation and fluid-structure-interaction dynamic response.•Validation of iterative and direct fluid-structure-interaction CFD and FE models.•Efficiency, accuracy and reliability of time integration methods in linear and non-linear blowdown analyses.•Bathe time integration method. In literature time integration methods are described separately for wave propagation or structural dynamic problems. In this paper we focus on implicit methods for problems that involve simultaneous wave propagation and strong fluid-structure-interaction response. As example we show methods and models for nuclear pressure vessel blowdown analysis. We present validation against measurements from literature for three different ways to perform this analysis. These are: 2-way iterative fluid-structure-interaction (FSI) between CFD and FE codes, direct 2-way FSI in the FE code and sequential 1+2-way FSI. The CFD and FE codes provide different time integration methods. Here we investigate the trapezoidal and composite methods, in the FE code the Bathe method. We show that the selected validation problem is linear and follows the principle of superposition and can be solved with the all-linear fluid-structure FE model, with the trapezoidal rule for computational efficiency. On the contrary, in applied analyses of reactor pressure vessels structural non-linearities must often be included, such as contact, friction stick-slip and plasticity. We show that for non-linear fluid-structure FE models the Bathe method is efficient and reliable. The Bathe method provides high accuracy in both the wave propagation and the fluid-structure-interaction response. |
| Author | Nilsson, Kenth Tornberg, Fredrik |
| Author_xml | – sequence: 1 givenname: Kenth surname: Nilsson fullname: Nilsson, Kenth email: kenth.nilsson@hifi-engineering.com organization: Hifi Engineering, Månsagårdsvägen 12, 439 36 Onsala, Sweden – sequence: 2 givenname: Fredrik surname: Tornberg fullname: Tornberg, Fredrik email: fredrik.tornberg@onsala-ing.se organization: Onsala Ingenjörsbyrå AB, Energigatan 4, 434 37 Kungsbacka, Sweden |
| BookMark | eNqNkc1u3CAUhVGUSJ0kfYYidW33Ah7Aiy6iqH9SpGzaNWLgOmHkMQ7gjPISfeba46qLbJoVEveeo3vOd0nOhzggIR8Y1AyY_LSvXTyMuaTJ1RxYW4OoAfgZ2TCt2orzRpyTDUCzrVTbtO_IZc57AJANwIb8vh_oro9HH48DtYPtX3LI9BjKI8WuCy7gUOZ_TxP2we56pD4kdIWWcEAahoIPyZYQB3rA8hh9pl1M9GifkY4pjvZhHS4OXT8FX50OLVPCahEn607zhHmMQ8ZrctHZPuP7v-8V-fX1y8_b79Xd_bcftzd3lRONKNXWA_dMauWc9tJKqYWCOZ0FKzlILplgWyu2AqSSXre40zurlLbaOtX6RlyRj6vvfOTThLmYfZzSHD8bzucWddNAO299Xrdcijkn7IwL5RSoJBt6w8AsCMze_ENgFgQGhJkRzHr1Sj-mcLDp5Q3Km1WJcwnPAZPJCwqHa_vGx_Bfjz9ZNqwz |
| CitedBy_id | crossref_primary_10_1007_s11071_021_06720_9 crossref_primary_10_1016_j_jweia_2024_105788 crossref_primary_10_1016_j_istruc_2025_109826 crossref_primary_10_1002_nme_6859 crossref_primary_10_1016_j_compstruc_2020_106433 crossref_primary_10_1007_s13369_024_09856_z crossref_primary_10_1016_j_cscm_2024_e03368 crossref_primary_10_1016_j_solener_2024_112729 crossref_primary_10_1007_s10409_021_09078_3 |
| Cites_doi | 10.1016/j.compstruc.2017.05.006 10.1016/j.compstruc.2013.02.006 10.1002/eqe.4290010308 10.1016/j.compstruc.2018.02.007 10.1299/jsmeicone.2011.19._ICONE1943_79 10.1016/0029-5493(77)90016-4 10.1016/S0045-7949(02)00407-8 10.1016/j.compstruc.2013.06.007 10.1016/0029-5493(82)90150-9 10.1016/j.compstruc.2018.10.008 10.1016/j.ijimpeng.2011.10.003 10.1115/PVP2015-45722 10.1016/j.compstruc.2006.09.004 10.1016/S0045-7949(02)00479-0 10.1016/0029-5493(82)90152-2 10.1016/0045-7949(85)90226-3 10.1016/j.compstruc.2018.11.001 10.1115/PVP2010-26094 10.1002/nme.5291 10.1016/j.compstruc.2017.10.002 10.1016/S0045-7949(97)00026-6 10.1016/j.compstruc.2005.08.001 10.1201/9781315641645-2 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV May 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV May 2019 |
| DBID | AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.compstruc.2019.03.002 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2243 |
| EndPage | 14 |
| ExternalDocumentID | 10_1016_j_compstruc_2019_03_002 S0045794918315396 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABAOU ABBOA ABEFU ABFNM ABMAC ABTAH ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADIYS ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSV SSW SSZ T5K T9H TAE TN5 UAO VH1 WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD AFXIZ AGCQF AGRNS FR3 JQ2 KR7 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c343t-5d02d1687cc8d6a668370794a0a6206261315a3530676d89eb8ba778a8ac79d43 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464486800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7949 |
| IngestDate | Fri Jul 25 03:43:51 EDT 2025 Sat Nov 29 04:10:43 EST 2025 Tue Nov 18 20:36:19 EST 2025 Fri Feb 23 02:26:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Potential based fluid Nonlinear structural dynamics Wave propagation Bathe method Fluid structure interaction Implicit time integration |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c343t-5d02d1687cc8d6a668370794a0a6206261315a3530676d89eb8ba778a8ac79d43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2220184409 |
| PQPubID | 2045492 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2220184409 crossref_citationtrail_10_1016_j_compstruc_2019_03_002 crossref_primary_10_1016_j_compstruc_2019_03_002 elsevier_sciencedirect_doi_10_1016_j_compstruc_2019_03_002 |
| PublicationCentury | 2000 |
| PublicationDate | May 2019 2019-05-00 20190501 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Computers & structures |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | ADINA Theory and Modeling Guide. Volume I: ADINA Solids and Structures. ADINA R&D, Inc, Watertown, MA; 2018. Noh, Bathe (b0035) 2012; 98–99 Kim, Choi (b0055) 2018; 196 Noh, Bathe (b0040) 2018; 202 Wen, Tao, Duan, Yan, Wei, Fang (b0045) 2017; 190 Malakiyeh, Shojaee, Bathe (b0060) 2019; 212 Andersson, Andersson, Lundwall, Sundqvist, Veber (b0100) 2002; 435 Wolf (b0135) 1982; 70 Zhang, Liu, Liu (b0050) 2017; 109 Sussman, Sundqvist (b0090) 2003; 81 Jobert N, Nilsson K, Chambrin JL, Migot B, Muller T. Flow-induced vibrations: shortcuts and pitfalls in estimating structural response to turbulence. ASME-PVP-2010-26094. Kroyer, Nilsson, Bathe (b0120) 2017; 2016 ADINA Theory and Modeling Guide. Volume III: ADINA CFD & FSI. ADINA R&D, Inc, Watertown, MA, USA; 2018. Andersson, Andersson, Lundwall, Sundqvist, Nilsson, Veber (b0105) 2003; 81 Krieg, Schlechtendahl, Scholl (b0125) 1977; 43 Luke O, Xu H, Liszkai T. Benchmarking of pressurized water reactor blowdown analysis using Relap5 and Ansys. ASME -PVP2015-45722. Blevins (b0095) 1990 Ludwig, Schumann (b0130) 1982; 70 Bathe KJ. Finite element procedures, 2nd ed. Watertown, MA; 2016. Bathe, Baig (b0020) 2005; 83 Bathe, Wilson (b0070) 1973; 1 Olson, Bathe (b0080) 1985; 21 Noh, Bathe (b0065) 2019; 212 Nilsson K. Some experiences from HDR V31.1 and applied LOCA analyses on BWR and PWR. In: 20th international conference on structural mechanics in reactor technology (SMiRT 20) 2009, Helsinki, Finland. Andersson, Andersson (b0150) 1997; 64 Kazanci, Bathe (b0030) 2012; 42 Kähkönen J, Varpasuo P, Vuorinen M. Analyzing HDR fluid-structure-interaction pipe break case with acoustic finite element method; 2011, ICONE19-43205. Noh, Ham, Bathe (b0025) 2013; 123 Noh, Bathe (b0010) 2013; 129 Bathe (b0015) 2007; 85 Wen (10.1016/j.compstruc.2019.03.002_b0045) 2017; 190 Blevins (10.1016/j.compstruc.2019.03.002_b0095) 1990 Noh (10.1016/j.compstruc.2019.03.002_b0040) 2018; 202 Sussman (10.1016/j.compstruc.2019.03.002_b0090) 2003; 81 Noh (10.1016/j.compstruc.2019.03.002_b0025) 2013; 123 Noh (10.1016/j.compstruc.2019.03.002_b0035) 2012; 98–99 Andersson (10.1016/j.compstruc.2019.03.002_b0150) 1997; 64 Krieg (10.1016/j.compstruc.2019.03.002_b0125) 1977; 43 Olson (10.1016/j.compstruc.2019.03.002_b0080) 1985; 21 Wolf (10.1016/j.compstruc.2019.03.002_b0135) 1982; 70 10.1016/j.compstruc.2019.03.002_b0145 Kazanci (10.1016/j.compstruc.2019.03.002_b0030) 2012; 42 10.1016/j.compstruc.2019.03.002_b0085 10.1016/j.compstruc.2019.03.002_b0140 Kim (10.1016/j.compstruc.2019.03.002_b0055) 2018; 196 Andersson (10.1016/j.compstruc.2019.03.002_b0105) 2003; 81 10.1016/j.compstruc.2019.03.002_b0005 Noh (10.1016/j.compstruc.2019.03.002_b0065) 2019; 212 Ludwig (10.1016/j.compstruc.2019.03.002_b0130) 1982; 70 Bathe (10.1016/j.compstruc.2019.03.002_b0070) 1973; 1 Andersson (10.1016/j.compstruc.2019.03.002_b0100) 2002; 435 Kroyer (10.1016/j.compstruc.2019.03.002_b0120) 2017; 2016 Zhang (10.1016/j.compstruc.2019.03.002_b0050) 2017; 109 Malakiyeh (10.1016/j.compstruc.2019.03.002_b0060) 2019; 212 Bathe (10.1016/j.compstruc.2019.03.002_b0020) 2005; 83 Noh (10.1016/j.compstruc.2019.03.002_b0010) 2013; 129 10.1016/j.compstruc.2019.03.002_b0110 10.1016/j.compstruc.2019.03.002_b0075 Bathe (10.1016/j.compstruc.2019.03.002_b0015) 2007; 85 10.1016/j.compstruc.2019.03.002_b0115 |
| References_xml | – reference: Nilsson K. Some experiences from HDR V31.1 and applied LOCA analyses on BWR and PWR. In: 20th international conference on structural mechanics in reactor technology (SMiRT 20) 2009, Helsinki, Finland. – volume: 81 start-page: 949 year: 2003 end-page: 962 ident: b0090 article-title: Fluid–structure interaction analysis with a subsonic potential-based fluid formulation publication-title: Comput Struct – volume: 64 start-page: 893 year: 1997 end-page: 907 ident: b0150 article-title: Some experiences in the use of ADINA in the Swedish Nuclear Industry publication-title: Comput Struct – volume: 81 start-page: 469 year: 2003 end-page: 476 ident: b0105 article-title: On the validation and application of fluid–structure interaction analysis of reactor vessel internals at loss of coolants accidents publication-title: Comput Struct – volume: 43 start-page: 419 year: 1977 end-page: 435 ident: b0125 article-title: Design of the HDR experimental program on blowdown loading and dynamic response of PWR-vessel internals publication-title: Nucl Eng Des – volume: 109 start-page: 368 year: 2017 end-page: 406 ident: b0050 article-title: Accuracy of a composite implicit time integration scheme for structural dynamics publication-title: Int J Numer Meth Eng – volume: 83 start-page: 2513 year: 2005 end-page: 2524 ident: b0020 article-title: On a composite implicit time integration procedure for nonlinear dynamics publication-title: Comput Struct – volume: 21 start-page: 21 year: 1985 end-page: 32 ident: b0080 article-title: Analysis of fluid-structure interactions. A direct symmetric coupled formulation based on the fluid velocity potential publication-title: Comput Struct – reference: Jobert N, Nilsson K, Chambrin JL, Migot B, Muller T. Flow-induced vibrations: shortcuts and pitfalls in estimating structural response to turbulence. ASME-PVP-2010-26094. – reference: Kähkönen J, Varpasuo P, Vuorinen M. Analyzing HDR fluid-structure-interaction pipe break case with acoustic finite element method; 2011, ICONE19-43205. – volume: 212 start-page: 299 year: 2019 end-page: 310 ident: b0065 article-title: The Bathe time integration method with controllable spectral radius: the ρ∞-Bathe method publication-title: Comput Struct – reference: Bathe KJ. Finite element procedures, 2nd ed. Watertown, MA; 2016. – volume: 123 start-page: 93 year: 2013 end-page: 105 ident: b0025 article-title: Performance of an implicit time integration scheme in the analysis of wave propagations publication-title: Comput Struct – volume: 85 start-page: 437 year: 2007 end-page: 445 ident: b0015 article-title: Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme publication-title: Comput Struct – volume: 190 start-page: 126 year: 2017 end-page: 149 ident: b0045 article-title: A comparative study of three composite implicit schemes on structural dynamic and wave propagation analysis publication-title: Comput Struct – volume: 1 start-page: 283 year: 1973 end-page: 291 ident: b0070 article-title: Stability and accuracy analysis of direct integration methods publication-title: Earthq Eng Struct D – reference: ADINA Theory and Modeling Guide. Volume I: ADINA Solids and Structures. ADINA R&D, Inc, Watertown, MA; 2018. – volume: 129 start-page: 178 year: 2013 end-page: 193 ident: b0010 article-title: An explicit time integration scheme for the analysis of wave propagations publication-title: Comput Struct – volume: 98–99 start-page: 1 year: 2012 end-page: 6 ident: b0035 article-title: Insight into an implicit time integration scheme for structural dynamics publication-title: Comput Struct – volume: 70 start-page: 269 year: 1982 end-page: 308 ident: b0135 article-title: Experimental results of coupled fluid-structure interactions during blowdown of the HDR-vessel and comparisons with pre- and post-test predictions publication-title: Nucl Eng Des – reference: Luke O, Xu H, Liszkai T. Benchmarking of pressurized water reactor blowdown analysis using Relap5 and Ansys. ASME -PVP2015-45722. – volume: 212 start-page: 289 year: 2019 end-page: 298 ident: b0060 article-title: The Bathe time integration method revisited for describing desired numerical dissipation publication-title: Comput Struct – volume: 42 start-page: 80 year: 2012 end-page: 88 ident: b0030 article-title: Crushing and crashing of tubes with implicit time integration publication-title: Int J Impact Eng – volume: 70 start-page: 321 year: 1982 end-page: 333 ident: b0130 article-title: Fluid-structure analysis for the HDR blowdown and snapback experiments with FLUX publication-title: Nucl Eng Des – volume: 2016 start-page: 32 year: 2017 end-page: 35 ident: b0120 article-title: Advances in direct time integration schemes for dynamic analysis publication-title: Automotive CAE Companion – volume: 196 start-page: 341 year: 2018 end-page: 354 ident: b0055 article-title: An improved implicit time integration algorithm: The generalized composite time integration algorithm publication-title: Comput Struct – reference: ADINA Theory and Modeling Guide. Volume III: ADINA CFD & FSI. ADINA R&D, Inc, Watertown, MA, USA; 2018. – volume: 202 start-page: 15 year: 2018 end-page: 24 ident: b0040 article-title: Further insights into an implicit time integration scheme for structural dynamics publication-title: Comput Struct – volume: 435 start-page: 47 year: 2002 end-page: 62 ident: b0100 article-title: Numerical simulation of the HDR blowdown experiment V31.1 at Karlsruhe publication-title: ASME-PVP – year: 1990 ident: b0095 article-title: Flow-induced vibration – volume: 190 start-page: 126 year: 2017 ident: 10.1016/j.compstruc.2019.03.002_b0045 article-title: A comparative study of three composite implicit schemes on structural dynamic and wave propagation analysis publication-title: Comput Struct doi: 10.1016/j.compstruc.2017.05.006 – volume: 123 start-page: 93 year: 2013 ident: 10.1016/j.compstruc.2019.03.002_b0025 article-title: Performance of an implicit time integration scheme in the analysis of wave propagations publication-title: Comput Struct doi: 10.1016/j.compstruc.2013.02.006 – volume: 1 start-page: 283 year: 1973 ident: 10.1016/j.compstruc.2019.03.002_b0070 article-title: Stability and accuracy analysis of direct integration methods publication-title: Earthq Eng Struct D doi: 10.1002/eqe.4290010308 – volume: 202 start-page: 15 year: 2018 ident: 10.1016/j.compstruc.2019.03.002_b0040 article-title: Further insights into an implicit time integration scheme for structural dynamics publication-title: Comput Struct doi: 10.1016/j.compstruc.2018.02.007 – ident: 10.1016/j.compstruc.2019.03.002_b0145 doi: 10.1299/jsmeicone.2011.19._ICONE1943_79 – ident: 10.1016/j.compstruc.2019.03.002_b0110 – volume: 43 start-page: 419 year: 1977 ident: 10.1016/j.compstruc.2019.03.002_b0125 article-title: Design of the HDR experimental program on blowdown loading and dynamic response of PWR-vessel internals publication-title: Nucl Eng Des doi: 10.1016/0029-5493(77)90016-4 – volume: 435 start-page: 47 year: 2002 ident: 10.1016/j.compstruc.2019.03.002_b0100 article-title: Numerical simulation of the HDR blowdown experiment V31.1 at Karlsruhe publication-title: ASME-PVP – volume: 81 start-page: 949 year: 2003 ident: 10.1016/j.compstruc.2019.03.002_b0090 article-title: Fluid–structure interaction analysis with a subsonic potential-based fluid formulation publication-title: Comput Struct doi: 10.1016/S0045-7949(02)00407-8 – volume: 129 start-page: 178 year: 2013 ident: 10.1016/j.compstruc.2019.03.002_b0010 article-title: An explicit time integration scheme for the analysis of wave propagations publication-title: Comput Struct doi: 10.1016/j.compstruc.2013.06.007 – volume: 98–99 start-page: 1 year: 2012 ident: 10.1016/j.compstruc.2019.03.002_b0035 article-title: Insight into an implicit time integration scheme for structural dynamics publication-title: Comput Struct – volume: 70 start-page: 269 year: 1982 ident: 10.1016/j.compstruc.2019.03.002_b0135 article-title: Experimental results of coupled fluid-structure interactions during blowdown of the HDR-vessel and comparisons with pre- and post-test predictions publication-title: Nucl Eng Des doi: 10.1016/0029-5493(82)90150-9 – volume: 212 start-page: 289 year: 2019 ident: 10.1016/j.compstruc.2019.03.002_b0060 article-title: The Bathe time integration method revisited for describing desired numerical dissipation publication-title: Comput Struct doi: 10.1016/j.compstruc.2018.10.008 – volume: 42 start-page: 80 year: 2012 ident: 10.1016/j.compstruc.2019.03.002_b0030 article-title: Crushing and crashing of tubes with implicit time integration publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2011.10.003 – ident: 10.1016/j.compstruc.2019.03.002_b0140 doi: 10.1115/PVP2015-45722 – volume: 85 start-page: 437 year: 2007 ident: 10.1016/j.compstruc.2019.03.002_b0015 article-title: Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme publication-title: Comput Struct doi: 10.1016/j.compstruc.2006.09.004 – volume: 81 start-page: 469 year: 2003 ident: 10.1016/j.compstruc.2019.03.002_b0105 article-title: On the validation and application of fluid–structure interaction analysis of reactor vessel internals at loss of coolants accidents publication-title: Comput Struct doi: 10.1016/S0045-7949(02)00479-0 – volume: 70 start-page: 321 year: 1982 ident: 10.1016/j.compstruc.2019.03.002_b0130 article-title: Fluid-structure analysis for the HDR blowdown and snapback experiments with FLUX publication-title: Nucl Eng Des doi: 10.1016/0029-5493(82)90152-2 – volume: 21 start-page: 21 year: 1985 ident: 10.1016/j.compstruc.2019.03.002_b0080 article-title: Analysis of fluid-structure interactions. A direct symmetric coupled formulation based on the fluid velocity potential publication-title: Comput Struct doi: 10.1016/0045-7949(85)90226-3 – volume: 212 start-page: 299 year: 2019 ident: 10.1016/j.compstruc.2019.03.002_b0065 article-title: The Bathe time integration method with controllable spectral radius: the ρ∞-Bathe method publication-title: Comput Struct doi: 10.1016/j.compstruc.2018.11.001 – ident: 10.1016/j.compstruc.2019.03.002_b0115 doi: 10.1115/PVP2010-26094 – volume: 2016 start-page: 32 issue: 2016 year: 2017 ident: 10.1016/j.compstruc.2019.03.002_b0120 article-title: Advances in direct time integration schemes for dynamic analysis publication-title: Automotive CAE Companion – ident: 10.1016/j.compstruc.2019.03.002_b0075 – volume: 109 start-page: 368 year: 2017 ident: 10.1016/j.compstruc.2019.03.002_b0050 article-title: Accuracy of a composite implicit time integration scheme for structural dynamics publication-title: Int J Numer Meth Eng doi: 10.1002/nme.5291 – volume: 196 start-page: 341 year: 2018 ident: 10.1016/j.compstruc.2019.03.002_b0055 article-title: An improved implicit time integration algorithm: The generalized composite time integration algorithm publication-title: Comput Struct doi: 10.1016/j.compstruc.2017.10.002 – year: 1990 ident: 10.1016/j.compstruc.2019.03.002_b0095 – volume: 64 start-page: 893 year: 1997 ident: 10.1016/j.compstruc.2019.03.002_b0150 article-title: Some experiences in the use of ADINA in the Swedish Nuclear Industry publication-title: Comput Struct doi: 10.1016/S0045-7949(97)00026-6 – volume: 83 start-page: 2513 year: 2005 ident: 10.1016/j.compstruc.2019.03.002_b0020 article-title: On a composite implicit time integration procedure for nonlinear dynamics publication-title: Comput Struct doi: 10.1016/j.compstruc.2005.08.001 – ident: 10.1016/j.compstruc.2019.03.002_b0085 – ident: 10.1016/j.compstruc.2019.03.002_b0005 doi: 10.1201/9781315641645-2 |
| SSID | ssj0006400 |
| Score | 2.3194938 |
| Snippet | •Wave propagation and fluid-structure-interaction dynamic response.•Validation of iterative and direct fluid-structure-interaction CFD and FE... In literature time integration methods are described separately for wave propagation or structural dynamic problems. In this paper we focus on implicit methods... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Bathe method Blowdown Computing time Contact pressure Fluid structure interaction Implicit methods Implicit time integration Iterative methods Methods Nonlinear structural dynamics Nuclear reactor components Potential based fluid Pressure vessels Propagation Superposition (mathematics) Time integration Vessels Wave propagation |
| Title | On blowdown analysis with efficient and reliable direct time integration methods for wave propagation and fluid-structure-interaction response |
| URI | https://dx.doi.org/10.1016/j.compstruc.2019.03.002 https://www.proquest.com/docview/2220184409 |
| Volume | 216 |
| WOSCitedRecordID | wos000464486800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2243 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006400 issn: 0045-7949 databaseCode: AIEXJ dateStart: 19950103 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLXKDAtYIJ5iYEBeMKuRUVInfrAbQStAVcuig7qzktiVOlSZknYeX8EH8LVcx49m0DADCzZR5chu6nN6fe3cey5Cb7imOXgdJQHfnpJMzA0RsBASLZkpdS6ZKNtE4REfj8VsJr_0ej9DLsz5kte1uLyUq_8KNbQB2DZ19h_gjoNCA3wG0OEKsMP1r4Cf1DYa_ULD9vqwCJIj7XGraeUiYlC5WS5c3lRr9doq81E9wpLCFZdu9RoOL2yRIjC2YH7cTTvCfHm20MQp0J41htjOja893rjY26tKCL6CxLrlW-wXvfrxws5N7dOFNvGgenraxDC0YWN0s_jWPayw-VF597Bim0XztWuUM6ua6ZRL3xpnhwWXBLwL2jXU_bRratNrFwB3FnFi8Vu1v8NG73kd2_52zQvv-ccTNTwejdR0MJse0OHqO7H1yOx7-wP6wXHjDtrt81yCxdw9-jSYfY7rPMtCgpN7_CvRg9d-_598n9-8gNa1mT5ED_yeBB85Lj1CPVM_Rvc7SpVP0I9JjQOrcGAVtqzCkVXQrnFgFXaswpZVuMMq7FmFgVXYsgp3WNWOcAOrcGDVU3Q8HEzffyS-lAepaEY3JNdJX6dM8KoSmhWMWc0lmLQiKVg_gU11StO8oLndwDItpClFWXAuClFUXOqMPkM79WltniMs7aYi15JXeZnJrJKZkVzLSmvr0M7ZHmJhklXlde5tuZWlCgGNJyqioyw6KqEK0NlDSey4clIvt3d5F1BU3mN1s6uAj7d33g-4K28_1grc9SQVWZbIFzfffonubf9g-2gHRjev0N3qfLNYN689V38BYN7KSg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+blowdown+analysis+with+efficient+and+reliable+direct+time+integration+methods+for+wave+propagation+and+fluid-structure-interaction+response&rft.jtitle=Computers+%26+structures&rft.au=Nilsson%2C+Kenth&rft.au=Tornberg%2C+Fredrik&rft.date=2019-05-01&rft.pub=Elsevier+BV&rft.issn=0045-7949&rft.eissn=1879-2243&rft.volume=216&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compstruc.2019.03.002&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7949&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7949&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7949&client=summon |