The subspace iteration method for nonlinear eigenvalue problems occurring in the dynamics of structures with viscoelastic elements

•The subspace iteration method is used to solve nonlinear eigenvalue problem.•The continuation method is used to solve the nonlinear Hermitian eigenproblem.•The method presented allows determination of only a part of eigenvalues.•The method was tested for structures with viscoelastic elements.•The m...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & structures Ročník 254; s. 106571
Hlavní autori: Łasecka-Plura, Magdalena, Lewandowski, Roman
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 01.10.2021
Elsevier BV
Predmet:
ISSN:0045-7949, 1879-2243
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •The subspace iteration method is used to solve nonlinear eigenvalue problem.•The continuation method is used to solve the nonlinear Hermitian eigenproblem.•The method presented allows determination of only a part of eigenvalues.•The method was tested for structures with viscoelastic elements.•The models of VE elements are described with the help of fractional derivatives. The paper presents an extension of the subspace iteration method for application in systems with viscoelastic damping elements, which are described by both classical and fractional models. The presented method enables determination of only a certain number of eigenvalues and associated eigenvectors. This is very useful, especially when the considered problem has many degrees of freedom, in which case it would be very time-consuming or even impossible to determine all the eigenvalues. At the same time, from the engineering point of view, it is not necessary to know all the eigenvalues. In this paper, the subspace iteration method is used for the first time to solve the nonlinear eigenproblems which appear in the dynamic analysis of systems with viscoelastic damping elements. The proposed solution consists of assuming the number of eigenvalues to be determined, taking the initial point of iteration and then solving the nonlinear reduced eigenproblem with Hermitian matrices in each iterative loop. The solution to the reduced eigenproblem is obtained using the continuation method, and it is an additional novelty in the paper. The correctness and effectiveness of the proposed approach are illustrated with numerical examples.
AbstractList The paper presents an extension of the subspace iteration method for application in systems with viscoelastic damping elements, which are described by both classical and fractional models. The presented method enables determination of only a certain number of eigenvalues and associated eigenvectors. This is very useful, especially when the considered problem has many degrees of freedom, in which case it would be very time-consuming or even impossible to determine all the eigenvalues. At the same time, from the engineering point of view, it is not necessary to know all the eigenvalues. In this paper, the subspace iteration method is used for the first time to solve the nonlinear eigenproblems which appear in the dynamic analysis of systems with viscoelastic damping elements. The proposed solution consists of assuming the number of eigenvalues to be determined, taking the initial point of iteration and then solving the nonlinear reduced eigenproblem with Hermitian matrices in each iterative loop. The solution to the reduced eigenproblem is obtained using the continuation method, and it is an additional novelty in the paper. The correctness and effectiveness of the proposed approach are illustrated with numerical examples.
•The subspace iteration method is used to solve nonlinear eigenvalue problem.•The continuation method is used to solve the nonlinear Hermitian eigenproblem.•The method presented allows determination of only a part of eigenvalues.•The method was tested for structures with viscoelastic elements.•The models of VE elements are described with the help of fractional derivatives. The paper presents an extension of the subspace iteration method for application in systems with viscoelastic damping elements, which are described by both classical and fractional models. The presented method enables determination of only a certain number of eigenvalues and associated eigenvectors. This is very useful, especially when the considered problem has many degrees of freedom, in which case it would be very time-consuming or even impossible to determine all the eigenvalues. At the same time, from the engineering point of view, it is not necessary to know all the eigenvalues. In this paper, the subspace iteration method is used for the first time to solve the nonlinear eigenproblems which appear in the dynamic analysis of systems with viscoelastic damping elements. The proposed solution consists of assuming the number of eigenvalues to be determined, taking the initial point of iteration and then solving the nonlinear reduced eigenproblem with Hermitian matrices in each iterative loop. The solution to the reduced eigenproblem is obtained using the continuation method, and it is an additional novelty in the paper. The correctness and effectiveness of the proposed approach are illustrated with numerical examples.
ArticleNumber 106571
Author Łasecka-Plura, Magdalena
Lewandowski, Roman
Author_xml – sequence: 1
  givenname: Magdalena
  surname: Łasecka-Plura
  fullname: Łasecka-Plura, Magdalena
  email: magdalena.lasecka-plura@put.poznan.pl
– sequence: 2
  givenname: Roman
  surname: Lewandowski
  fullname: Lewandowski, Roman
BookMark eNqNkLFu2zAQhonAAeK4eYYQ6CyXokRRGjIEQZsWCNAlnQn6dIrPkEiHpFx47ZOXsYMOXdqJON59_x2-a7Zw3iFjt6VYl6JsPu3W4Kd9TGGGtRSyzL-N0uUFW5at7gop62rBlkLUqtBd3V2x6xh3QoimFmLJfj1vkcd5E_cWkFPCYBN5xydMW9_zwQee943k0AaO9ILuYMcZ-T74zYhT5B5gDoHcCyfHUw7rj85OBLkz8NNVaQ4Y-U9KW36gCB5HGxMBx8yjS_EDuxzsGPHm_V2xH18-Pz98LZ6-P357uH8qoKqrVKhNX0PVDqKVutGdGrSGocXGKlSbsrPWokJpba2xzRXIvqlQglZCZbQbqhX7eM7Nt7_OGJPZ-Tm4vNJIpbSqm6qReeruPAXBxxhwMEDp5CQFS6MphXnTbnbmj3bzpt2ctWde_8XvA002HP-DvD-TmCUcCIOJQOgAewoIyfSe_pnxG0lZqTs
CitedBy_id crossref_primary_10_3390_ma16247527
crossref_primary_10_1016_j_probengmech_2023_103522
crossref_primary_10_3390_app13116473
crossref_primary_10_1016_j_ymssp_2022_109890
crossref_primary_10_1016_j_istruc_2023_105832
crossref_primary_10_1007_s42107_024_00999_w
crossref_primary_10_1016_j_compstruct_2021_114550
crossref_primary_10_1016_j_ymssp_2024_111759
crossref_primary_10_1002_nme_7174
crossref_primary_10_3390_buildings12111999
crossref_primary_10_3390_buildings13092223
crossref_primary_10_3390_ma14216616
crossref_primary_10_3390_math12223486
Cites_doi 10.1016/j.ijmecsci.2016.03.009
10.1016/j.jsv.2015.10.014
10.1016/j.cma.2006.01.006
10.1137/0710059
10.1061/(ASCE)ST.1943-541X.0002238
10.1016/S0045-7825(02)00641-2
10.1016/j.compstruc.2012.06.002
10.1016/S0045-7825(99)00315-1
10.1002/nme.1620060207
10.1140/epjst/e2011-01387-1
10.1016/0045-7949(89)90452-5
10.1201/b20057-74
10.1016/j.jsv.2017.12.025
10.2514/3.21652
10.1115/1.2788947
10.1007/s11803-002-0070-5
10.1115/1.4031569
10.1006/jsvi.1998.2131
10.1016/j.cam.2015.05.011
10.1007/s00419-019-01602-4
10.1115/1.2930302
10.2514/2.1490
10.1016/j.compstruc.2004.08.004
10.1016/S0020-7683(01)00026-9
10.1016/0024-3795(80)90169-X
10.1016/j.cma.2016.06.018
10.1016/j.compstruc.2013.04.021
10.1016/j.compstruc.2015.11.011
10.12989/sem.2012.41.1.113
10.1017/S0962492917000034
10.1016/S0045-7949(00)00151-6
10.1016/j.compstruc.2019.106181
10.1016/j.finel.2013.04.006
10.1080/15376494.2020.1819490
10.1016/0045-7825(77)90048-2
10.1016/j.jsv.2004.09.022
10.2514/2.2032
10.1115/1.4002220
10.1006/jsvi.1995.0337
10.1007/s00419-015-1019-2
10.1016/j.engstruct.2018.11.056
10.1016/j.engstruct.2012.06.023
10.1080/15376494.2017.1286418
10.1016/j.jsv.2009.04.008
10.1090/qam/42792
10.1115/1.3169166
10.6028/jres.045.026
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Oct 1, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Oct 1, 2021
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.compstruc.2021.106571
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2243
ExternalDocumentID 10_1016_j_compstruc_2021_106571
S0045794921000936
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSV
SSW
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29F
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABJNI
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
OHT
R2-
SBC
SET
SEW
T9H
TAE
VH1
WUQ
ZY4
~HD
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c343t-5bd4c38f08276795f77cf8e6a5e5b19aaae5e2aa47e89aac2d63e2c75055bd9f3
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000674510200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7949
IngestDate Sun Nov 09 06:59:19 EST 2025
Sat Nov 29 07:25:54 EST 2025
Tue Nov 18 22:32:58 EST 2025
Fri Feb 23 02:43:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Subspace iteration method
Viscoelastic material
Continuation method
Fractional derivatives
Nonlinear eigenvalue problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-5bd4c38f08276795f77cf8e6a5e5b19aaae5e2aa47e89aac2d63e2c75055bd9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2557546362
PQPubID 2045492
ParticipantIDs proquest_journals_2557546362
crossref_citationtrail_10_1016_j_compstruc_2021_106571
crossref_primary_10_1016_j_compstruc_2021_106571
elsevier_sciencedirect_doi_10_1016_j_compstruc_2021_106571
PublicationCentury 2000
PublicationDate 2021-10-01
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & structures
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Lin, Ng (b0140) 2019; 180
Bathe (b0185) 1996
Bathe (b0270) 2013; 126
Lesieutre, Maiani (b0065) 1996; 19
Cortes, Elejabarrieta (b0090) 2006; 195
Qian, Wang, Song (b0115) 2015; 290
Lewandowski, Bartkowiak, Maciejewski (b0020) 2012; 41
Main, Krenk (b0015) 2005; 286
Chang, Singh (b0215) 2009; 135
Adhikari, Pascual (b0095) 2009; 325
Mc Tavis, Hughes (b0060) 1993; 115
Voss H. Nonlinear eigenvalue problems. In Handbook of Linear Algebra, vol. 164. Boca Raton, FL: Chapman and Hall/CRC; 2003.
Lewandowski (b0210) 2014
Pawlak, Lewandowski (b0040) 2013; 125
Adhikari, Pascual (b0100) 2011; 133
Xiao, Meng, Zhang, Zheng (b0160) 2016; 310
Lewandowski, Wielentejczyk (b0250) 2020; 90
Mehrmann, Voss (b0170) 2004; 27
Arnodi (b0180) 1951; 9
Litewka, Lewandowski (b0045) 2020; 229
Chang, Singh (b0225) 2002; 1
Li, Hu, Wang, Ling (b0245) 2013; 72
Lewandowski, Łasecka-Plura (b0265) 2016; 164
Golub, Van Loan (b0280) 1989
Saad (b0195) 1980; 34
Daya, Potier-Ferry (b0085) 2001; 79
Chen Y, Xu J, Tai Y, Xu X, Chen N. Critical damping design method of vibration isolation system with both fractional-order inerter and damper. Mech Adv Mater Struct.
.
Singh (b0110) 2016; 110
Humar (b0010) 2012
Chen, Chen, Hu (b0145) 1999; 222
Duigou, Daya, Potier-Ferry (b0150) 2003; 192
Ruhe (b0105) 1973; 10
Golla, Hughes (b0055) 1985; 52
Akoussan, Boudaoud, Daya, Koutsawa, Carrera (b0155) 2018; 25
Lewandowski (b0120) 2019; 145
Zheng, Liu, Cai (b0050) 1989; 33
Mentrasti (b0030) 2012; 45
Chopra (b0005) 2001
Lewandowski R, Przychodzki M, Pawlak Z. Influence of temperature on dynamic characteristics of structures with VE dampers. In Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues: proceedings of the 3rd Polish Congress of Mechanics and 21st International Conference on Computer Methods in Mechanics. CRC Press; 2016, p., 341–4.
Adhikari, Wagner (b0035) 2004; 82
Muravyov, Hutton (b0070) 1997; 64
Lázaro (b0130) 2018; 418
Wagner, Adhikari (b0075) 2003; 41
Leung (b0200) 1995; 184
Lázaro (b0135) 2016; 363
Borri, Mantegazza (b0190) 1977; 12
Wang, Wang, Xu, Chen (b0255) 2017
Mainardi, Spada (b0230) 2011; 193
Lázaro (b0240) 2015; 82
Berg (b0285) 2012
Bathe, Wilson (b0275) 1973; 6
Guttel, Tisseur (b0165) 2017; 26
Lewandowski, Baum (b0025) 2015; 85
Park (b0220) 2001; 38
Lanczos (b0175) 1950; 45
Fischer (b0205) 2000; 189
Adhikari (b0235) 2001; 39
Wang (10.1016/j.compstruc.2021.106571_b0255) 2017
Lewandowski (10.1016/j.compstruc.2021.106571_b0265) 2016; 164
10.1016/j.compstruc.2021.106571_b0125
Golla (10.1016/j.compstruc.2021.106571_b0055) 1985; 52
Adhikari (10.1016/j.compstruc.2021.106571_b0095) 2009; 325
Mainardi (10.1016/j.compstruc.2021.106571_b0230) 2011; 193
Guttel (10.1016/j.compstruc.2021.106571_b0165) 2017; 26
Mc Tavis (10.1016/j.compstruc.2021.106571_b0060) 1993; 115
Main (10.1016/j.compstruc.2021.106571_b0015) 2005; 286
Borri (10.1016/j.compstruc.2021.106571_b0190) 1977; 12
Lewandowski (10.1016/j.compstruc.2021.106571_b0025) 2015; 85
Duigou (10.1016/j.compstruc.2021.106571_b0150) 2003; 192
Lewandowski (10.1016/j.compstruc.2021.106571_b0210) 2014
10.1016/j.compstruc.2021.106571_b0080
Lanczos (10.1016/j.compstruc.2021.106571_b0175) 1950; 45
Lewandowski (10.1016/j.compstruc.2021.106571_b0120) 2019; 145
Adhikari (10.1016/j.compstruc.2021.106571_b0235) 2001; 39
Li (10.1016/j.compstruc.2021.106571_b0245) 2013; 72
Mehrmann (10.1016/j.compstruc.2021.106571_b0170) 2004; 27
Fischer (10.1016/j.compstruc.2021.106571_b0205) 2000; 189
Leung (10.1016/j.compstruc.2021.106571_b0200) 1995; 184
Lázaro (10.1016/j.compstruc.2021.106571_b0135) 2016; 363
Lázaro (10.1016/j.compstruc.2021.106571_b0130) 2018; 418
Singh (10.1016/j.compstruc.2021.106571_b0110) 2016; 110
Humar (10.1016/j.compstruc.2021.106571_b0010) 2012
Chang (10.1016/j.compstruc.2021.106571_b0215) 2009; 135
Mentrasti (10.1016/j.compstruc.2021.106571_b0030) 2012; 45
Adhikari (10.1016/j.compstruc.2021.106571_b0100) 2011; 133
Park (10.1016/j.compstruc.2021.106571_b0220) 2001; 38
Akoussan (10.1016/j.compstruc.2021.106571_b0155) 2018; 25
Chopra (10.1016/j.compstruc.2021.106571_b0005) 2001
Litewka (10.1016/j.compstruc.2021.106571_b0045) 2020; 229
Adhikari (10.1016/j.compstruc.2021.106571_b0035) 2004; 82
Qian (10.1016/j.compstruc.2021.106571_b0115) 2015; 290
10.1016/j.compstruc.2021.106571_b0260
Cortes (10.1016/j.compstruc.2021.106571_b0090) 2006; 195
Pawlak (10.1016/j.compstruc.2021.106571_b0040) 2013; 125
Xiao (10.1016/j.compstruc.2021.106571_b0160) 2016; 310
Golub (10.1016/j.compstruc.2021.106571_b0280) 1989
Zheng (10.1016/j.compstruc.2021.106571_b0050) 1989; 33
Lesieutre (10.1016/j.compstruc.2021.106571_b0065) 1996; 19
Saad (10.1016/j.compstruc.2021.106571_b0195) 1980; 34
Chen (10.1016/j.compstruc.2021.106571_b0145) 1999; 222
Ruhe (10.1016/j.compstruc.2021.106571_b0105) 1973; 10
Muravyov (10.1016/j.compstruc.2021.106571_b0070) 1997; 64
Lázaro (10.1016/j.compstruc.2021.106571_b0240) 2015; 82
Arnodi (10.1016/j.compstruc.2021.106571_b0180) 1951; 9
Berg (10.1016/j.compstruc.2021.106571_b0285) 2012
Lewandowski (10.1016/j.compstruc.2021.106571_b0020) 2012; 41
Bathe (10.1016/j.compstruc.2021.106571_b0270) 2013; 126
Bathe (10.1016/j.compstruc.2021.106571_b0275) 1973; 6
Wagner (10.1016/j.compstruc.2021.106571_b0075) 2003; 41
Lin (10.1016/j.compstruc.2021.106571_b0140) 2019; 180
Bathe (10.1016/j.compstruc.2021.106571_b0185) 1996
Lewandowski (10.1016/j.compstruc.2021.106571_b0250) 2020; 90
Daya (10.1016/j.compstruc.2021.106571_b0085) 2001; 79
Chang (10.1016/j.compstruc.2021.106571_b0225) 2002; 1
References_xml – volume: 82
  start-page: 2453
  year: 2004
  end-page: 2461
  ident: b0035
  article-title: Direct time-domain integration method for exponentially damped linear systems
  publication-title: Comput Struct
– volume: 110
  start-page: 127
  year: 2016
  end-page: 137
  ident: b0110
  article-title: Eigenvalue and eigenvector computation for discrete and continuous structures composed of viscoelastic materials
  publication-title: Int J Mech S
– year: 1996
  ident: b0185
  article-title: Finite Element Procedures
– volume: 6
  start-page: 213
  year: 1973
  end-page: 226
  ident: b0275
  article-title: Solution methods for eigenvalue problems in structural mechanics
  publication-title: Int J Numer Meth Eng
– volume: 286
  start-page: 97
  year: 2005
  end-page: 122
  ident: b0015
  article-title: Efficiency and tuning of viscous dampers on discrete systems
  publication-title: J Sound Vibr
– volume: 33
  start-page: 1139
  year: 1989
  end-page: 1143
  ident: b0050
  article-title: A general inverse iteration method for solution of quadratic eigenvalue problems in structural dynamic analysis
  publication-title: Comput Struct
– volume: 12
  start-page: 19
  year: 1977
  end-page: 31
  ident: b0190
  article-title: Efficient solution of quadratic eigenproblems arising in dynamic analysis of structures
  publication-title: Comput Method Appl M
– volume: 189
  start-page: 149
  year: 2000
  end-page: 166
  ident: b0205
  article-title: Eigensolution of nonclassically damped structures by complex subspace iteration
  publication-title: Comp Method Appl M
– volume: 82
  start-page: 121011-1
  year: 2015
  end-page: 9
  ident: b0240
  article-title: Nonviscous modes of nonproportionally damped viscoelastic systems
  publication-title: J Appl Mech
– volume: 45
  start-page: 496
  year: 2012
  end-page: 508
  ident: b0030
  article-title: Exact deflation in the complex modal analysis of low-rank non-classically damped structures
  publication-title: Eng Struct
– volume: 222
  start-page: 803
  year: 1999
  end-page: 812
  ident: b0145
  article-title: Damping prediction of sandwich structures by order-reduction-iteration approach
  publication-title: J Sound Vib
– volume: 27
  start-page: 121
  year: 2004
  end-page: 152
  ident: b0170
  article-title: Nonlinear eigenvalue problem: a challenge for modern eigenvalue methods
  publication-title: GAMM-Mitt
– volume: 193
  start-page: 133
  year: 2011
  end-page: 160
  ident: b0230
  article-title: Creep, relaxation and viscosity properties for basic fractional models in rheology
  publication-title: Eur Phys J Special Topics
– volume: 164
  start-page: 95
  year: 2016
  end-page: 107
  ident: b0265
  article-title: Design sensitivity analysis of structures with viscoelastic dampers
  publication-title: Comput Struct
– volume: 34
  start-page: 269
  year: 1980
  end-page: 295
  ident: b0195
  article-title: Variations of Arnoldi’s method for computing eigenelements of large unsymmetric matrices
  publication-title: Linear Algebra Appl
– volume: 133
  start-page: 0210021
  year: 2011
  end-page: 210027
  ident: b0100
  article-title: Iterative methods for eigenvalues of viscoelastic systems
  publication-title: J Vib Acoust
– volume: 363
  start-page: 532
  year: 2016
  end-page: 544
  ident: b0135
  article-title: Eigensolutions of non-proportionally damped systems based on continuous damping sensitivity
  publication-title: J Sound Vib
– volume: 184
  start-page: 627
  year: 1995
  end-page: 637
  ident: b0200
  article-title: Subspace iteration for complex symmetric eigenproblems
  publication-title: J Sound Vib
– volume: 115
  start-page: 103
  year: 1993
  end-page: 110
  ident: b0060
  article-title: Modeling of linear viscoelastic space structures
  publication-title: J Vib Acoust
– year: 2001
  ident: b0005
  article-title: Dynamics of structures – Theory and application to earthquake engineering
– volume: 9
  start-page: 17
  year: 1951
  end-page: 29
  ident: b0180
  article-title: The principle of minimized iterations in the solution of the matrix eigenvalue problems
  publication-title: Q Appl Math
– volume: 79
  start-page: 533
  year: 2001
  end-page: 541
  ident: b0085
  article-title: A numerical method for nonlinear eigenvalue problems and application to vibrations of viscoelastic structures
  publication-title: Comput Struct
– volume: 25
  start-page: 1361
  year: 2018
  end-page: 1373
  ident: b0155
  article-title: Numerical method for nonlinear complex eigenvalues problems depending on two parameters: Application to three-layered viscoelastic composite structures
  publication-title: Mech Adv Mater Struc
– volume: 38
  start-page: 8065
  year: 2001
  end-page: 8092
  ident: b0220
  article-title: Analytical modeling of viscoelastic dampers for structural and vibration control
  publication-title: Int J Solids Struct
– volume: 85
  start-page: 1793
  year: 2015
  end-page: 1814
  ident: b0025
  article-title: Dynamic characteristics of multilayered beams with viscoelastic layers described by the fractional Zener model
  publication-title: Arch Appl Mech
– volume: 19
  start-page: 520
  year: 1996
  end-page: 527
  ident: b0065
  article-title: Finite element modelling of one-dimensional viscoelastic structures using an elastic displacement fields
  publication-title: J Guid Control Dyn
– volume: 125
  start-page: 53
  year: 2013
  end-page: 61
  ident: b0040
  article-title: The continuation method for the eigenvalue problem of structures with viscoelastic dampers
  publication-title: Comput Struct
– volume: 41
  start-page: 113
  year: 2012
  end-page: 137
  ident: b0020
  article-title: Dynamic analysis of frames with viscoelastic dampers: a comparison of dampers models
  publication-title: Struct Eng Mech
– year: 2012
  ident: b0010
  article-title: Dynamics of structures
– volume: 90
  start-page: 147
  year: 2020
  end-page: 171
  ident: b0250
  article-title: Analysis of dynamic characteristics of viscoelastic frame structures
  publication-title: Arch Appl Mech
– start-page: 2738976
  year: 2017
  ident: b0255
  article-title: Fractional critical damping theory and its application in active suspension control
  publication-title: Shock Vibr
– volume: 325
  start-page: 1000
  year: 2009
  end-page: 1011
  ident: b0095
  article-title: Eigenvalues of linear viscoelastic systems
  publication-title: J Sound Vib
– volume: 180
  start-page: 630
  year: 2019
  end-page: 641
  ident: b0140
  article-title: An iterative method for exact eigenvalues and eigenvectors of general nonviscously damped structural systems
  publication-title: Eng Struct
– reference: Chen Y, Xu J, Tai Y, Xu X, Chen N. Critical damping design method of vibration isolation system with both fractional-order inerter and damper. Mech Adv Mater Struct.
– volume: 290
  start-page: 268
  year: 2015
  end-page: 277
  ident: b0115
  article-title: A successive quadratic approximations method for nonlinear eigenvalue problems
  publication-title: J Comput Appl Math
– volume: 145
  start-page: 04018245
  year: 2019
  ident: b0120
  article-title: Influence of Temperature on the Dynamic Characteristics of Structures with Viscoelastic Dampers
  publication-title: J Struct Eng
– volume: 195
  start-page: 6448
  year: 2006
  end-page: 6462
  ident: b0090
  article-title: Computational methods for complex eigenproblems in finite element analysis of structural systems with viscoelastic treatments
  publication-title: Comput Method Appl M
– volume: 64
  start-page: 684
  year: 1997
  end-page: 691
  ident: b0070
  article-title: Closed-form solutions and the eigenvalue problem for vibration of discrete viscoelastic systems
  publication-title: ASME J Appl Mech
– volume: 135
  start-page: 581
  year: 2009
  end-page: 584
  ident: b0215
  article-title: Mechanical model parameters for viscoelastic dampers
  publication-title: J Eng Mech
– volume: 126
  start-page: 177
  year: 2013
  end-page: 183
  ident: b0270
  article-title: The subspace iteration method – Revised
  publication-title: Comp Struc
– volume: 41
  start-page: 951
  year: 2003
  end-page: 956
  ident: b0075
  article-title: Symmetric state-space formulation for a class of non-viscously damped systems
  publication-title: AIAAJ
– volume: 52
  start-page: 897
  year: 1985
  end-page: 906
  ident: b0055
  article-title: Dynamics of viscoelastic structures – a time domain finite element formulation
  publication-title: J Appl Mech
– volume: 72
  start-page: 21
  year: 2013
  end-page: 34
  ident: b0245
  article-title: Eigensensitivity analysis of damped systems with distinct and repeated eigenvalues
  publication-title: Finite Elem Anal Des
– volume: 418
  start-page: 100
  year: 2018
  end-page: 121
  ident: b0130
  article-title: Eigensolutions of nonviscously damped systems based on the fixed-point iteration
  publication-title: J Sound Vib
– year: 1989
  ident: b0280
  article-title: Matrix computations
– volume: 39
  start-page: 1624
  year: 2001
  end-page: 1630
  ident: b0235
  article-title: Eigenrelations for nonviscously damped systems
  publication-title: AIAA Journal
– volume: 26
  start-page: 1
  year: 2017
  end-page: 94
  ident: b0165
  article-title: The nonlinear eigenvalue problem
  publication-title: Acta Numer
– volume: 192
  start-page: 1323
  year: 2003
  end-page: 1335
  ident: b0150
  article-title: Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells
– volume: 1
  start-page: 251
  year: 2002
  end-page: 260
  ident: b0225
  article-title: Seismic analysis of structures with a fractional derivative model of viscoelastic dampers
  publication-title: Earthq Eng Eng Vib
– year: 2012
  ident: b0285
  article-title: Complex Analysis
– reference: .
– reference: Voss H. Nonlinear eigenvalue problems. In Handbook of Linear Algebra, vol. 164. Boca Raton, FL: Chapman and Hall/CRC; 2003.
– volume: 310
  start-page: 33
  year: 2016
  end-page: 57
  ident: b0160
  article-title: Resolvent sampling based Rayleigh-Ritz method for large-scale nonlinear eigenvalue problems
  publication-title: Comput Method Appl M
– volume: 10
  start-page: 674
  year: 1973
  end-page: 689
  ident: b0105
  article-title: Algorithms for the nonlinear eigenvalue problem
  publication-title: SIAM J Numer Anal
– volume: 229
  year: 2020
  ident: b0045
  article-title: Dynamic characteristics of viscoelastic Mindlin plates with influence of temperature
  publication-title: Comput Struct
– reference: Lewandowski R, Przychodzki M, Pawlak Z. Influence of temperature on dynamic characteristics of structures with VE dampers. In Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues: proceedings of the 3rd Polish Congress of Mechanics and 21st International Conference on Computer Methods in Mechanics. CRC Press; 2016, p., 341–4.
– year: 2014
  ident: b0210
  article-title: Vibration reduction of building structures
– volume: 45
  start-page: 255
  year: 1950
  end-page: 282
  ident: b0175
  article-title: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators
  publication-title: , Natl Bureau Standards
– volume: 110
  start-page: 127
  year: 2016
  ident: 10.1016/j.compstruc.2021.106571_b0110
  article-title: Eigenvalue and eigenvector computation for discrete and continuous structures composed of viscoelastic materials
  publication-title: Int J Mech S
  doi: 10.1016/j.ijmecsci.2016.03.009
– volume: 363
  start-page: 532
  year: 2016
  ident: 10.1016/j.compstruc.2021.106571_b0135
  article-title: Eigensolutions of non-proportionally damped systems based on continuous damping sensitivity
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2015.10.014
– volume: 195
  start-page: 6448
  year: 2006
  ident: 10.1016/j.compstruc.2021.106571_b0090
  article-title: Computational methods for complex eigenproblems in finite element analysis of structural systems with viscoelastic treatments
  publication-title: Comput Method Appl M
  doi: 10.1016/j.cma.2006.01.006
– volume: 10
  start-page: 674
  issue: 4
  year: 1973
  ident: 10.1016/j.compstruc.2021.106571_b0105
  article-title: Algorithms for the nonlinear eigenvalue problem
  publication-title: SIAM J Numer Anal
  doi: 10.1137/0710059
– volume: 145
  start-page: 04018245
  issue: 2
  year: 2019
  ident: 10.1016/j.compstruc.2021.106571_b0120
  article-title: Influence of Temperature on the Dynamic Characteristics of Structures with Viscoelastic Dampers
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0002238
– volume: 192
  start-page: 1323
  issue: 11–12
  year: 2003
  ident: 10.1016/j.compstruc.2021.106571_b0150
  article-title: Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(02)00641-2
– year: 2012
  ident: 10.1016/j.compstruc.2021.106571_b0285
– volume: 126
  start-page: 177
  year: 2013
  ident: 10.1016/j.compstruc.2021.106571_b0270
  article-title: The subspace iteration method – Revised
  publication-title: Comp Struc
  doi: 10.1016/j.compstruc.2012.06.002
– volume: 189
  start-page: 149
  year: 2000
  ident: 10.1016/j.compstruc.2021.106571_b0205
  article-title: Eigensolution of nonclassically damped structures by complex subspace iteration
  publication-title: Comp Method Appl M
  doi: 10.1016/S0045-7825(99)00315-1
– volume: 6
  start-page: 213
  year: 1973
  ident: 10.1016/j.compstruc.2021.106571_b0275
  article-title: Solution methods for eigenvalue problems in structural mechanics
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.1620060207
– volume: 193
  start-page: 133
  year: 2011
  ident: 10.1016/j.compstruc.2021.106571_b0230
  article-title: Creep, relaxation and viscosity properties for basic fractional models in rheology
  publication-title: Eur Phys J Special Topics
  doi: 10.1140/epjst/e2011-01387-1
– volume: 135
  start-page: 581
  year: 2009
  ident: 10.1016/j.compstruc.2021.106571_b0215
  article-title: Mechanical model parameters for viscoelastic dampers
  publication-title: J Eng Mech
– volume: 33
  start-page: 1139
  issue: 5
  year: 1989
  ident: 10.1016/j.compstruc.2021.106571_b0050
  article-title: A general inverse iteration method for solution of quadratic eigenvalue problems in structural dynamic analysis
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(89)90452-5
– ident: 10.1016/j.compstruc.2021.106571_b0125
  doi: 10.1201/b20057-74
– volume: 418
  start-page: 100
  year: 2018
  ident: 10.1016/j.compstruc.2021.106571_b0130
  article-title: Eigensolutions of nonviscously damped systems based on the fixed-point iteration
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2017.12.025
– volume: 19
  start-page: 520
  issue: 3
  year: 1996
  ident: 10.1016/j.compstruc.2021.106571_b0065
  article-title: Finite element modelling of one-dimensional viscoelastic structures using an elastic displacement fields
  publication-title: J Guid Control Dyn
  doi: 10.2514/3.21652
– volume: 64
  start-page: 684
  year: 1997
  ident: 10.1016/j.compstruc.2021.106571_b0070
  article-title: Closed-form solutions and the eigenvalue problem for vibration of discrete viscoelastic systems
  publication-title: ASME J Appl Mech
  doi: 10.1115/1.2788947
– volume: 1
  start-page: 251
  year: 2002
  ident: 10.1016/j.compstruc.2021.106571_b0225
  article-title: Seismic analysis of structures with a fractional derivative model of viscoelastic dampers
  publication-title: Earthq Eng Eng Vib
  doi: 10.1007/s11803-002-0070-5
– volume: 82
  start-page: 121011-1
  year: 2015
  ident: 10.1016/j.compstruc.2021.106571_b0240
  article-title: Nonviscous modes of nonproportionally damped viscoelastic systems
  publication-title: J Appl Mech
  doi: 10.1115/1.4031569
– volume: 222
  start-page: 803
  issue: 5
  year: 1999
  ident: 10.1016/j.compstruc.2021.106571_b0145
  article-title: Damping prediction of sandwich structures by order-reduction-iteration approach
  publication-title: J Sound Vib
  doi: 10.1006/jsvi.1998.2131
– volume: 290
  start-page: 268
  year: 2015
  ident: 10.1016/j.compstruc.2021.106571_b0115
  article-title: A successive quadratic approximations method for nonlinear eigenvalue problems
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2015.05.011
– ident: 10.1016/j.compstruc.2021.106571_b0080
– volume: 90
  start-page: 147
  year: 2020
  ident: 10.1016/j.compstruc.2021.106571_b0250
  article-title: Analysis of dynamic characteristics of viscoelastic frame structures
  publication-title: Arch Appl Mech
  doi: 10.1007/s00419-019-01602-4
– volume: 115
  start-page: 103
  year: 1993
  ident: 10.1016/j.compstruc.2021.106571_b0060
  article-title: Modeling of linear viscoelastic space structures
  publication-title: J Vib Acoust
  doi: 10.1115/1.2930302
– volume: 39
  start-page: 1624
  issue: 8
  year: 2001
  ident: 10.1016/j.compstruc.2021.106571_b0235
  article-title: Eigenrelations for nonviscously damped systems
  publication-title: AIAA Journal
  doi: 10.2514/2.1490
– volume: 82
  start-page: 2453
  year: 2004
  ident: 10.1016/j.compstruc.2021.106571_b0035
  article-title: Direct time-domain integration method for exponentially damped linear systems
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2004.08.004
– year: 2012
  ident: 10.1016/j.compstruc.2021.106571_b0010
– volume: 38
  start-page: 8065
  year: 2001
  ident: 10.1016/j.compstruc.2021.106571_b0220
  article-title: Analytical modeling of viscoelastic dampers for structural and vibration control
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(01)00026-9
– volume: 34
  start-page: 269
  year: 1980
  ident: 10.1016/j.compstruc.2021.106571_b0195
  article-title: Variations of Arnoldi’s method for computing eigenelements of large unsymmetric matrices
  publication-title: Linear Algebra Appl
  doi: 10.1016/0024-3795(80)90169-X
– volume: 310
  start-page: 33
  year: 2016
  ident: 10.1016/j.compstruc.2021.106571_b0160
  article-title: Resolvent sampling based Rayleigh-Ritz method for large-scale nonlinear eigenvalue problems
  publication-title: Comput Method Appl M
  doi: 10.1016/j.cma.2016.06.018
– volume: 27
  start-page: 121
  year: 2004
  ident: 10.1016/j.compstruc.2021.106571_b0170
  article-title: Nonlinear eigenvalue problem: a challenge for modern eigenvalue methods
  publication-title: Mitteilungen Gesellschaft für Angewandte Mathematik und Mechanik GAMM-Mitt
– volume: 125
  start-page: 53
  year: 2013
  ident: 10.1016/j.compstruc.2021.106571_b0040
  article-title: The continuation method for the eigenvalue problem of structures with viscoelastic dampers
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2013.04.021
– volume: 164
  start-page: 95
  year: 2016
  ident: 10.1016/j.compstruc.2021.106571_b0265
  article-title: Design sensitivity analysis of structures with viscoelastic dampers
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2015.11.011
– year: 2001
  ident: 10.1016/j.compstruc.2021.106571_b0005
– volume: 41
  start-page: 113
  year: 2012
  ident: 10.1016/j.compstruc.2021.106571_b0020
  article-title: Dynamic analysis of frames with viscoelastic dampers: a comparison of dampers models
  publication-title: Struct Eng Mech
  doi: 10.12989/sem.2012.41.1.113
– volume: 26
  start-page: 1
  year: 2017
  ident: 10.1016/j.compstruc.2021.106571_b0165
  article-title: The nonlinear eigenvalue problem
  publication-title: Acta Numer
  doi: 10.1017/S0962492917000034
– year: 2014
  ident: 10.1016/j.compstruc.2021.106571_b0210
– volume: 79
  start-page: 533
  year: 2001
  ident: 10.1016/j.compstruc.2021.106571_b0085
  article-title: A numerical method for nonlinear eigenvalue problems and application to vibrations of viscoelastic structures
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(00)00151-6
– volume: 229
  year: 2020
  ident: 10.1016/j.compstruc.2021.106571_b0045
  article-title: Dynamic characteristics of viscoelastic Mindlin plates with influence of temperature
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2019.106181
– volume: 72
  start-page: 21
  year: 2013
  ident: 10.1016/j.compstruc.2021.106571_b0245
  article-title: Eigensensitivity analysis of damped systems with distinct and repeated eigenvalues
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2013.04.006
– ident: 10.1016/j.compstruc.2021.106571_b0260
  doi: 10.1080/15376494.2020.1819490
– volume: 12
  start-page: 19
  year: 1977
  ident: 10.1016/j.compstruc.2021.106571_b0190
  article-title: Efficient solution of quadratic eigenproblems arising in dynamic analysis of structures
  publication-title: Comput Method Appl M
  doi: 10.1016/0045-7825(77)90048-2
– year: 1989
  ident: 10.1016/j.compstruc.2021.106571_b0280
– volume: 286
  start-page: 97
  year: 2005
  ident: 10.1016/j.compstruc.2021.106571_b0015
  article-title: Efficiency and tuning of viscous dampers on discrete systems
  publication-title: J Sound Vibr
  doi: 10.1016/j.jsv.2004.09.022
– volume: 41
  start-page: 951
  issue: 5
  year: 2003
  ident: 10.1016/j.compstruc.2021.106571_b0075
  article-title: Symmetric state-space formulation for a class of non-viscously damped systems
  publication-title: AIAAJ
  doi: 10.2514/2.2032
– volume: 133
  start-page: 0210021
  year: 2011
  ident: 10.1016/j.compstruc.2021.106571_b0100
  article-title: Iterative methods for eigenvalues of viscoelastic systems
  publication-title: J Vib Acoust
  doi: 10.1115/1.4002220
– volume: 184
  start-page: 627
  issue: 4
  year: 1995
  ident: 10.1016/j.compstruc.2021.106571_b0200
  article-title: Subspace iteration for complex symmetric eigenproblems
  publication-title: J Sound Vib
  doi: 10.1006/jsvi.1995.0337
– volume: 85
  start-page: 1793
  year: 2015
  ident: 10.1016/j.compstruc.2021.106571_b0025
  article-title: Dynamic characteristics of multilayered beams with viscoelastic layers described by the fractional Zener model
  publication-title: Arch Appl Mech
  doi: 10.1007/s00419-015-1019-2
– volume: 180
  start-page: 630
  year: 2019
  ident: 10.1016/j.compstruc.2021.106571_b0140
  article-title: An iterative method for exact eigenvalues and eigenvectors of general nonviscously damped structural systems
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.11.056
– volume: 45
  start-page: 496
  year: 2012
  ident: 10.1016/j.compstruc.2021.106571_b0030
  article-title: Exact deflation in the complex modal analysis of low-rank non-classically damped structures
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2012.06.023
– volume: 25
  start-page: 1361
  issue: 15–16
  year: 2018
  ident: 10.1016/j.compstruc.2021.106571_b0155
  article-title: Numerical method for nonlinear complex eigenvalues problems depending on two parameters: Application to three-layered viscoelastic composite structures
  publication-title: Mech Adv Mater Struc
  doi: 10.1080/15376494.2017.1286418
– volume: 325
  start-page: 1000
  year: 2009
  ident: 10.1016/j.compstruc.2021.106571_b0095
  article-title: Eigenvalues of linear viscoelastic systems
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2009.04.008
– volume: 9
  start-page: 17
  year: 1951
  ident: 10.1016/j.compstruc.2021.106571_b0180
  article-title: The principle of minimized iterations in the solution of the matrix eigenvalue problems
  publication-title: Q Appl Math
  doi: 10.1090/qam/42792
– year: 1996
  ident: 10.1016/j.compstruc.2021.106571_b0185
– start-page: 2738976
  year: 2017
  ident: 10.1016/j.compstruc.2021.106571_b0255
  article-title: Fractional critical damping theory and its application in active suspension control
  publication-title: Shock Vibr
– volume: 52
  start-page: 897
  year: 1985
  ident: 10.1016/j.compstruc.2021.106571_b0055
  article-title: Dynamics of viscoelastic structures – a time domain finite element formulation
  publication-title: J Appl Mech
  doi: 10.1115/1.3169166
– volume: 45
  start-page: 255
  year: 1950
  ident: 10.1016/j.compstruc.2021.106571_b0175
  article-title: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators
  publication-title: J Res, Natl Bureau Standards
  doi: 10.6028/jres.045.026
SSID ssj0006400
Score 2.4037476
Snippet •The subspace iteration method is used to solve nonlinear eigenvalue problem.•The continuation method is used to solve the nonlinear Hermitian...
The paper presents an extension of the subspace iteration method for application in systems with viscoelastic damping elements, which are described by both...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106571
SubjectTerms Continuation method
Continuation methods
Eigenvalues
Eigenvectors
Fractional derivatives
Iterative methods
Nonlinear eigenvalue problem
Subspace iteration method
Subspaces
Viscoelastic damping
Viscoelastic material
Viscoelasticity
Title The subspace iteration method for nonlinear eigenvalue problems occurring in the dynamics of structures with viscoelastic elements
URI https://dx.doi.org/10.1016/j.compstruc.2021.106571
https://www.proquest.com/docview/2557546362
Volume 254
WOSCitedRecordID wos000674510200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2243
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006400
  issn: 0045-7949
  databaseCode: AIEXJ
  dateStart: 19950103
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwGLVKx4EdED_FYCAf6KnK1CaO7XCbRitApUyom3qzHNtBHSXplq3bmT-Ev5XPcZxmaDA4cIlaV07SvtfPz87n9yH0mofaZGSgAoh7MEFJByRIiNZBlCiWUE40r57gH0_YdMrn8-Sw0_nh98KslyzP-dVVsvqvUEMbgG23zv4D3M1JoQFeA-hwBNjh-NfAlxAOYDJs-s402ULsSkVXWYW5s8eQZ31jvTit37fdLlVVlin7hVJ2WdBtdbGyVLui9VXOh7ObvYA5ulvBXS9KVRhQ4Nb31bhU9LIteH3ViLLi2Ka7B7p3EIOYhaFUfZXB4fKiKnvU_yi_2ETnvBkzJuZS5rq4rKtsfy6-1ayuFyzCYZP6Vq-iNTtpjtuBmVjnTOdeumdcLOYsCUBhRO1gHcakFW6HNw4Cbj3ixGK4qr7Xnr0NaKexK_dy3XZ7-kmMjyYTMRvNZ71ovDoNbE0y--y-F711_LiDtkIWJ7yLtvbfj-YfmrGeEr_Jyd3-tQzCG6__O_3zixKo5M3sAbpfz0vwvuPTQ9Qx-SO03XKrfIy-A7OwZxZumIUdszAwCzfMwhtmYc8s3DALL3IMzMKeWbjI8IYa2DILt5mFPbOeoKPxaHbwLqhLeAQqItF5EKeaqIhnIDQZZUmcMaYybqiMTZwOEymliU0oJWGGwzsVahqZUIGMjaFrkkVPURdu3TxDmFjL2pRySkFR6VTLSn2lmYFJjIZT7iDqf1ihan97W2ZlKXwi44loEBEWEeEQ2UGDpuPKWbzc3uWNR07UStUpUAEcvL3zrsda1HGjFDCzZ7YyBQ2f__njF-je5k-1i7pwdvMS3VXr80V59qrm5093c8c2
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+subspace+iteration+method+for+nonlinear+eigenvalue+problems+occurring+in+the+dynamics+of+structures+with+viscoelastic+elements&rft.jtitle=Computers+%26+structures&rft.au=%C5%81asecka-Plura%2C+Magdalena&rft.au=Lewandowski%2C+Roman&rft.date=2021-10-01&rft.pub=Elsevier+BV&rft.issn=0045-7949&rft.eissn=1879-2243&rft.volume=254&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compstruc.2021.106571&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7949&client=summon