Fatigue life prediction of metallic materials considering mean stress effects by means of an artificial neural network

•A constant life diagram modelling based on artificial neural network is proposed.•An artificial neural network based on a MLP network trained with the BPM is trained.•A hybrid ANN-Stüssi model to determine the values is proposed.•The probabilistic Stüssi fatigue model based on Weibull distribution...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of fatigue Ročník 135; s. 105527 - 11
Hlavní autori: Barbosa, Joelton Fonseca, Correia, José A.F.O., Júnior, R.C.S. Freire, Jesus, Abílio M.P. De
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier Ltd 01.06.2020
Elsevier BV
Predmet:
ISSN:0142-1123, 1879-3452
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A constant life diagram modelling based on artificial neural network is proposed.•An artificial neural network based on a MLP network trained with the BPM is trained.•A hybrid ANN-Stüssi model to determine the values is proposed.•The probabilistic Stüssi fatigue model based on Weibull distribution is applied.•The experimental fatigue data for P355NL1 steel and notched details are used. The mean stress effect plays an important role in the fatigue life predictions, its influence significantly changes high-cycle fatigue behaviour, directly decreasing the fatigue limit with the increase of the mean stress. Fatigue design of structural details and mechanical components must account for mean stress effects in order to guarantee the performance and safety criteria during their foreseen operational life. The purpose of this research work is to develop a new methodology to generate a constant life diagram (CLD) for metallic materials, based on assumptions of Haigh diagram and artificial neural networks, using the probabilistic Stüssi fatigue S-N fields. This proposed methodology can estimate the safety region for high-cycle fatigue regimes as a function of the mean stress and stress amplitude in regions where tensile loading is predominance, using fatigue S-N curves only for two stress R-ratios. In this approach, the experimental fatigue data of the P355NL1 pressure vessel steel available for three stress R-ratios (−1, −0.5, 0), are used. A multilayer perceptron network has been trained with the back-propagation algorithm; its architecture consists of two input neurons (σm,N) and one output neuron (σa). The suggested CLD based on trained artificial neural network algorithm and probabilistic Stüssi fatigue fields applied to dog-bone shaped specimens made of P355NL1 steel showed a good agreement with the high-cycle fatigue experimental data, only using the stress R-ratios equal to 0 and −0.5. Furthermore, a procedure for estimating the fatigue resistance reduction factor, Kf, for the fatigue life prediction of structural details (stress R-ratios equal to 0, 0.15 and 0.3) in extrapolation regions is suggested and used to generate the Kf results for stress R-ratios from −1 to 0.3, based on machine learning artificial neural network algorithm.
AbstractList •A constant life diagram modelling based on artificial neural network is proposed.•An artificial neural network based on a MLP network trained with the BPM is trained.•A hybrid ANN-Stüssi model to determine the values is proposed.•The probabilistic Stüssi fatigue model based on Weibull distribution is applied.•The experimental fatigue data for P355NL1 steel and notched details are used. The mean stress effect plays an important role in the fatigue life predictions, its influence significantly changes high-cycle fatigue behaviour, directly decreasing the fatigue limit with the increase of the mean stress. Fatigue design of structural details and mechanical components must account for mean stress effects in order to guarantee the performance and safety criteria during their foreseen operational life. The purpose of this research work is to develop a new methodology to generate a constant life diagram (CLD) for metallic materials, based on assumptions of Haigh diagram and artificial neural networks, using the probabilistic Stüssi fatigue S-N fields. This proposed methodology can estimate the safety region for high-cycle fatigue regimes as a function of the mean stress and stress amplitude in regions where tensile loading is predominance, using fatigue S-N curves only for two stress R-ratios. In this approach, the experimental fatigue data of the P355NL1 pressure vessel steel available for three stress R-ratios (−1, −0.5, 0), are used. A multilayer perceptron network has been trained with the back-propagation algorithm; its architecture consists of two input neurons (σm,N) and one output neuron (σa). The suggested CLD based on trained artificial neural network algorithm and probabilistic Stüssi fatigue fields applied to dog-bone shaped specimens made of P355NL1 steel showed a good agreement with the high-cycle fatigue experimental data, only using the stress R-ratios equal to 0 and −0.5. Furthermore, a procedure for estimating the fatigue resistance reduction factor, Kf, for the fatigue life prediction of structural details (stress R-ratios equal to 0, 0.15 and 0.3) in extrapolation regions is suggested and used to generate the Kf results for stress R-ratios from −1 to 0.3, based on machine learning artificial neural network algorithm.
The mean stress effect plays an important role in the fatigue life predictions, its influence significantly changes high-cycle fatigue behaviour, directly decreasing the fatigue limit with the increase of the mean stress. Fatigue design of structural details and mechanical components must account for mean stress effects in order to guarantee the performance and safety criteria during their foreseen operational life. The purpose of this research work is to develop a new methodology to generate a constant life diagram (CLD) for metallic materials, based on assumptions of Haigh diagram and artificial neural networks, using the probabilistic Stüssi fatigue S-N fields. This proposed methodology can estimate the safety region for high-cycle fatigue regimes as a function of the mean stress and stress amplitude in regions where tensile loading is predominance, using fatigue S-N curves only for two stress R-ratios. In this approach, the experimental fatigue data of the P355NL1 pressure vessel steel available for three stress R-ratios (−1, −0.5, 0), are used. A multilayer perceptron network has been trained with the back-propagation algorithm; its architecture consists of two input neurons […] and one output neuron […]. The suggested CLD based on trained artificial neural network algorithm and probabilistic Stüssi fatigue fields applied to dog-bone shaped specimens made of P355NL1 steel showed a good agreement with the high-cycle fatigue experimental data, only using the stress R-ratios equal to 0 and −0.5. Furthermore, a procedure for estimating the fatigue resistance reduction factor, […], for the fatigue life prediction of structural details (stress R-ratios equal to 0, 0.15 and 0.3) in extrapolation regions is suggested and used to generate the […] results for stress R-ratios from −1 to 0.3, based on machine learning artificial neural network algorithm. ([...] denotes ProQuest formulae omitted)
ArticleNumber 105527
Author Barbosa, Joelton Fonseca
Jesus, Abílio M.P. De
Júnior, R.C.S. Freire
Correia, José A.F.O.
Author_xml – sequence: 1
  givenname: Joelton Fonseca
  surname: Barbosa
  fullname: Barbosa, Joelton Fonseca
  email: joelton.fonseca@ufersa.edu.br
  organization: Federal University of Rio Grande do Norte, Natal, Brazil
– sequence: 2
  givenname: José A.F.O.
  surname: Correia
  fullname: Correia, José A.F.O.
  email: jacorreia@fe.up.pt
  organization: CONSTRUCT, Faculty of Engineering, University of Porto, Portugal
– sequence: 3
  givenname: R.C.S. Freire
  surname: Júnior
  fullname: Júnior, R.C.S. Freire
  email: freirej@ufrnet.br
  organization: Federal University of Rio Grande do Norte, Natal, Brazil
– sequence: 4
  givenname: Abílio M.P. De
  surname: Jesus
  fullname: Jesus, Abílio M.P. De
  email: ajesus@fe.up.pt
  organization: INEGI, Faculty of Engineering, University of Porto, Porto, Portugal
BookMark eNqNkU1LxDAQhoMouH78BgOeu-Zz2x48iPgFghc9hzSdSGo3WZOs4r83teLBi56GzMzzDjw5QLs-eEDohJIlJXR1NizdYHV2z1tYMsKmrpSs3kEL2tRtxYVku2hBqGAVpYzvo4OUBkJIS2q5QG_XM4pHZwFvIvTOZBc8DhavIetxdAavdYbo9JiwCT65vjz8cxlrj1OOkBIGa8HkhLuPr3aa8DLVMTvrTEGxh238Kvk9xJcjtGdLHhx_10P0dH31eHlb3T_c3F1e3FeGC54r2XXNqi_hZNW3VuiuY1JowVrRcgE16RtbSyuEpcY0bdPIdiVBWkoNAy4t8EN0OuduYnjdQspqCNvoy0nFhOC8lTVnZauet0wMKUWwahPdWscPRYmaJKtB_UhWk2Q1Sy7k-S_SuKwngTlqN_6Dv5h5KBLeHESVjANvyjfEIlT1wf2Z8Qm8HKJ4
CitedBy_id crossref_primary_10_1108_IJSI_12_2024_0209
crossref_primary_10_1016_j_engfracmech_2025_111136
crossref_primary_10_1016_j_ijfatigue_2022_106747
crossref_primary_10_1177_16878132251327666
crossref_primary_10_1515_tjj_2024_0041
crossref_primary_10_1080_15376494_2022_2051779
crossref_primary_10_1007_s40830_023_00421_5
crossref_primary_10_1016_j_ijfatigue_2023_107796
crossref_primary_10_1016_j_ijfatigue_2024_108486
crossref_primary_10_1016_j_mechmat_2025_105429
crossref_primary_10_1016_j_eswa_2025_127098
crossref_primary_10_1016_j_marstruc_2024_103772
crossref_primary_10_1016_j_engfailanal_2025_109415
crossref_primary_10_3390_met15050569
crossref_primary_10_1016_j_matdes_2020_109001
crossref_primary_10_1016_j_matdes_2025_113926
crossref_primary_10_1016_j_engfailanal_2020_105074
crossref_primary_10_3390_pr11113220
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124124
crossref_primary_10_1016_j_engfailanal_2023_107757
crossref_primary_10_1016_j_engfracmech_2025_111026
crossref_primary_10_1016_j_ijfatigue_2023_107609
crossref_primary_10_3390_en13143592
crossref_primary_10_1007_s40430_020_02747_y
crossref_primary_10_1016_j_ijfatigue_2022_106976
crossref_primary_10_1111_ffe_13660
crossref_primary_10_1002_stco_202400029
crossref_primary_10_32604_fdmp_2023_027266
crossref_primary_10_1016_j_ijfatigue_2022_106730
crossref_primary_10_1088_1361_651X_acda4e
crossref_primary_10_3390_jmse10020128
crossref_primary_10_1016_j_ijfatigue_2021_106190
crossref_primary_10_1016_j_compstruc_2024_107531
crossref_primary_10_1016_j_ijfatigue_2025_109068
crossref_primary_10_3390_met13081419
crossref_primary_10_3390_app11072889
crossref_primary_10_1016_j_eml_2025_102297
crossref_primary_10_1177_1748006X241298540
crossref_primary_10_1007_s10443_023_10134_8
crossref_primary_10_1016_j_ijfatigue_2023_107776
crossref_primary_10_1016_j_jcsr_2024_109000
crossref_primary_10_1016_j_ijmecsci_2021_106972
crossref_primary_10_1016_j_ijfatigue_2022_106840
crossref_primary_10_1016_j_engfracmech_2023_109714
crossref_primary_10_1016_j_tafmec_2023_103823
crossref_primary_10_1007_s11837_022_05688_0
crossref_primary_10_1177_09544070251351665
crossref_primary_10_1016_j_engfracmech_2025_110915
crossref_primary_10_1108_IJSI_10_2021_0111
crossref_primary_10_1016_j_triboint_2023_109222
crossref_primary_10_3390_polym17101366
crossref_primary_10_1016_j_mtcomm_2022_103679
crossref_primary_10_1111_ffe_13640
crossref_primary_10_1016_j_ijfatigue_2022_106836
crossref_primary_10_1111_ffe_14213
crossref_primary_10_1016_j_ijfatigue_2020_105789
crossref_primary_10_1016_j_ijfatigue_2020_105943
crossref_primary_10_1016_j_istruc_2021_12_035
crossref_primary_10_1111_ffe_14054
crossref_primary_10_1016_j_istruc_2021_12_034
crossref_primary_10_1111_ffe_13921
crossref_primary_10_1016_j_ijfatigue_2021_106701
crossref_primary_10_1007_s12206_022_0902_3
crossref_primary_10_1016_j_euromechsol_2021_104353
crossref_primary_10_1016_j_ijfatigue_2024_108608
crossref_primary_10_1016_j_ijfatigue_2022_106827
crossref_primary_10_1111_ffe_13690
crossref_primary_10_1016_j_jcsr_2024_108492
crossref_primary_10_1016_j_ijfatigue_2022_107234
crossref_primary_10_1111_ffe_13858
crossref_primary_10_1016_j_ijfatigue_2021_106422
crossref_primary_10_1016_j_ijfatigue_2022_106785
crossref_primary_10_1016_j_ijfatigue_2022_107357
crossref_primary_10_1016_j_ndteint_2022_102782
crossref_primary_10_1016_j_apm_2024_01_019
crossref_primary_10_1016_j_ijfatigue_2024_108160
crossref_primary_10_1016_j_engfailanal_2023_107157
crossref_primary_10_1177_1687814021996524
crossref_primary_10_1016_j_istruc_2020_10_007
crossref_primary_10_1111_ffe_13343
crossref_primary_10_3390_s24165359
crossref_primary_10_1016_j_tafmec_2022_103390
crossref_primary_10_1038_s41598_024_79476_y
crossref_primary_10_1016_j_commatsci_2020_109962
crossref_primary_10_1108_IJSI_04_2020_0041
crossref_primary_10_1016_j_ijfatigue_2020_106136
crossref_primary_10_1016_j_ijfatigue_2024_108796
crossref_primary_10_1016_j_tafmec_2024_104761
crossref_primary_10_1016_j_jmst_2020_12_010
crossref_primary_10_1016_j_engfracmech_2023_109630
crossref_primary_10_1016_j_eswa_2020_114316
crossref_primary_10_1016_j_engstruct_2024_117998
crossref_primary_10_1111_ffe_13792
crossref_primary_10_1016_j_engfracmech_2023_109351
crossref_primary_10_1016_j_engfailanal_2020_105168
crossref_primary_10_1186_s10033_021_00625_9
crossref_primary_10_1016_j_istruc_2020_12_068
crossref_primary_10_1016_j_engfracmech_2025_111359
crossref_primary_10_1016_j_ijfatigue_2022_106761
crossref_primary_10_1016_j_ijfatigue_2024_108626
crossref_primary_10_1016_j_ijfatigue_2022_107453
crossref_primary_10_1016_j_jmst_2024_01_086
crossref_primary_10_1016_j_ijfatigue_2022_106764
crossref_primary_10_1016_j_ijpvp_2025_105504
crossref_primary_10_1177_00368504221079184
crossref_primary_10_1016_j_ijfatigue_2022_107050
crossref_primary_10_1016_j_jmbbm_2021_104728
crossref_primary_10_1007_s12206_025_0813_1
crossref_primary_10_1088_2053_1591_adc5c8
crossref_primary_10_1016_j_engfracmech_2023_109242
crossref_primary_10_1111_ffe_14495
crossref_primary_10_1155_2021_8888168
crossref_primary_10_2514_1_J060444
crossref_primary_10_1111_ffe_13325
crossref_primary_10_1111_ffe_14533
crossref_primary_10_1016_j_measurement_2021_109875
crossref_primary_10_1007_s11663_024_03176_1
crossref_primary_10_1016_j_ijfatigue_2024_108332
crossref_primary_10_1007_s12540_021_00995_8
crossref_primary_10_1016_j_tafmec_2020_102720
crossref_primary_10_1016_j_matpr_2021_06_365
Cites_doi 10.1002/env.3170050405
10.1016/j.ijfatigue.2004.06.002
10.1115/1.2217961
10.1016/j.ijfatigue.2004.03.009
10.1007/978-3-662-36565-6
10.1177/1056789516651920
10.1016/j.ijfatigue.2011.06.009
10.1038/323533a0
10.3390/met8040213
10.1111/ffe.12699
10.1016/j.tafmec.2017.09.004
10.1016/j.ijfatigue.2005.02.003
10.1016/j.ijfatigue.2018.07.041
10.1016/j.commatsci.2015.05.026
10.1016/j.ijfatigue.2013.02.019
10.1111/ffe.12553
10.1016/j.compstruct.2018.05.002
10.1016/j.ijfatigue.2008.11.005
10.3390/s17061344
10.3221/IGF-ESIS.48.38
10.1016/j.engfailanal.2017.07.011
10.1002/cepa.617
10.1177/1687814019870395
10.1016/S0142-1123(03)00106-3
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Jun 2020
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Jun 2020
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.ijfatigue.2020.105527
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3452
EndPage 11
ExternalDocumentID 10_1016_j_ijfatigue_2020_105527
S014211232030058X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABCJ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SR
8BQ
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JG9
SSH
ID FETCH-LOGICAL-c343t-5bb86deff06d9f4abb254a4294934e70d8f75f44f1cc89885965e5f11c2e35fe3
ISICitedReferencesCount 144
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000525299400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-1123
IngestDate Fri Jul 25 08:39:41 EDT 2025
Tue Nov 18 21:04:34 EST 2025
Sat Nov 29 07:22:32 EST 2025
Fri Feb 23 02:48:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stüssi model
Constant life diagram
Fatigue
Artificial neural network
Back-propagation algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-5bb86deff06d9f4abb254a4294934e70d8f75f44f1cc89885965e5f11c2e35fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2443395732
PQPubID 2045465
PageCount 11
ParticipantIDs proquest_journals_2443395732
crossref_primary_10_1016_j_ijfatigue_2020_105527
crossref_citationtrail_10_1016_j_ijfatigue_2020_105527
elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2020_105527
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of fatigue
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Reed, MarksII (b0150) 1999
Neuber H. Kerbspannungslehre. Springer-Verlag Berlin Heidelberg; 1937. doi:10.1007/978-3-662-36565-6.
De Jesus, Ribeiro (b0095) 2006; 128
Dario, Caiza, Ummenhofer (b0120) 2011; 33
Nasiri, Khosravani, Weinberg (b0125) 2017; 81
Solland (b0185) 2017; 1
Lee, Taylor (b0200) 2005
Morrow J. Fatigue properties of metals. In: Halford GR, Gallagher and JP, editors. Fatigue Des. Handb. Pub, SAE: Warrendale; 1968.
Pallar és-Santasmartas L, Albizuri J, Avilés A, Avilés R. Mean Stress Effect on the Axial Fatigue Strength of DIN 34CrNiMo6 Quenched and Tempered Steel. Metals (Basel) 2018;8:213. doi:10.3390/met8040213.
Pluvinage (b0160) 2007
Barbosa, Correia, Freire Junior, Zhu, De Jesus (b0105) 2019; 11
Goodman (b0035) 1930
Dowling (b0195) 2012
Reddy, Panigrahi, Ho, Kim, Lee (b0145) 2015; 107
Smith, Watson, Topper (b0050) 1970; 5
Soderberg (b0040) 1930; 52
Koutiri, Bellett, Morel (b0070) 2018; 41
Gerber (b0030) 1874
Rumelhart, Hinton, Williams (b0155) 1986; 323
Correia JAFO, Huffman PJ, De Jesus AMP, Cicero S, Fern ández-Canteli A, Berto F, et al. Unified two-stage fatigue methodology based on a probabilistic damage model applied to structural details. Theor Appl Fract Mech 2017;92:252 –65. doi:10.1016/J.TAFMEC.2017.09.004.
Barbosa, Montenegro, Lesiuk (b0075) 2019; 48
Nies łony A, Böhm M. Mean stress effect correction using constant stress ratio S-N curves. Int J Fatigue 2013;52:49–56. doi:10.1016/j.ijfatigue.2013.02.019.
Toasa Caiza, Ummenhofer (b0100) 2018
Pestana, Kalombo, Carlos, Freire, Jorge, Almeida (b0090) 2018; 12
Dowling (b0025) 2010; 1
Lanning, Nicholas, Haritos (b0020) 2005; 27
Carlos, Freire, Maria, De (b0080) 2005; 27
Genel (b0130) 2004; 26
Castillo, Hadi (b0115) 1994; 5
Lu, Su, Yang, Li (b0015) 2018; 2018
Carlos, Freire, Duarte, Neto, Maria, De (b0085) 2009; 31
The use of intelligent computational tools for damage detection and identification with an emphasis on composites – a review. Compos Struct 2018;196:44–54. doi:10.1016/J.COMPSTRUCT.2018.05.002.
Ince (b0010) 2017; 40
Heywood (b0180) 1962
Asteris, Roussis, Douvika (b0135) 2017; 17
Zhu, Lei, Huang, Yang, Peng (b0005) 2017; 26
Ciavarella, Meneghetti (b0165) 2004; 26
Pilkey, Pilkey, Peterson (b0175) 2008
Yamada, Kuwabara (b0190) 2007
Castillo E, Fern ández-Canteli A. A unified statistical methodology for modeling fatigue damage. Springer Science & Business Media; 2009.
Carlos (10.1016/j.ijfatigue.2020.105527_b0080) 2005; 27
Gerber (10.1016/j.ijfatigue.2020.105527_b0030) 1874
De Jesus (10.1016/j.ijfatigue.2020.105527_b0095) 2006; 128
Castillo (10.1016/j.ijfatigue.2020.105527_b0115) 1994; 5
Reddy (10.1016/j.ijfatigue.2020.105527_b0145) 2015; 107
Pestana (10.1016/j.ijfatigue.2020.105527_b0090) 2018; 12
Dowling (10.1016/j.ijfatigue.2020.105527_b0195) 2012
Toasa Caiza (10.1016/j.ijfatigue.2020.105527_b0100) 2018
Rumelhart (10.1016/j.ijfatigue.2020.105527_b0155) 1986; 323
Pluvinage (10.1016/j.ijfatigue.2020.105527_b0160) 2007
Lu (10.1016/j.ijfatigue.2020.105527_b0015) 2018; 2018
10.1016/j.ijfatigue.2020.105527_b0140
Lanning (10.1016/j.ijfatigue.2020.105527_b0020) 2005; 27
10.1016/j.ijfatigue.2020.105527_b0060
Barbosa (10.1016/j.ijfatigue.2020.105527_b0075) 2019; 48
Koutiri (10.1016/j.ijfatigue.2020.105527_b0070) 2018; 41
Ciavarella (10.1016/j.ijfatigue.2020.105527_b0165) 2004; 26
Carlos (10.1016/j.ijfatigue.2020.105527_b0085) 2009; 31
Barbosa (10.1016/j.ijfatigue.2020.105527_b0105) 2019; 11
Dario (10.1016/j.ijfatigue.2020.105527_b0120) 2011; 33
10.1016/j.ijfatigue.2020.105527_b0065
Goodman (10.1016/j.ijfatigue.2020.105527_b0035) 1930
10.1016/j.ijfatigue.2020.105527_b0045
Genel (10.1016/j.ijfatigue.2020.105527_b0130) 2004; 26
Nasiri (10.1016/j.ijfatigue.2020.105527_b0125) 2017; 81
Lee (10.1016/j.ijfatigue.2020.105527_b0200) 2005
Smith (10.1016/j.ijfatigue.2020.105527_b0050) 1970; 5
Ince (10.1016/j.ijfatigue.2020.105527_b0010) 2017; 40
Soderberg (10.1016/j.ijfatigue.2020.105527_b0040) 1930; 52
Zhu (10.1016/j.ijfatigue.2020.105527_b0005) 2017; 26
Yamada (10.1016/j.ijfatigue.2020.105527_b0190) 2007
Dowling (10.1016/j.ijfatigue.2020.105527_b0025) 2010; 1
Heywood (10.1016/j.ijfatigue.2020.105527_b0180) 1962
Asteris (10.1016/j.ijfatigue.2020.105527_b0135) 2017; 17
10.1016/j.ijfatigue.2020.105527_b0170
Solland (10.1016/j.ijfatigue.2020.105527_b0185) 2017; 1
10.1016/j.ijfatigue.2020.105527_b0055
10.1016/j.ijfatigue.2020.105527_b0110
Reed (10.1016/j.ijfatigue.2020.105527_b0150) 1999
Pilkey (10.1016/j.ijfatigue.2020.105527_b0175) 2008
References_xml – volume: 52
  start-page: 13
  year: 1930
  end-page: 28
  ident: b0040
  article-title: Factor of safety and working stress
  publication-title: ASME Trans
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 12
  ident: b0015
  article-title: A modified walker model dealing with mean stress effect in fatigue life prediction for aeroengine disks
  publication-title: Math Probl Eng
– year: 2007
  ident: b0160
  article-title: Fracture and fatigue emanating from stress concentrators
  publication-title: Springer Science & Business Media
– volume: 27
  start-page: 45
  year: 2005
  end-page: 57
  ident: b0020
  article-title: On the use of critical distance theories for the prediction of the high cycle fatigue limit stress in notched Ti-6Al-4V
  publication-title: Int J Fatigue
– volume: 1
  year: 2010
  ident: b0025
  article-title: Mean stress effects in stress-life and strain-life fatigue
  publication-title: SAE Tech Pap Ser
– volume: 26
  start-page: 1027
  year: 2004
  end-page: 1035
  ident: b0130
  article-title: Application of artificial neural network for predicting strain-life fatigue properties of steels on the basis of tensile tests
  publication-title: Int J Fatigue
– volume: 27
  start-page: 746
  year: 2005
  end-page: 751
  ident: b0080
  article-title: Building of constant life diagrams of fatigue using artificial neural networks
  publication-title: EMF Aquino – Int J Fatig
– reference: Castillo E, Fern ández-Canteli A. A unified statistical methodology for modeling fatigue damage. Springer Science & Business Media; 2009.
– volume: 12
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0090
  article-title: Use of artificial neural network to assess the effect of mean stress on fatigue of overhead conductors
  publication-title: Fatig Fract Eng Mater Struct
– volume: 26
  start-page: 289
  year: 2004
  end-page: 298
  ident: b0165
  article-title: On fatigue limit in the presence of notches: classical vs. recent unified formulations
  publication-title: Int J Fatigue
– volume: 81
  start-page: 270
  year: 2017
  end-page: 293
  ident: b0125
  article-title: Fracture mechanics and mechanical fault detection by artificial intelligence methods: a review
  publication-title: Eng Fail Anal
– volume: 41
  start-page: 440
  year: 2018
  end-page: 455
  ident: b0070
  article-title: The effect of mean stress and stress biaxiality in high-cycle fatigue
  publication-title: Fatigue Fract Eng Mater Struct
– reference: Neuber H. Kerbspannungslehre. Springer-Verlag Berlin Heidelberg; 1937. doi:10.1007/978-3-662-36565-6.
– volume: 17
  start-page: 1344
  year: 2017
  ident: b0135
  article-title: Feed-forward neural network prediction of the mechanical properties of sandcrete materials
  publication-title: Sensors
– year: 1999
  ident: b0150
  article-title: Neural smithing: supervised learning in feedforward artificial neural networks
– year: 1962
  ident: b0180
  article-title: Designing against fatigue
– year: 2012
  ident: b0195
  article-title: Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue
  publication-title: Pearson
– reference: Correia JAFO, Huffman PJ, De Jesus AMP, Cicero S, Fern ández-Canteli A, Berto F, et al. Unified two-stage fatigue methodology based on a probabilistic damage model applied to structural details. Theor Appl Fract Mech 2017;92:252 –65. doi:10.1016/J.TAFMEC.2017.09.004.
– volume: 5
  start-page: 417
  year: 1994
  end-page: 432
  ident: b0115
  article-title: Parameter and quantile estimation for the generalized extreme-value distribution
  publication-title: Environmetrics
– year: 1930
  ident: b0035
  article-title: Mechanics Applied to Engineering
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b0155
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 128
  start-page: 298
  year: 2006
  end-page: 304
  ident: b0095
  article-title: Low and high cycle fatigue and cyclic elasto-plastic behavior of the P355NL1 steel
  publication-title: J Press Vessel Technol
– volume: 48
  start-page: 400
  year: 2019
  end-page: 410
  ident: b0075
  article-title: A comparison between S-N Logistic and Kohout-Věchet formulations applied to the fatigue data of old metallic bridges materials
  publication-title: Fratt Integr Struttur
– volume: 33
  start-page: 1533
  year: 2011
  end-page: 1538
  ident: b0120
  article-title: General probability weighted moments for the three-parameter Weibull Distribution and their application in S-N curves modelling
  publication-title: Int J Fatigue
– reference: The use of intelligent computational tools for damage detection and identification with an emphasis on composites – a review. Compos Struct 2018;196:44–54. doi:10.1016/J.COMPSTRUCT.2018.05.002.
– start-page: 416
  year: 2005
  ident: b0200
  article-title: Stress-Based Fatigue Analysis and Design
  publication-title: Fatigue Test Anal Theory Pract United States of America: Butterworth Heinemann
– year: 1874
  ident: b0030
  article-title: Bestimmung der zul ässigen spannungen in eisen-constructionen
  publication-title: Wolf
– volume: 5
  start-page: 767
  year: 1970
  end-page: 778
  ident: b0050
  article-title: stress-strain function for the fatigue of materials
  publication-title: J Mater
– volume: 1
  start-page: 455
  year: 2017
  end-page: 460
  ident: b0185
  article-title: Code requirements to structures documented by non-linear FE-methods
  publication-title: Ce/Papers
– reference: Nies łony A, Böhm M. Mean stress effect correction using constant stress ratio S-N curves. Int J Fatigue 2013;52:49–56. doi:10.1016/j.ijfatigue.2013.02.019.
– reference: Morrow J. Fatigue properties of metals. In: Halford GR, Gallagher and JP, editors. Fatigue Des. Handb. Pub, SAE: Warrendale; 1968.
– volume: 107
  start-page: 175
  year: 2015
  end-page: 183
  ident: b0145
  article-title: Artificial neural network modeling on the relative importance of alloying elements and heat treatment temperature to the stability of α and β phase in titanium alloys
  publication-title: Comput Mater Sci
– volume: 31
  start-page: 831
  year: 2009
  end-page: 839
  ident: b0085
  article-title: Comparative study between ANN models and conventional equations in the analysis of fatigue failure of GFRP
  publication-title: Int J Fatigue
– reference: Pallar és-Santasmartas L, Albizuri J, Avilés A, Avilés R. Mean Stress Effect on the Axial Fatigue Strength of DIN 34CrNiMo6 Quenched and Tempered Steel. Metals (Basel) 2018;8:213. doi:10.3390/met8040213.
– year: 2007
  ident: b0190
  article-title: Materials for springs
– volume: 40
  start-page: 939
  year: 2017
  end-page: 948
  ident: b0010
  article-title: A mean stress correction model for tensile and compressive mean stress fatigue loadings
  publication-title: Fatigue Fract Eng Mater Struct
– year: 2018
  ident: b0100
  article-title: A probabilistic Stüssi function for modelling the S-N curves and its application on specimens made of steel S355J2+N
  publication-title: Int J Fatigue
– volume: 11
  start-page: 1
  year: 2019
  end-page: 22
  ident: b0105
  article-title: Probabilistic S-N fields based on statistical distributions applied to metallic and composite materials: State of the Art
  publication-title: Adv Mech Eng
– volume: 26
  start-page: 1219
  year: 2017
  end-page: 1241
  ident: b0005
  article-title: Mean stress effect correction in strain energy-based fatigue life prediction of metals
  publication-title: Int J Damage Mech
– year: 2008
  ident: b0175
  article-title: Peterson’s stress concentration factors
– year: 1874
  ident: 10.1016/j.ijfatigue.2020.105527_b0030
  article-title: Bestimmung der zul ässigen spannungen in eisen-constructionen
  publication-title: Wolf
– volume: 5
  start-page: 417
  year: 1994
  ident: 10.1016/j.ijfatigue.2020.105527_b0115
  article-title: Parameter and quantile estimation for the generalized extreme-value distribution
  publication-title: Environmetrics
  doi: 10.1002/env.3170050405
– year: 1930
  ident: 10.1016/j.ijfatigue.2020.105527_b0035
– volume: 27
  start-page: 45
  year: 2005
  ident: 10.1016/j.ijfatigue.2020.105527_b0020
  article-title: On the use of critical distance theories for the prediction of the high cycle fatigue limit stress in notched Ti-6Al-4V
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2004.06.002
– volume: 128
  start-page: 298
  year: 2006
  ident: 10.1016/j.ijfatigue.2020.105527_b0095
  article-title: Low and high cycle fatigue and cyclic elasto-plastic behavior of the P355NL1 steel
  publication-title: J Press Vessel Technol
  doi: 10.1115/1.2217961
– volume: 1
  year: 2010
  ident: 10.1016/j.ijfatigue.2020.105527_b0025
  article-title: Mean stress effects in stress-life and strain-life fatigue
  publication-title: SAE Tech Pap Ser
– year: 2012
  ident: 10.1016/j.ijfatigue.2020.105527_b0195
  article-title: Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue
  publication-title: Pearson
– volume: 26
  start-page: 1027
  year: 2004
  ident: 10.1016/j.ijfatigue.2020.105527_b0130
  article-title: Application of artificial neural network for predicting strain-life fatigue properties of steels on the basis of tensile tests
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2004.03.009
– ident: 10.1016/j.ijfatigue.2020.105527_b0170
  doi: 10.1007/978-3-662-36565-6
– volume: 26
  start-page: 1219
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105527_b0005
  article-title: Mean stress effect correction in strain energy-based fatigue life prediction of metals
  publication-title: Int J Damage Mech
  doi: 10.1177/1056789516651920
– volume: 33
  start-page: 1533
  year: 2011
  ident: 10.1016/j.ijfatigue.2020.105527_b0120
  article-title: General probability weighted moments for the three-parameter Weibull Distribution and their application in S-N curves modelling
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2011.06.009
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/j.ijfatigue.2020.105527_b0155
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: 10.1016/j.ijfatigue.2020.105527_b0055
  doi: 10.3390/met8040213
– year: 1999
  ident: 10.1016/j.ijfatigue.2020.105527_b0150
– year: 2007
  ident: 10.1016/j.ijfatigue.2020.105527_b0190
– volume: 41
  start-page: 440
  year: 2018
  ident: 10.1016/j.ijfatigue.2020.105527_b0070
  article-title: The effect of mean stress and stress biaxiality in high-cycle fatigue
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/ffe.12699
– ident: 10.1016/j.ijfatigue.2020.105527_b0065
  doi: 10.1016/j.tafmec.2017.09.004
– volume: 27
  start-page: 746
  year: 2005
  ident: 10.1016/j.ijfatigue.2020.105527_b0080
  article-title: Building of constant life diagrams of fatigue using artificial neural networks
  publication-title: EMF Aquino – Int J Fatig
  doi: 10.1016/j.ijfatigue.2005.02.003
– year: 2018
  ident: 10.1016/j.ijfatigue.2020.105527_b0100
  article-title: A probabilistic Stüssi function for modelling the S-N curves and its application on specimens made of steel S355J2+N
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2018.07.041
– year: 1962
  ident: 10.1016/j.ijfatigue.2020.105527_b0180
– volume: 5
  start-page: 767
  year: 1970
  ident: 10.1016/j.ijfatigue.2020.105527_b0050
  article-title: stress-strain function for the fatigue of materials
  publication-title: J Mater
– volume: 107
  start-page: 175
  year: 2015
  ident: 10.1016/j.ijfatigue.2020.105527_b0145
  article-title: Artificial neural network modeling on the relative importance of alloying elements and heat treatment temperature to the stability of α and β phase in titanium alloys
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2015.05.026
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijfatigue.2020.105527_b0015
  article-title: A modified walker model dealing with mean stress effect in fatigue life prediction for aeroengine disks
  publication-title: Math Probl Eng
– year: 2007
  ident: 10.1016/j.ijfatigue.2020.105527_b0160
  article-title: Fracture and fatigue emanating from stress concentrators
  publication-title: Springer Science & Business Media
– ident: 10.1016/j.ijfatigue.2020.105527_b0060
  doi: 10.1016/j.ijfatigue.2013.02.019
– volume: 40
  start-page: 939
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105527_b0010
  article-title: A mean stress correction model for tensile and compressive mean stress fatigue loadings
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/ffe.12553
– ident: 10.1016/j.ijfatigue.2020.105527_b0045
– volume: 12
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijfatigue.2020.105527_b0090
  article-title: Use of artificial neural network to assess the effect of mean stress on fatigue of overhead conductors
  publication-title: Fatig Fract Eng Mater Struct
– ident: 10.1016/j.ijfatigue.2020.105527_b0110
– ident: 10.1016/j.ijfatigue.2020.105527_b0140
  doi: 10.1016/j.compstruct.2018.05.002
– volume: 52
  start-page: 13
  year: 1930
  ident: 10.1016/j.ijfatigue.2020.105527_b0040
  article-title: Factor of safety and working stress
  publication-title: ASME Trans
– volume: 31
  start-page: 831
  year: 2009
  ident: 10.1016/j.ijfatigue.2020.105527_b0085
  article-title: Comparative study between ANN models and conventional equations in the analysis of fatigue failure of GFRP
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2008.11.005
– volume: 17
  start-page: 1344
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105527_b0135
  article-title: Feed-forward neural network prediction of the mechanical properties of sandcrete materials
  publication-title: Sensors
  doi: 10.3390/s17061344
– volume: 48
  start-page: 400
  year: 2019
  ident: 10.1016/j.ijfatigue.2020.105527_b0075
  article-title: A comparison between S-N Logistic and Kohout-Věchet formulations applied to the fatigue data of old metallic bridges materials
  publication-title: Fratt Integr Struttur
  doi: 10.3221/IGF-ESIS.48.38
– volume: 81
  start-page: 270
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105527_b0125
  article-title: Fracture mechanics and mechanical fault detection by artificial intelligence methods: a review
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2017.07.011
– volume: 1
  start-page: 455
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105527_b0185
  article-title: Code requirements to structures documented by non-linear FE-methods
  publication-title: Ce/Papers
  doi: 10.1002/cepa.617
– start-page: 416
  year: 2005
  ident: 10.1016/j.ijfatigue.2020.105527_b0200
  article-title: Stress-Based Fatigue Analysis and Design
  publication-title: Fatigue Test Anal Theory Pract United States of America: Butterworth Heinemann
– year: 2008
  ident: 10.1016/j.ijfatigue.2020.105527_b0175
– volume: 11
  start-page: 1
  year: 2019
  ident: 10.1016/j.ijfatigue.2020.105527_b0105
  article-title: Probabilistic S-N fields based on statistical distributions applied to metallic and composite materials: State of the Art
  publication-title: Adv Mech Eng
  doi: 10.1177/1687814019870395
– volume: 26
  start-page: 289
  year: 2004
  ident: 10.1016/j.ijfatigue.2020.105527_b0165
  article-title: On fatigue limit in the presence of notches: classical vs. recent unified formulations
  publication-title: Int J Fatigue
  doi: 10.1016/S0142-1123(03)00106-3
SSID ssj0009075
Score 2.6115284
Snippet •A constant life diagram modelling based on artificial neural network is proposed.•An artificial neural network based on a MLP network trained with the BPM is...
The mean stress effect plays an important role in the fatigue life predictions, its influence significantly changes high-cycle fatigue behaviour, directly...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105527
SubjectTerms Algorithms
Artificial neural network
Artificial neural networks
Back propagation networks
Back-propagation algorithm
Constant life diagram
Fatigue
Fatigue life
Fatigue limit
Fatigue strength
High cycle fatigue
Life prediction
Machine learning
Materials fatigue
Mechanical components
Multilayer perceptrons
Neural networks
Pressure vessels
Resistance factors
S N diagrams
Safety
Stüssi model
Title Fatigue life prediction of metallic materials considering mean stress effects by means of an artificial neural network
URI https://dx.doi.org/10.1016/j.ijfatigue.2020.105527
https://www.proquest.com/docview/2443395732
Volume 135
WOSCitedRecordID wos000525299400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3452
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009075
  issn: 0142-1123
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEE9RKGgPiIvlKvZ6_eAWSiKISlqJFOVmee115Si1Q51G5b_yY5jxrl-8CgcudrSrtTeez7OfZ2ZnCHnlJUJYLOaY6DYyHWCwpnDgdY8EQ3Yd-FEQVcUmvPncXy6D08HgW70XZrf28ty_vg42_1XU0AbCxq2z_yDu5qLQAL9B6HAEscPxrwQ_hfP5lTTWWYqboNARU7PCCwlUG7NaA01VU8Go86pgJ1oMLtAqrzeP1HEewE6xuQr4gF68n845gZkwq1MVR94luX0rYyc3Raqm1kbtSKxpbUwxojuOKt9HUbahQ1g4RMfyFqXy6Bvj6UnjIzr6BLxbgs42Ztj7dpxnRRNrPBbViHfrrDA-noJeNWay7Fs57FEbjaVMb832m889Y6htAl9UClIqBe57gckc3tfwjHd0tNVZ7JWi_2kZURaN1WG20g_mEOeENZG5ymTQT9w9PwmnZ8fH4WKyXLzefDGxphn6_nWBl1tkz_Z44A_J3vjDZDlrk0KrRNDN_-jFH_7y3r9jTz_wiIocLe6Te_qrho4VGh-QgcwfkrudXJePyE7jkiIuaYtLWqS0xiVtcEk7uKQIQKpwSTUuqfhaNZc4HHpbXFKFS6px-ZicTSeLo_emLvphxsxhW5ML4bsJXGzkJkHqRELY3ImANTkBc6Q3SvzU46njpFYc-4Hv88DlkqeWFduS8VSyJ2SYF7l8SqhgrvA8L7Fk7DkJKB5LjiJYcVKeCJfFyT5x64cZxjojPhZmWYd16OMqbKQQohRCJYV9MmoGblRSmJuHvKmlFWpuqzhrCJi7efBBLd9Qv7RlCLycoZOd2c_-3P2c3GnfqAMy3F5eyRfkdrzbZuXlS43J71QU1CI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatigue+life+prediction+of+metallic+materials+considering+mean+stress+effects+by+means+of+an+artificial+neural+network&rft.jtitle=International+journal+of+fatigue&rft.au=Joelton+Fonseca+Barbosa&rft.au=Correia%2C+Jos%C3%A9+AFO&rft.au=RCS+Freire+J%C3%BAnior&rft.au=Ab%C3%ADlio+MP+De+Jesus&rft.date=2020-06-01&rft.pub=Elsevier+BV&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=135&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1016%2Fj.ijfatigue.2020.105527&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon