Fatigue life prediction of metallic materials considering mean stress effects by means of an artificial neural network
•A constant life diagram modelling based on artificial neural network is proposed.•An artificial neural network based on a MLP network trained with the BPM is trained.•A hybrid ANN-Stüssi model to determine the values is proposed.•The probabilistic Stüssi fatigue model based on Weibull distribution...
Saved in:
| Published in: | International journal of fatigue Vol. 135; pp. 105527 - 11 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Kidlington
Elsevier Ltd
01.06.2020
Elsevier BV |
| Subjects: | |
| ISSN: | 0142-1123, 1879-3452 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A constant life diagram modelling based on artificial neural network is proposed.•An artificial neural network based on a MLP network trained with the BPM is trained.•A hybrid ANN-Stüssi model to determine the values is proposed.•The probabilistic Stüssi fatigue model based on Weibull distribution is applied.•The experimental fatigue data for P355NL1 steel and notched details are used.
The mean stress effect plays an important role in the fatigue life predictions, its influence significantly changes high-cycle fatigue behaviour, directly decreasing the fatigue limit with the increase of the mean stress. Fatigue design of structural details and mechanical components must account for mean stress effects in order to guarantee the performance and safety criteria during their foreseen operational life. The purpose of this research work is to develop a new methodology to generate a constant life diagram (CLD) for metallic materials, based on assumptions of Haigh diagram and artificial neural networks, using the probabilistic Stüssi fatigue S-N fields. This proposed methodology can estimate the safety region for high-cycle fatigue regimes as a function of the mean stress and stress amplitude in regions where tensile loading is predominance, using fatigue S-N curves only for two stress R-ratios. In this approach, the experimental fatigue data of the P355NL1 pressure vessel steel available for three stress R-ratios (−1, −0.5, 0), are used. A multilayer perceptron network has been trained with the back-propagation algorithm; its architecture consists of two input neurons (σm,N) and one output neuron (σa). The suggested CLD based on trained artificial neural network algorithm and probabilistic Stüssi fatigue fields applied to dog-bone shaped specimens made of P355NL1 steel showed a good agreement with the high-cycle fatigue experimental data, only using the stress R-ratios equal to 0 and −0.5. Furthermore, a procedure for estimating the fatigue resistance reduction factor, Kf, for the fatigue life prediction of structural details (stress R-ratios equal to 0, 0.15 and 0.3) in extrapolation regions is suggested and used to generate the Kf results for stress R-ratios from −1 to 0.3, based on machine learning artificial neural network algorithm. |
|---|---|
| AbstractList | •A constant life diagram modelling based on artificial neural network is proposed.•An artificial neural network based on a MLP network trained with the BPM is trained.•A hybrid ANN-Stüssi model to determine the values is proposed.•The probabilistic Stüssi fatigue model based on Weibull distribution is applied.•The experimental fatigue data for P355NL1 steel and notched details are used.
The mean stress effect plays an important role in the fatigue life predictions, its influence significantly changes high-cycle fatigue behaviour, directly decreasing the fatigue limit with the increase of the mean stress. Fatigue design of structural details and mechanical components must account for mean stress effects in order to guarantee the performance and safety criteria during their foreseen operational life. The purpose of this research work is to develop a new methodology to generate a constant life diagram (CLD) for metallic materials, based on assumptions of Haigh diagram and artificial neural networks, using the probabilistic Stüssi fatigue S-N fields. This proposed methodology can estimate the safety region for high-cycle fatigue regimes as a function of the mean stress and stress amplitude in regions where tensile loading is predominance, using fatigue S-N curves only for two stress R-ratios. In this approach, the experimental fatigue data of the P355NL1 pressure vessel steel available for three stress R-ratios (−1, −0.5, 0), are used. A multilayer perceptron network has been trained with the back-propagation algorithm; its architecture consists of two input neurons (σm,N) and one output neuron (σa). The suggested CLD based on trained artificial neural network algorithm and probabilistic Stüssi fatigue fields applied to dog-bone shaped specimens made of P355NL1 steel showed a good agreement with the high-cycle fatigue experimental data, only using the stress R-ratios equal to 0 and −0.5. Furthermore, a procedure for estimating the fatigue resistance reduction factor, Kf, for the fatigue life prediction of structural details (stress R-ratios equal to 0, 0.15 and 0.3) in extrapolation regions is suggested and used to generate the Kf results for stress R-ratios from −1 to 0.3, based on machine learning artificial neural network algorithm. The mean stress effect plays an important role in the fatigue life predictions, its influence significantly changes high-cycle fatigue behaviour, directly decreasing the fatigue limit with the increase of the mean stress. Fatigue design of structural details and mechanical components must account for mean stress effects in order to guarantee the performance and safety criteria during their foreseen operational life. The purpose of this research work is to develop a new methodology to generate a constant life diagram (CLD) for metallic materials, based on assumptions of Haigh diagram and artificial neural networks, using the probabilistic Stüssi fatigue S-N fields. This proposed methodology can estimate the safety region for high-cycle fatigue regimes as a function of the mean stress and stress amplitude in regions where tensile loading is predominance, using fatigue S-N curves only for two stress R-ratios. In this approach, the experimental fatigue data of the P355NL1 pressure vessel steel available for three stress R-ratios (−1, −0.5, 0), are used. A multilayer perceptron network has been trained with the back-propagation algorithm; its architecture consists of two input neurons […] and one output neuron […]. The suggested CLD based on trained artificial neural network algorithm and probabilistic Stüssi fatigue fields applied to dog-bone shaped specimens made of P355NL1 steel showed a good agreement with the high-cycle fatigue experimental data, only using the stress R-ratios equal to 0 and −0.5. Furthermore, a procedure for estimating the fatigue resistance reduction factor, […], for the fatigue life prediction of structural details (stress R-ratios equal to 0, 0.15 and 0.3) in extrapolation regions is suggested and used to generate the […] results for stress R-ratios from −1 to 0.3, based on machine learning artificial neural network algorithm. ([...] denotes ProQuest formulae omitted) |
| ArticleNumber | 105527 |
| Author | Barbosa, Joelton Fonseca Jesus, Abílio M.P. De Júnior, R.C.S. Freire Correia, José A.F.O. |
| Author_xml | – sequence: 1 givenname: Joelton Fonseca surname: Barbosa fullname: Barbosa, Joelton Fonseca email: joelton.fonseca@ufersa.edu.br organization: Federal University of Rio Grande do Norte, Natal, Brazil – sequence: 2 givenname: José A.F.O. surname: Correia fullname: Correia, José A.F.O. email: jacorreia@fe.up.pt organization: CONSTRUCT, Faculty of Engineering, University of Porto, Portugal – sequence: 3 givenname: R.C.S. Freire surname: Júnior fullname: Júnior, R.C.S. Freire email: freirej@ufrnet.br organization: Federal University of Rio Grande do Norte, Natal, Brazil – sequence: 4 givenname: Abílio M.P. De surname: Jesus fullname: Jesus, Abílio M.P. De email: ajesus@fe.up.pt organization: INEGI, Faculty of Engineering, University of Porto, Porto, Portugal |
| BookMark | eNqNkU1LxDAQhoMouH78BgOeu-Zz2x48iPgFghc9hzSdSGo3WZOs4r83teLBi56GzMzzDjw5QLs-eEDohJIlJXR1NizdYHV2z1tYMsKmrpSs3kEL2tRtxYVku2hBqGAVpYzvo4OUBkJIS2q5QG_XM4pHZwFvIvTOZBc8DhavIetxdAavdYbo9JiwCT65vjz8cxlrj1OOkBIGa8HkhLuPr3aa8DLVMTvrTEGxh238Kvk9xJcjtGdLHhx_10P0dH31eHlb3T_c3F1e3FeGC54r2XXNqi_hZNW3VuiuY1JowVrRcgE16RtbSyuEpcY0bdPIdiVBWkoNAy4t8EN0OuduYnjdQspqCNvoy0nFhOC8lTVnZauet0wMKUWwahPdWscPRYmaJKtB_UhWk2Q1Sy7k-S_SuKwngTlqN_6Dv5h5KBLeHESVjANvyjfEIlT1wf2Z8Qm8HKJ4 |
| CitedBy_id | crossref_primary_10_1108_IJSI_12_2024_0209 crossref_primary_10_1016_j_engfracmech_2025_111136 crossref_primary_10_1016_j_ijfatigue_2022_106747 crossref_primary_10_1177_16878132251327666 crossref_primary_10_1515_tjj_2024_0041 crossref_primary_10_1080_15376494_2022_2051779 crossref_primary_10_1007_s40830_023_00421_5 crossref_primary_10_1016_j_ijfatigue_2023_107796 crossref_primary_10_1016_j_ijfatigue_2024_108486 crossref_primary_10_1016_j_mechmat_2025_105429 crossref_primary_10_1016_j_eswa_2025_127098 crossref_primary_10_1016_j_marstruc_2024_103772 crossref_primary_10_1016_j_engfailanal_2025_109415 crossref_primary_10_3390_met15050569 crossref_primary_10_1016_j_matdes_2020_109001 crossref_primary_10_1016_j_matdes_2025_113926 crossref_primary_10_1016_j_engfailanal_2020_105074 crossref_primary_10_3390_pr11113220 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124124 crossref_primary_10_1016_j_engfailanal_2023_107757 crossref_primary_10_1016_j_engfracmech_2025_111026 crossref_primary_10_1016_j_ijfatigue_2023_107609 crossref_primary_10_3390_en13143592 crossref_primary_10_1007_s40430_020_02747_y crossref_primary_10_1016_j_ijfatigue_2022_106976 crossref_primary_10_1111_ffe_13660 crossref_primary_10_1002_stco_202400029 crossref_primary_10_32604_fdmp_2023_027266 crossref_primary_10_1016_j_ijfatigue_2022_106730 crossref_primary_10_1088_1361_651X_acda4e crossref_primary_10_3390_jmse10020128 crossref_primary_10_1016_j_ijfatigue_2021_106190 crossref_primary_10_1016_j_compstruc_2024_107531 crossref_primary_10_1016_j_ijfatigue_2025_109068 crossref_primary_10_3390_met13081419 crossref_primary_10_3390_app11072889 crossref_primary_10_1016_j_eml_2025_102297 crossref_primary_10_1177_1748006X241298540 crossref_primary_10_1007_s10443_023_10134_8 crossref_primary_10_1016_j_ijfatigue_2023_107776 crossref_primary_10_1016_j_jcsr_2024_109000 crossref_primary_10_1016_j_ijmecsci_2021_106972 crossref_primary_10_1016_j_ijfatigue_2022_106840 crossref_primary_10_1016_j_engfracmech_2023_109714 crossref_primary_10_1016_j_tafmec_2023_103823 crossref_primary_10_1007_s11837_022_05688_0 crossref_primary_10_1177_09544070251351665 crossref_primary_10_1016_j_engfracmech_2025_110915 crossref_primary_10_1108_IJSI_10_2021_0111 crossref_primary_10_1016_j_triboint_2023_109222 crossref_primary_10_3390_polym17101366 crossref_primary_10_1016_j_mtcomm_2022_103679 crossref_primary_10_1111_ffe_13640 crossref_primary_10_1016_j_ijfatigue_2022_106836 crossref_primary_10_1111_ffe_14213 crossref_primary_10_1016_j_ijfatigue_2020_105789 crossref_primary_10_1016_j_ijfatigue_2020_105943 crossref_primary_10_1016_j_istruc_2021_12_035 crossref_primary_10_1111_ffe_14054 crossref_primary_10_1016_j_istruc_2021_12_034 crossref_primary_10_1111_ffe_13921 crossref_primary_10_1016_j_ijfatigue_2021_106701 crossref_primary_10_1007_s12206_022_0902_3 crossref_primary_10_1016_j_euromechsol_2021_104353 crossref_primary_10_1016_j_ijfatigue_2024_108608 crossref_primary_10_1016_j_ijfatigue_2022_106827 crossref_primary_10_1111_ffe_13690 crossref_primary_10_1016_j_jcsr_2024_108492 crossref_primary_10_1016_j_ijfatigue_2022_107234 crossref_primary_10_1111_ffe_13858 crossref_primary_10_1016_j_ijfatigue_2021_106422 crossref_primary_10_1016_j_ijfatigue_2022_106785 crossref_primary_10_1016_j_ijfatigue_2022_107357 crossref_primary_10_1016_j_ndteint_2022_102782 crossref_primary_10_1016_j_apm_2024_01_019 crossref_primary_10_1016_j_ijfatigue_2024_108160 crossref_primary_10_1016_j_engfailanal_2023_107157 crossref_primary_10_1177_1687814021996524 crossref_primary_10_1016_j_istruc_2020_10_007 crossref_primary_10_1111_ffe_13343 crossref_primary_10_3390_s24165359 crossref_primary_10_1016_j_tafmec_2022_103390 crossref_primary_10_1038_s41598_024_79476_y crossref_primary_10_1016_j_commatsci_2020_109962 crossref_primary_10_1108_IJSI_04_2020_0041 crossref_primary_10_1016_j_ijfatigue_2020_106136 crossref_primary_10_1016_j_ijfatigue_2024_108796 crossref_primary_10_1016_j_tafmec_2024_104761 crossref_primary_10_1016_j_jmst_2020_12_010 crossref_primary_10_1016_j_engfracmech_2023_109630 crossref_primary_10_1016_j_eswa_2020_114316 crossref_primary_10_1016_j_engstruct_2024_117998 crossref_primary_10_1111_ffe_13792 crossref_primary_10_1016_j_engfracmech_2023_109351 crossref_primary_10_1016_j_engfailanal_2020_105168 crossref_primary_10_1186_s10033_021_00625_9 crossref_primary_10_1016_j_istruc_2020_12_068 crossref_primary_10_1016_j_engfracmech_2025_111359 crossref_primary_10_1016_j_ijfatigue_2022_106761 crossref_primary_10_1016_j_ijfatigue_2024_108626 crossref_primary_10_1016_j_ijfatigue_2022_107453 crossref_primary_10_1016_j_jmst_2024_01_086 crossref_primary_10_1016_j_ijfatigue_2022_106764 crossref_primary_10_1016_j_ijpvp_2025_105504 crossref_primary_10_1177_00368504221079184 crossref_primary_10_1016_j_ijfatigue_2022_107050 crossref_primary_10_1016_j_jmbbm_2021_104728 crossref_primary_10_1007_s12206_025_0813_1 crossref_primary_10_1088_2053_1591_adc5c8 crossref_primary_10_1016_j_engfracmech_2023_109242 crossref_primary_10_1111_ffe_14495 crossref_primary_10_1155_2021_8888168 crossref_primary_10_2514_1_J060444 crossref_primary_10_1111_ffe_13325 crossref_primary_10_1111_ffe_14533 crossref_primary_10_1016_j_measurement_2021_109875 crossref_primary_10_1007_s11663_024_03176_1 crossref_primary_10_1016_j_ijfatigue_2024_108332 crossref_primary_10_1007_s12540_021_00995_8 crossref_primary_10_1016_j_tafmec_2020_102720 crossref_primary_10_1016_j_matpr_2021_06_365 |
| Cites_doi | 10.1002/env.3170050405 10.1016/j.ijfatigue.2004.06.002 10.1115/1.2217961 10.1016/j.ijfatigue.2004.03.009 10.1007/978-3-662-36565-6 10.1177/1056789516651920 10.1016/j.ijfatigue.2011.06.009 10.1038/323533a0 10.3390/met8040213 10.1111/ffe.12699 10.1016/j.tafmec.2017.09.004 10.1016/j.ijfatigue.2005.02.003 10.1016/j.ijfatigue.2018.07.041 10.1016/j.commatsci.2015.05.026 10.1016/j.ijfatigue.2013.02.019 10.1111/ffe.12553 10.1016/j.compstruct.2018.05.002 10.1016/j.ijfatigue.2008.11.005 10.3390/s17061344 10.3221/IGF-ESIS.48.38 10.1016/j.engfailanal.2017.07.011 10.1002/cepa.617 10.1177/1687814019870395 10.1016/S0142-1123(03)00106-3 |
| ContentType | Journal Article |
| Copyright | 2020 Copyright Elsevier BV Jun 2020 |
| Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Jun 2020 |
| DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
| DOI | 10.1016/j.ijfatigue.2020.105527 |
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3452 |
| EndPage | 11 |
| ExternalDocumentID | 10_1016_j_ijfatigue_2020_105527 S014211232030058X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABCJ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SR 8BQ 8FD AFXIZ AGCQF AGRNS BNPGV JG9 SSH |
| ID | FETCH-LOGICAL-c343t-5bb86deff06d9f4abb254a4294934e70d8f75f44f1cc89885965e5f11c2e35fe3 |
| ISICitedReferencesCount | 144 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000525299400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-1123 |
| IngestDate | Fri Jul 25 08:39:41 EDT 2025 Tue Nov 18 21:04:34 EST 2025 Sat Nov 29 07:22:32 EST 2025 Fri Feb 23 02:48:00 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Stüssi model Constant life diagram Fatigue Artificial neural network Back-propagation algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c343t-5bb86deff06d9f4abb254a4294934e70d8f75f44f1cc89885965e5f11c2e35fe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2443395732 |
| PQPubID | 2045465 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2443395732 crossref_primary_10_1016_j_ijfatigue_2020_105527 crossref_citationtrail_10_1016_j_ijfatigue_2020_105527 elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2020_105527 |
| PublicationCentury | 2000 |
| PublicationDate | June 2020 2020-06-00 20200601 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | International journal of fatigue |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Reed, MarksII (b0150) 1999 Neuber H. Kerbspannungslehre. Springer-Verlag Berlin Heidelberg; 1937. doi:10.1007/978-3-662-36565-6. De Jesus, Ribeiro (b0095) 2006; 128 Dario, Caiza, Ummenhofer (b0120) 2011; 33 Nasiri, Khosravani, Weinberg (b0125) 2017; 81 Solland (b0185) 2017; 1 Lee, Taylor (b0200) 2005 Morrow J. Fatigue properties of metals. In: Halford GR, Gallagher and JP, editors. Fatigue Des. Handb. Pub, SAE: Warrendale; 1968. Pallar és-Santasmartas L, Albizuri J, Avilés A, Avilés R. Mean Stress Effect on the Axial Fatigue Strength of DIN 34CrNiMo6 Quenched and Tempered Steel. Metals (Basel) 2018;8:213. doi:10.3390/met8040213. Pluvinage (b0160) 2007 Barbosa, Correia, Freire Junior, Zhu, De Jesus (b0105) 2019; 11 Goodman (b0035) 1930 Dowling (b0195) 2012 Reddy, Panigrahi, Ho, Kim, Lee (b0145) 2015; 107 Smith, Watson, Topper (b0050) 1970; 5 Soderberg (b0040) 1930; 52 Koutiri, Bellett, Morel (b0070) 2018; 41 Gerber (b0030) 1874 Rumelhart, Hinton, Williams (b0155) 1986; 323 Correia JAFO, Huffman PJ, De Jesus AMP, Cicero S, Fern ández-Canteli A, Berto F, et al. Unified two-stage fatigue methodology based on a probabilistic damage model applied to structural details. Theor Appl Fract Mech 2017;92:252 –65. doi:10.1016/J.TAFMEC.2017.09.004. Barbosa, Montenegro, Lesiuk (b0075) 2019; 48 Nies łony A, Böhm M. Mean stress effect correction using constant stress ratio S-N curves. Int J Fatigue 2013;52:49–56. doi:10.1016/j.ijfatigue.2013.02.019. Toasa Caiza, Ummenhofer (b0100) 2018 Pestana, Kalombo, Carlos, Freire, Jorge, Almeida (b0090) 2018; 12 Dowling (b0025) 2010; 1 Lanning, Nicholas, Haritos (b0020) 2005; 27 Carlos, Freire, Maria, De (b0080) 2005; 27 Genel (b0130) 2004; 26 Castillo, Hadi (b0115) 1994; 5 Lu, Su, Yang, Li (b0015) 2018; 2018 Carlos, Freire, Duarte, Neto, Maria, De (b0085) 2009; 31 The use of intelligent computational tools for damage detection and identification with an emphasis on composites – a review. Compos Struct 2018;196:44–54. doi:10.1016/J.COMPSTRUCT.2018.05.002. Ince (b0010) 2017; 40 Heywood (b0180) 1962 Asteris, Roussis, Douvika (b0135) 2017; 17 Zhu, Lei, Huang, Yang, Peng (b0005) 2017; 26 Ciavarella, Meneghetti (b0165) 2004; 26 Pilkey, Pilkey, Peterson (b0175) 2008 Yamada, Kuwabara (b0190) 2007 Castillo E, Fern ández-Canteli A. A unified statistical methodology for modeling fatigue damage. Springer Science & Business Media; 2009. Carlos (10.1016/j.ijfatigue.2020.105527_b0080) 2005; 27 Gerber (10.1016/j.ijfatigue.2020.105527_b0030) 1874 De Jesus (10.1016/j.ijfatigue.2020.105527_b0095) 2006; 128 Castillo (10.1016/j.ijfatigue.2020.105527_b0115) 1994; 5 Reddy (10.1016/j.ijfatigue.2020.105527_b0145) 2015; 107 Pestana (10.1016/j.ijfatigue.2020.105527_b0090) 2018; 12 Dowling (10.1016/j.ijfatigue.2020.105527_b0195) 2012 Toasa Caiza (10.1016/j.ijfatigue.2020.105527_b0100) 2018 Rumelhart (10.1016/j.ijfatigue.2020.105527_b0155) 1986; 323 Pluvinage (10.1016/j.ijfatigue.2020.105527_b0160) 2007 Lu (10.1016/j.ijfatigue.2020.105527_b0015) 2018; 2018 10.1016/j.ijfatigue.2020.105527_b0140 Lanning (10.1016/j.ijfatigue.2020.105527_b0020) 2005; 27 10.1016/j.ijfatigue.2020.105527_b0060 Barbosa (10.1016/j.ijfatigue.2020.105527_b0075) 2019; 48 Koutiri (10.1016/j.ijfatigue.2020.105527_b0070) 2018; 41 Ciavarella (10.1016/j.ijfatigue.2020.105527_b0165) 2004; 26 Carlos (10.1016/j.ijfatigue.2020.105527_b0085) 2009; 31 Barbosa (10.1016/j.ijfatigue.2020.105527_b0105) 2019; 11 Dario (10.1016/j.ijfatigue.2020.105527_b0120) 2011; 33 10.1016/j.ijfatigue.2020.105527_b0065 Goodman (10.1016/j.ijfatigue.2020.105527_b0035) 1930 10.1016/j.ijfatigue.2020.105527_b0045 Genel (10.1016/j.ijfatigue.2020.105527_b0130) 2004; 26 Nasiri (10.1016/j.ijfatigue.2020.105527_b0125) 2017; 81 Lee (10.1016/j.ijfatigue.2020.105527_b0200) 2005 Smith (10.1016/j.ijfatigue.2020.105527_b0050) 1970; 5 Ince (10.1016/j.ijfatigue.2020.105527_b0010) 2017; 40 Soderberg (10.1016/j.ijfatigue.2020.105527_b0040) 1930; 52 Zhu (10.1016/j.ijfatigue.2020.105527_b0005) 2017; 26 Yamada (10.1016/j.ijfatigue.2020.105527_b0190) 2007 Dowling (10.1016/j.ijfatigue.2020.105527_b0025) 2010; 1 Heywood (10.1016/j.ijfatigue.2020.105527_b0180) 1962 Asteris (10.1016/j.ijfatigue.2020.105527_b0135) 2017; 17 10.1016/j.ijfatigue.2020.105527_b0170 Solland (10.1016/j.ijfatigue.2020.105527_b0185) 2017; 1 10.1016/j.ijfatigue.2020.105527_b0055 10.1016/j.ijfatigue.2020.105527_b0110 Reed (10.1016/j.ijfatigue.2020.105527_b0150) 1999 Pilkey (10.1016/j.ijfatigue.2020.105527_b0175) 2008 |
| References_xml | – volume: 52 start-page: 13 year: 1930 end-page: 28 ident: b0040 article-title: Factor of safety and working stress publication-title: ASME Trans – volume: 2018 start-page: 1 year: 2018 end-page: 12 ident: b0015 article-title: A modified walker model dealing with mean stress effect in fatigue life prediction for aeroengine disks publication-title: Math Probl Eng – year: 2007 ident: b0160 article-title: Fracture and fatigue emanating from stress concentrators publication-title: Springer Science & Business Media – volume: 27 start-page: 45 year: 2005 end-page: 57 ident: b0020 article-title: On the use of critical distance theories for the prediction of the high cycle fatigue limit stress in notched Ti-6Al-4V publication-title: Int J Fatigue – volume: 1 year: 2010 ident: b0025 article-title: Mean stress effects in stress-life and strain-life fatigue publication-title: SAE Tech Pap Ser – volume: 26 start-page: 1027 year: 2004 end-page: 1035 ident: b0130 article-title: Application of artificial neural network for predicting strain-life fatigue properties of steels on the basis of tensile tests publication-title: Int J Fatigue – volume: 27 start-page: 746 year: 2005 end-page: 751 ident: b0080 article-title: Building of constant life diagrams of fatigue using artificial neural networks publication-title: EMF Aquino – Int J Fatig – reference: Castillo E, Fern ández-Canteli A. A unified statistical methodology for modeling fatigue damage. Springer Science & Business Media; 2009. – volume: 12 start-page: 1 year: 2018 end-page: 10 ident: b0090 article-title: Use of artificial neural network to assess the effect of mean stress on fatigue of overhead conductors publication-title: Fatig Fract Eng Mater Struct – volume: 26 start-page: 289 year: 2004 end-page: 298 ident: b0165 article-title: On fatigue limit in the presence of notches: classical vs. recent unified formulations publication-title: Int J Fatigue – volume: 81 start-page: 270 year: 2017 end-page: 293 ident: b0125 article-title: Fracture mechanics and mechanical fault detection by artificial intelligence methods: a review publication-title: Eng Fail Anal – volume: 41 start-page: 440 year: 2018 end-page: 455 ident: b0070 article-title: The effect of mean stress and stress biaxiality in high-cycle fatigue publication-title: Fatigue Fract Eng Mater Struct – reference: Neuber H. Kerbspannungslehre. Springer-Verlag Berlin Heidelberg; 1937. doi:10.1007/978-3-662-36565-6. – volume: 17 start-page: 1344 year: 2017 ident: b0135 article-title: Feed-forward neural network prediction of the mechanical properties of sandcrete materials publication-title: Sensors – year: 1999 ident: b0150 article-title: Neural smithing: supervised learning in feedforward artificial neural networks – year: 1962 ident: b0180 article-title: Designing against fatigue – year: 2012 ident: b0195 article-title: Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue publication-title: Pearson – reference: Correia JAFO, Huffman PJ, De Jesus AMP, Cicero S, Fern ández-Canteli A, Berto F, et al. Unified two-stage fatigue methodology based on a probabilistic damage model applied to structural details. Theor Appl Fract Mech 2017;92:252 –65. doi:10.1016/J.TAFMEC.2017.09.004. – volume: 5 start-page: 417 year: 1994 end-page: 432 ident: b0115 article-title: Parameter and quantile estimation for the generalized extreme-value distribution publication-title: Environmetrics – year: 1930 ident: b0035 article-title: Mechanics Applied to Engineering – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: b0155 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 128 start-page: 298 year: 2006 end-page: 304 ident: b0095 article-title: Low and high cycle fatigue and cyclic elasto-plastic behavior of the P355NL1 steel publication-title: J Press Vessel Technol – volume: 48 start-page: 400 year: 2019 end-page: 410 ident: b0075 article-title: A comparison between S-N Logistic and Kohout-Věchet formulations applied to the fatigue data of old metallic bridges materials publication-title: Fratt Integr Struttur – volume: 33 start-page: 1533 year: 2011 end-page: 1538 ident: b0120 article-title: General probability weighted moments for the three-parameter Weibull Distribution and their application in S-N curves modelling publication-title: Int J Fatigue – reference: The use of intelligent computational tools for damage detection and identification with an emphasis on composites – a review. Compos Struct 2018;196:44–54. doi:10.1016/J.COMPSTRUCT.2018.05.002. – start-page: 416 year: 2005 ident: b0200 article-title: Stress-Based Fatigue Analysis and Design publication-title: Fatigue Test Anal Theory Pract United States of America: Butterworth Heinemann – year: 1874 ident: b0030 article-title: Bestimmung der zul ässigen spannungen in eisen-constructionen publication-title: Wolf – volume: 5 start-page: 767 year: 1970 end-page: 778 ident: b0050 article-title: stress-strain function for the fatigue of materials publication-title: J Mater – volume: 1 start-page: 455 year: 2017 end-page: 460 ident: b0185 article-title: Code requirements to structures documented by non-linear FE-methods publication-title: Ce/Papers – reference: Nies łony A, Böhm M. Mean stress effect correction using constant stress ratio S-N curves. Int J Fatigue 2013;52:49–56. doi:10.1016/j.ijfatigue.2013.02.019. – reference: Morrow J. Fatigue properties of metals. In: Halford GR, Gallagher and JP, editors. Fatigue Des. Handb. Pub, SAE: Warrendale; 1968. – volume: 107 start-page: 175 year: 2015 end-page: 183 ident: b0145 article-title: Artificial neural network modeling on the relative importance of alloying elements and heat treatment temperature to the stability of α and β phase in titanium alloys publication-title: Comput Mater Sci – volume: 31 start-page: 831 year: 2009 end-page: 839 ident: b0085 article-title: Comparative study between ANN models and conventional equations in the analysis of fatigue failure of GFRP publication-title: Int J Fatigue – reference: Pallar és-Santasmartas L, Albizuri J, Avilés A, Avilés R. Mean Stress Effect on the Axial Fatigue Strength of DIN 34CrNiMo6 Quenched and Tempered Steel. Metals (Basel) 2018;8:213. doi:10.3390/met8040213. – year: 2007 ident: b0190 article-title: Materials for springs – volume: 40 start-page: 939 year: 2017 end-page: 948 ident: b0010 article-title: A mean stress correction model for tensile and compressive mean stress fatigue loadings publication-title: Fatigue Fract Eng Mater Struct – year: 2018 ident: b0100 article-title: A probabilistic Stüssi function for modelling the S-N curves and its application on specimens made of steel S355J2+N publication-title: Int J Fatigue – volume: 11 start-page: 1 year: 2019 end-page: 22 ident: b0105 article-title: Probabilistic S-N fields based on statistical distributions applied to metallic and composite materials: State of the Art publication-title: Adv Mech Eng – volume: 26 start-page: 1219 year: 2017 end-page: 1241 ident: b0005 article-title: Mean stress effect correction in strain energy-based fatigue life prediction of metals publication-title: Int J Damage Mech – year: 2008 ident: b0175 article-title: Peterson’s stress concentration factors – year: 1874 ident: 10.1016/j.ijfatigue.2020.105527_b0030 article-title: Bestimmung der zul ässigen spannungen in eisen-constructionen publication-title: Wolf – volume: 5 start-page: 417 year: 1994 ident: 10.1016/j.ijfatigue.2020.105527_b0115 article-title: Parameter and quantile estimation for the generalized extreme-value distribution publication-title: Environmetrics doi: 10.1002/env.3170050405 – year: 1930 ident: 10.1016/j.ijfatigue.2020.105527_b0035 – volume: 27 start-page: 45 year: 2005 ident: 10.1016/j.ijfatigue.2020.105527_b0020 article-title: On the use of critical distance theories for the prediction of the high cycle fatigue limit stress in notched Ti-6Al-4V publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2004.06.002 – volume: 128 start-page: 298 year: 2006 ident: 10.1016/j.ijfatigue.2020.105527_b0095 article-title: Low and high cycle fatigue and cyclic elasto-plastic behavior of the P355NL1 steel publication-title: J Press Vessel Technol doi: 10.1115/1.2217961 – volume: 1 year: 2010 ident: 10.1016/j.ijfatigue.2020.105527_b0025 article-title: Mean stress effects in stress-life and strain-life fatigue publication-title: SAE Tech Pap Ser – year: 2012 ident: 10.1016/j.ijfatigue.2020.105527_b0195 article-title: Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue publication-title: Pearson – volume: 26 start-page: 1027 year: 2004 ident: 10.1016/j.ijfatigue.2020.105527_b0130 article-title: Application of artificial neural network for predicting strain-life fatigue properties of steels on the basis of tensile tests publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2004.03.009 – ident: 10.1016/j.ijfatigue.2020.105527_b0170 doi: 10.1007/978-3-662-36565-6 – volume: 26 start-page: 1219 year: 2017 ident: 10.1016/j.ijfatigue.2020.105527_b0005 article-title: Mean stress effect correction in strain energy-based fatigue life prediction of metals publication-title: Int J Damage Mech doi: 10.1177/1056789516651920 – volume: 33 start-page: 1533 year: 2011 ident: 10.1016/j.ijfatigue.2020.105527_b0120 article-title: General probability weighted moments for the three-parameter Weibull Distribution and their application in S-N curves modelling publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2011.06.009 – volume: 323 start-page: 533 year: 1986 ident: 10.1016/j.ijfatigue.2020.105527_b0155 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – ident: 10.1016/j.ijfatigue.2020.105527_b0055 doi: 10.3390/met8040213 – year: 1999 ident: 10.1016/j.ijfatigue.2020.105527_b0150 – year: 2007 ident: 10.1016/j.ijfatigue.2020.105527_b0190 – volume: 41 start-page: 440 year: 2018 ident: 10.1016/j.ijfatigue.2020.105527_b0070 article-title: The effect of mean stress and stress biaxiality in high-cycle fatigue publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/ffe.12699 – ident: 10.1016/j.ijfatigue.2020.105527_b0065 doi: 10.1016/j.tafmec.2017.09.004 – volume: 27 start-page: 746 year: 2005 ident: 10.1016/j.ijfatigue.2020.105527_b0080 article-title: Building of constant life diagrams of fatigue using artificial neural networks publication-title: EMF Aquino – Int J Fatig doi: 10.1016/j.ijfatigue.2005.02.003 – year: 2018 ident: 10.1016/j.ijfatigue.2020.105527_b0100 article-title: A probabilistic Stüssi function for modelling the S-N curves and its application on specimens made of steel S355J2+N publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2018.07.041 – year: 1962 ident: 10.1016/j.ijfatigue.2020.105527_b0180 – volume: 5 start-page: 767 year: 1970 ident: 10.1016/j.ijfatigue.2020.105527_b0050 article-title: stress-strain function for the fatigue of materials publication-title: J Mater – volume: 107 start-page: 175 year: 2015 ident: 10.1016/j.ijfatigue.2020.105527_b0145 article-title: Artificial neural network modeling on the relative importance of alloying elements and heat treatment temperature to the stability of α and β phase in titanium alloys publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2015.05.026 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.ijfatigue.2020.105527_b0015 article-title: A modified walker model dealing with mean stress effect in fatigue life prediction for aeroengine disks publication-title: Math Probl Eng – year: 2007 ident: 10.1016/j.ijfatigue.2020.105527_b0160 article-title: Fracture and fatigue emanating from stress concentrators publication-title: Springer Science & Business Media – ident: 10.1016/j.ijfatigue.2020.105527_b0060 doi: 10.1016/j.ijfatigue.2013.02.019 – volume: 40 start-page: 939 year: 2017 ident: 10.1016/j.ijfatigue.2020.105527_b0010 article-title: A mean stress correction model for tensile and compressive mean stress fatigue loadings publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/ffe.12553 – ident: 10.1016/j.ijfatigue.2020.105527_b0045 – volume: 12 start-page: 1 year: 2018 ident: 10.1016/j.ijfatigue.2020.105527_b0090 article-title: Use of artificial neural network to assess the effect of mean stress on fatigue of overhead conductors publication-title: Fatig Fract Eng Mater Struct – ident: 10.1016/j.ijfatigue.2020.105527_b0110 – ident: 10.1016/j.ijfatigue.2020.105527_b0140 doi: 10.1016/j.compstruct.2018.05.002 – volume: 52 start-page: 13 year: 1930 ident: 10.1016/j.ijfatigue.2020.105527_b0040 article-title: Factor of safety and working stress publication-title: ASME Trans – volume: 31 start-page: 831 year: 2009 ident: 10.1016/j.ijfatigue.2020.105527_b0085 article-title: Comparative study between ANN models and conventional equations in the analysis of fatigue failure of GFRP publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2008.11.005 – volume: 17 start-page: 1344 year: 2017 ident: 10.1016/j.ijfatigue.2020.105527_b0135 article-title: Feed-forward neural network prediction of the mechanical properties of sandcrete materials publication-title: Sensors doi: 10.3390/s17061344 – volume: 48 start-page: 400 year: 2019 ident: 10.1016/j.ijfatigue.2020.105527_b0075 article-title: A comparison between S-N Logistic and Kohout-Věchet formulations applied to the fatigue data of old metallic bridges materials publication-title: Fratt Integr Struttur doi: 10.3221/IGF-ESIS.48.38 – volume: 81 start-page: 270 year: 2017 ident: 10.1016/j.ijfatigue.2020.105527_b0125 article-title: Fracture mechanics and mechanical fault detection by artificial intelligence methods: a review publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2017.07.011 – volume: 1 start-page: 455 year: 2017 ident: 10.1016/j.ijfatigue.2020.105527_b0185 article-title: Code requirements to structures documented by non-linear FE-methods publication-title: Ce/Papers doi: 10.1002/cepa.617 – start-page: 416 year: 2005 ident: 10.1016/j.ijfatigue.2020.105527_b0200 article-title: Stress-Based Fatigue Analysis and Design publication-title: Fatigue Test Anal Theory Pract United States of America: Butterworth Heinemann – year: 2008 ident: 10.1016/j.ijfatigue.2020.105527_b0175 – volume: 11 start-page: 1 year: 2019 ident: 10.1016/j.ijfatigue.2020.105527_b0105 article-title: Probabilistic S-N fields based on statistical distributions applied to metallic and composite materials: State of the Art publication-title: Adv Mech Eng doi: 10.1177/1687814019870395 – volume: 26 start-page: 289 year: 2004 ident: 10.1016/j.ijfatigue.2020.105527_b0165 article-title: On fatigue limit in the presence of notches: classical vs. recent unified formulations publication-title: Int J Fatigue doi: 10.1016/S0142-1123(03)00106-3 |
| SSID | ssj0009075 |
| Score | 2.6115284 |
| Snippet | •A constant life diagram modelling based on artificial neural network is proposed.•An artificial neural network based on a MLP network trained with the BPM is... The mean stress effect plays an important role in the fatigue life predictions, its influence significantly changes high-cycle fatigue behaviour, directly... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 105527 |
| SubjectTerms | Algorithms Artificial neural network Artificial neural networks Back propagation networks Back-propagation algorithm Constant life diagram Fatigue Fatigue life Fatigue limit Fatigue strength High cycle fatigue Life prediction Machine learning Materials fatigue Mechanical components Multilayer perceptrons Neural networks Pressure vessels Resistance factors S N diagrams Safety Stüssi model |
| Title | Fatigue life prediction of metallic materials considering mean stress effects by means of an artificial neural network |
| URI | https://dx.doi.org/10.1016/j.ijfatigue.2020.105527 https://www.proquest.com/docview/2443395732 |
| Volume | 135 |
| WOSCitedRecordID | wos000525299400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3452 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009075 issn: 0142-1123 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwM8IK5iMJAfEC9RpiaOG5u3MlpBNbpJdKhvUe3aU6suKUtXjf_Kj8Endm7cBg-8JJUtJ2nOl5Mvx5_PQeiV0EIEknI_JoueHzHNfU4oCNcCLmQEpJkVxSbiyYTNZvy00_lWroXZreM0ZdfXfPNfTW3ajLFh6ew_mLs6qGkwv43RzdaY3Wz_yvAjsz-_Ut56qWERFEzElKzwQhmqDVmtDU21lwKq86JgJ0QMLiAq7xaPlDoPw06huRB8mF44n8s5AZkwi12hI2-S3HaUsZGbQttLq1U7CmpaeyNQdMt5MfeR5bV0CAqHOC1vltsZfW8wOqnmiI4-Gd6tjM_2xtD7dpAus0prPBDFiHfrZeZ9PDV-1RurvB3lCHu1GsuG3qrlN59bwdDQN3zROkhlHTiLuU8i2vbwhDZ8dNB42VtH_9NrxEY0VofLlbsxh3BNUBOZ2kwG7cTdk5NkdHZ8nEyHs-nrzRcfaprB3L8r8HIL7YUx5ayL9gYfhrNxnRTaJoKu_kdLf_jLc_-OPf3AIwpyNL2P7rmvGjywaHyAOip9iO42cl0-QjuHSwy4xDUucaZxiUtc4RI3cIkBgNjiEjtcYvG1aM5huOmtcYktLrHD5WN0NhpOj977ruiHL0lEtj4VgvUX5mC9_oLraC5ESKO5YU0RJ5GKewumY6qjSAdSMs4Y5X2qqA4CGSpCtSJPUDfNUvUU4X6g51xyQ8BIZLxOwKToCRIvRCAg2in3Ub-8mYl0GfGhMMs6KaWPq6SyQgJWSKwV9lGvGrixSWFuHvKmtFbiuK3lrInB3M2DD0r7Ju6hzRPDywlMspPw2Z-7n6M79RN1gLrbyyv1At2Wu-0yv3zpMPkd8_LTXg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatigue+life+prediction+of+metallic+materials+considering+mean+stress+effects+by+means+of+an+artificial+neural+network&rft.jtitle=International+journal+of+fatigue&rft.au=Joelton+Fonseca+Barbosa&rft.au=Correia%2C+Jos%C3%A9+AFO&rft.au=RCS+Freire+J%C3%BAnior&rft.au=Ab%C3%ADlio+MP+De+Jesus&rft.date=2020-06-01&rft.pub=Elsevier+BV&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=135&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1016%2Fj.ijfatigue.2020.105527&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon |