An adaptive penalty-like continuous-time algorithm to constrained distributed convex optimization

This paper considers a nonsmooth constrained distributed convex optimization over multi-agent systems. Each agent in the multi-agent system only has access to the information of its objective function and constraint, and cooperatively minimizes the global objective function, which is composed of the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Franklin Institute Vol. 359; no. 8; pp. 3692 - 3716
Main Authors: Jia, Wenwen, Qin, Sitian
Format: Journal Article
Language:English
Published: Elmsford Elsevier Ltd 01.05.2022
Elsevier Science Ltd
Subjects:
ISSN:0016-0032, 1879-2693, 0016-0032
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper considers a nonsmooth constrained distributed convex optimization over multi-agent systems. Each agent in the multi-agent system only has access to the information of its objective function and constraint, and cooperatively minimizes the global objective function, which is composed of the sum of local objective functions. A novel continuous-time algorithm is proposed to solve the distributed optimization problem and effectively characterize the appropriate gain of the penalty function. It should be noted that the proposed algorithm is based on an adaptive strategy to avoid introducing the primal-dual variables and estimating the related exact penalty parameters. Additional, it is demonstrated that the state solution of the proposed algorithm achieves consensus and converges to an optimal solution of the optimization problem. Finally, numerical simulations are given and the proposed algorithm is applied to solve the optimal placement problem and energy consumption problem.
AbstractList This paper considers a nonsmooth constrained distributed convex optimization over multi-agent systems. Each agent in the multi-agent system only has access to the information of its objective function and constraint, and cooperatively minimizes the global objective function, which is composed of the sum of local objective functions. A novel continuous-time algorithm is proposed to solve the distributed optimization problem and effectively characterize the appropriate gain of the penalty function. It should be noted that the proposed algorithm is based on an adaptive strategy to avoid introducing the primal-dual variables and estimating the related exact penalty parameters. Additional, it is demonstrated that the state solution of the proposed algorithm achieves consensus and converges to an optimal solution of the optimization problem. Finally, numerical simulations are given and the proposed algorithm is applied to solve the optimal placement problem and energy consumption problem.
Author Qin, Sitian
Jia, Wenwen
Author_xml – sequence: 1
  givenname: Wenwen
  surname: Jia
  fullname: Jia, Wenwen
– sequence: 2
  givenname: Sitian
  orcidid: 0000-0002-4543-4940
  surname: Qin
  fullname: Qin, Sitian
  email: qinsitian@hitwh.edu.cn
BookMark eNqNkL1u2zAUhYkiAeo4eYYK6CyFpEjKGjoYRpMUMNAlO0FRV-lVZNIlKaPJ05eqiw5Zmun-nXOA-12RC-cdEPKJ0YpRpm7HahyCcc8TuopTzitaV1SoD2TFNk1bctXWF2RFs7SktOYfyVWMYx4bRumKmK0rTG-OCU9QHMGZKb2UEz5DYb1L6GY_xzLhAQozPfmA6cehSH45xhQMOuiLHnOL3Zxyn_cn-FX4nHfAV5PQu2tyOZgpws3fuiaPd18fdw_l_vv9t912X9pa1KmUvOVWblphG9rKnqmOt123EdTKoROqU8JwwYHLpjHCAJNQ98MgpWJ24DDUa_L5HHsM_ucMMenRzyH_EzVXjVRtI6TKquasssHHGGDQx4AHE140o3rBqUf9D6decGpa64wzO7-8cVpMfx5cOEzv8G_PfsgMTghBR4vgLPQYwCbde_xvxm9akJub
CitedBy_id crossref_primary_10_1016_j_neunet_2024_106337
crossref_primary_10_1109_TETCI_2024_3369482
crossref_primary_10_1016_j_jfranklin_2024_106849
crossref_primary_10_1016_j_jfranklin_2024_01_013
crossref_primary_10_1109_JAS_2024_124935
crossref_primary_10_1016_j_jfranklin_2023_07_006
crossref_primary_10_1109_TAC_2024_3453117
crossref_primary_10_1016_j_jfranklin_2023_06_004
crossref_primary_10_1016_j_jfranklin_2025_107642
Cites_doi 10.1109/TAC.2016.2628807
10.1109/TCST.2016.2517574
10.1109/TAC.2015.2504962
10.1109/TNNLS.2016.2549566
10.1016/j.neucom.2017.01.021
10.1109/TAC.2016.2610945
10.1016/j.neunet.2019.07.019
10.1016/j.sysconle.2015.06.006
10.1109/TPWRS.2005.857924
10.1109/TCSI.2008.920131
10.1016/j.sysconle.2018.12.005
10.1016/j.jfranklin.2019.01.050
10.1109/TAC.2017.2750103
10.1109/TAC.2018.2884998
10.1109/TAC.2013.2278132
10.1109/TAC.2017.2752001
10.1109/TAC.2019.2902612
10.1109/TCNS.2015.2399191
10.1016/j.jfranklin.2019.06.026
10.1016/j.jfranklin.2018.10.007
10.1109/TAC.2008.2009515
10.1109/TCYB.2018.2883095
10.1109/TAC.2012.2184199
10.1109/TSP.2014.2331615
10.1016/j.automatica.2019.04.004
10.1016/j.jfranklin.2016.07.009
10.1016/j.neucom.2019.10.050
10.1109/TNNLS.2017.2652478
10.1016/j.ijheatmasstransfer.2019.118910
ContentType Journal Article
Copyright 2022 The Franklin Institute
Copyright Elsevier Science Ltd. May 2022
Copyright_xml – notice: 2022 The Franklin Institute
– notice: Copyright Elsevier Science Ltd. May 2022
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.jfranklin.2022.03.046
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2693
0016-0032
EndPage 3716
ExternalDocumentID 10_1016_j_jfranklin_2022_03_046
S0016003222002149
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
41~
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFRF
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AETEA
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
D1Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SET
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
UHS
VOH
WH7
WUQ
XOL
XPP
ZCG
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
ADXHL
AEIPS
AFJKZ
AGQPQ
AHPAA
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
KR7
SSH
ID FETCH-LOGICAL-c343t-5292c5894c7095d16b29bb840c5fb46b64a242e2577a4ae15e3dff5561cf2ef3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000815116800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-0032
IngestDate Fri Jul 25 06:17:40 EDT 2025
Sat Nov 29 07:29:00 EST 2025
Tue Nov 18 22:22:56 EST 2025
Fri Feb 23 02:39:10 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-5292c5894c7095d16b29bb840c5fb46b64a242e2577a4ae15e3dff5561cf2ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4543-4940
PQID 2675697456
PQPubID 2045917
PageCount 25
ParticipantIDs proquest_journals_2675697456
crossref_primary_10_1016_j_jfranklin_2022_03_046
crossref_citationtrail_10_1016_j_jfranklin_2022_03_046
elsevier_sciencedirect_doi_10_1016_j_jfranklin_2022_03_046
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Elmsford
PublicationPlace_xml – name: Elmsford
PublicationTitle Journal of the Franklin Institute
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Liu, Yang, Hong (bib0008) 2017; 67
A. Ahmadpour, Hajmohammadi (bib0005) 2021
Yi, Hong, Liu (bib0013) 2015; 83
Li, Ding, Sun, Li (bib0024) 2017; 63
Lu, Li, Xia (bib0009) 2017; 235
Lu, Tang (bib0029) 2012; 57
Yang, Liu, Wang (bib0039) 2018; 29
Chiang (bib0035) 2005; 20
Boyd, Vandenberghe (bib0040) 2004
Le, Chen, Yan, Xi (bib0001) 2017; 56
Li, Zhang, Wang, Zhu, Han (bib0010) 2019; 356
Clarke (bib0033) 1983
Zhou, Zeng, Hong (bib0020) 2019; 64
Jiang, Qin, Xue (bib0030) 2020; 337
W. Li, X. Zeng, S. Liang, Y. Hong, Exponentially convergent algorithm design for constrained distributed optimization via non-smooth approach, arXiv preprint arXiv:2001.00509(2020).
Li, Ding, Sun, Li (bib0012) 2018; 63
E. Rasouli, Elmi (bib0006) 2020; 146
Nedic, Ozdaglar (bib0007) 2009; 54
Liang, Zeng, Hong (bib0019) 2018; 63
Cherukuri, Cortes (bib0027) 2015; 2
Yang, Liu, Wang (bib0014) 2017; 62
Lou, Hong, Xie, Shi, Johansson (bib0022) 2016; 61
Deng, Liang, Hong (bib0028) 2017; 11
Jia, Qin, Xue (bib0031) 2019; 119
Gu, Li, Wu (bib0036) 2019; 356
Gharesifard, Corts (bib0034) 2014; 59
Chen, Yang (bib0026) 2019; 124
Liu, Yang, Wang (bib0015) 2017; 28
Zhang, You, Basar (bib0021) 2019; 64
Xue, Bian (bib0042) 2008; 55
Yang, Zhang, Chen (bib0002) 2018; 356
Zhu, Yu, Wen, Chen (bib0017) 2020; 50
Arrow, Hurwicz, Uzawa (bib0011) 1958; 67
Knauer (bib0032) 1993
Towfic, Sayed (bib0023) 2014; 62
Shan, Lin (bib0003) 2018; 355
Aubin, Cellina (bib0038) 1984
Ye, Hu (bib0041) 2016; 24
Fu, He, Huang, Abu-Rub (bib0004) 2016; 353
Liang, Yin (bib0016) 2019; 105
Fiacco, McCormick (bib0018) 1963
Zeng, Yi, Hong (bib0037) 2017; 62
Gu (10.1016/j.jfranklin.2022.03.046_bib0036) 2019; 356
Jia (10.1016/j.jfranklin.2022.03.046_bib0031) 2019; 119
Knauer (10.1016/j.jfranklin.2022.03.046_bib0032) 1993
Yang (10.1016/j.jfranklin.2022.03.046_bib0014) 2017; 62
Liu (10.1016/j.jfranklin.2022.03.046_bib0015) 2017; 28
Lou (10.1016/j.jfranklin.2022.03.046_bib0022) 2016; 61
Zhu (10.1016/j.jfranklin.2022.03.046_bib0017) 2020; 50
Lu (10.1016/j.jfranklin.2022.03.046_bib0009) 2017; 235
Gharesifard (10.1016/j.jfranklin.2022.03.046_bib0034) 2014; 59
Li (10.1016/j.jfranklin.2022.03.046_bib0024) 2017; 63
Aubin (10.1016/j.jfranklin.2022.03.046_bib0038) 1984
Chiang (10.1016/j.jfranklin.2022.03.046_bib0035) 2005; 20
Cherukuri (10.1016/j.jfranklin.2022.03.046_bib0027) 2015; 2
Li (10.1016/j.jfranklin.2022.03.046_bib0010) 2019; 356
Zeng (10.1016/j.jfranklin.2022.03.046_bib0037) 2017; 62
Ye (10.1016/j.jfranklin.2022.03.046_bib0041) 2016; 24
Zhou (10.1016/j.jfranklin.2022.03.046_bib0020) 2019; 64
Deng (10.1016/j.jfranklin.2022.03.046_bib0028) 2017; 11
A. Ahmadpour (10.1016/j.jfranklin.2022.03.046_bib0005) 2021
Clarke (10.1016/j.jfranklin.2022.03.046_bib0033) 1983
Boyd (10.1016/j.jfranklin.2022.03.046_bib0040) 2004
Fu (10.1016/j.jfranklin.2022.03.046_bib0004) 2016; 353
Yang (10.1016/j.jfranklin.2022.03.046_bib0039) 2018; 29
Yang (10.1016/j.jfranklin.2022.03.046_bib0002) 2018; 356
Zhang (10.1016/j.jfranklin.2022.03.046_bib0021) 2019; 64
Jiang (10.1016/j.jfranklin.2022.03.046_bib0030) 2020; 337
Towfic (10.1016/j.jfranklin.2022.03.046_bib0023) 2014; 62
Xue (10.1016/j.jfranklin.2022.03.046_bib0042) 2008; 55
Arrow (10.1016/j.jfranklin.2022.03.046_bib0011) 1958; 67
Li (10.1016/j.jfranklin.2022.03.046_bib0012) 2018; 63
E. Rasouli (10.1016/j.jfranklin.2022.03.046_bib0006) 2020; 146
Nedic (10.1016/j.jfranklin.2022.03.046_bib0007) 2009; 54
10.1016/j.jfranklin.2022.03.046_bib0025
Liang (10.1016/j.jfranklin.2022.03.046_bib0019) 2018; 63
Chen (10.1016/j.jfranklin.2022.03.046_bib0026) 2019; 124
Liu (10.1016/j.jfranklin.2022.03.046_bib0008) 2017; 67
Fiacco (10.1016/j.jfranklin.2022.03.046_sbref0018) 1963
Le (10.1016/j.jfranklin.2022.03.046_bib0001) 2017; 56
Liang (10.1016/j.jfranklin.2022.03.046_bib0016) 2019; 105
Yi (10.1016/j.jfranklin.2022.03.046_bib0013) 2015; 83
Lu (10.1016/j.jfranklin.2022.03.046_bib0029) 2012; 57
Shan (10.1016/j.jfranklin.2022.03.046_bib0003) 2018; 355
References_xml – volume: 146
  start-page: 118910
  year: 2020
  ident: bib0006
  article-title: Geometric optimization of a highly conductive insert intruding an annular fin
  publication-title: Int. J. Heat Mass Transf.
– volume: 64
  start-page: 4661
  year: 2019
  end-page: 4667
  ident: bib0020
  article-title: Adaptive exact penalty design for constrained distributed optimization
  publication-title: IEEE Trans. Autom. Control
– year: 1984
  ident: bib0038
  publication-title: Differential Inclusions
– volume: 67
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib0008
  article-title: Constrained consensus algorithms with fixed step size for distributed convex optimization over multi-agent networks
  publication-title: IEEE Trans. Autom. Control
– volume: 83
  start-page: 45
  year: 2015
  end-page: 52
  ident: bib0013
  article-title: Distributed gradient algorithm for constrained optimization with application to load sharing in power systems
  publication-title: Syst. Control Lett.
– year: 1983
  ident: bib0033
  publication-title: Optimization and Nonsmooth Analysis
– volume: 54
  start-page: 48
  year: 2009
  end-page: 61
  ident: bib0007
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Trans. Autom. Control
– year: 1963
  ident: bib0018
  publication-title: Programming Under Nonlinear Constraints by Unconstrained Minimization: A Primal-Dual Method
– volume: 337
  start-page: 225
  year: 2020
  end-page: 233
  ident: bib0030
  article-title: A penalty-like neurodynamic approach to constrained nonsmooth distributed convex optimization
  publication-title: Neurocomputing
– volume: 28
  start-page: 1747
  year: 2017
  end-page: 1758
  ident: bib0015
  article-title: A collective neurodynamic approach to distributed constrained optimization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 1993
  ident: bib0032
  publication-title: Algebraic Graph Theory
– year: 2004
  ident: bib0040
  publication-title: Convex Optimization
– volume: 119
  start-page: 46
  year: 2019
  end-page: 56
  ident: bib0031
  article-title: A generalized neural network for distributed nonsmooth optimization with inequality constraint
  publication-title: Neural Netw.
– volume: 356
  start-page: 7548
  year: 2019
  end-page: 7570
  ident: bib0036
  article-title: An adaptive online learning algorithm for distributed convex optimization with coupled constraints over unbalanced directed graphs
  publication-title: J. Frankl. Inst.
– reference: W. Li, X. Zeng, S. Liang, Y. Hong, Exponentially convergent algorithm design for constrained distributed optimization via non-smooth approach, arXiv preprint arXiv:2001.00509(2020).
– volume: 24
  start-page: 2048
  year: 2016
  end-page: 2058
  ident: bib0041
  article-title: Distributed extremum seeking for constrained networked optimization and its application to energy consumption control in smart grid
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 11
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib0028
  article-title: Distributed continuous-time algorithms for resource allocation problems over weight-balanced digraphs
  publication-title: IEEE Trans. Cybern.
– volume: 59
  start-page: 781
  year: 2014
  end-page: 786
  ident: bib0034
  article-title: Distributed continuous-time convex optimization on weight-balanced digraphs
  publication-title: IEEE Trans. Autom. Control
– volume: 62
  start-page: 5227
  year: 2017
  end-page: 5233
  ident: bib0037
  article-title: Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach
  publication-title: IEEE Trans. Autom. Control
– volume: 56
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib0001
  article-title: A neurodynamic approach to distributed optimization with globally coupled constraints
  publication-title: IEEE Trans. Cybern.
– volume: 356
  start-page: 3733
  year: 2019
  end-page: 3761
  ident: bib0010
  article-title: Distributed consensus-based multi-agent convex optimization via gradient tracking technique
  publication-title: J. Frankl. Inst.
– volume: 63
  start-page: 1434
  year: 2018
  end-page: 1441
  ident: bib0012
  article-title: Distributed adaptive convex optimization on directed graphs via continuous-time algorithms
  publication-title: IEEE Trans. Autom. Control
– volume: 235
  start-page: 255
  year: 2017
  end-page: 263
  ident: bib0009
  article-title: Distributed optimization of first-order discrete-time multi-agent systems with event-triggered communication
  publication-title: Neurocomputing
– volume: 355
  start-page: 8957
  year: 2018
  end-page: 8970
  ident: bib0003
  article-title: Average-consensus tracking of multi-agent systems with additional interconnecting agents
  publication-title: J. Frankl. Inst.
– volume: 105
  start-page: 298
  year: 2019
  end-page: 306
  ident: bib0016
  article-title: Exponential convergence of distributed primal–dual convex optimization algorithm without strong convexity
  publication-title: Automatica
– volume: 20
  start-page: 1690
  year: 2005
  end-page: 1699
  ident: bib0035
  article-title: Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels
  publication-title: IEEE Trans. Power Syst.
– volume: 62
  start-page: 3924
  year: 2014
  end-page: 3938
  ident: bib0023
  article-title: Adaptive penalty-based distributed stochastic convex optimization
  publication-title: IEEE Trans. Signal Process.
– volume: 64
  start-page: 2352
  year: 2019
  end-page: 2367
  ident: bib0021
  article-title: Distributed discrete-time optimization in multiagent networks using only sign of relative state
  publication-title: IEEE Trans. Autom. Control
– volume: 63
  start-page: 1753
  year: 2018
  end-page: 1759
  ident: bib0019
  article-title: Distributed nonsmooth optimization with coupled inequality constraints via modified lagrangian function
  publication-title: IEEE Trans. Autom. Control
– volume: 67
  year: 1958
  ident: bib0011
  article-title: Studies in linear and non-linear programming
  publication-title: Am. Math. Mon.
– volume: 124
  start-page: 60
  year: 2019
  end-page: 67
  ident: bib0026
  article-title: Distributed constrained optimization for multi-agent networks with nonsmooth objective functions
  publication-title: Syst. Control Lett.
– volume: 63
  start-page: 1434
  year: 2017
  end-page: 1441
  ident: bib0024
  article-title: Distributed adaptive convex optimization on directed graphs via continuous-time algorithms
  publication-title: IEEE Trans. Autom. Control
– volume: 57
  start-page: 2348
  year: 2012
  end-page: 2354
  ident: bib0029
  article-title: Zero-gradient-sum algorithms for distributed convex optimization: the continuous-time case
  publication-title: IEEE Trans. Autom. Control
– volume: 356
  start-page: 209
  year: 2018
  end-page: 236
  ident: bib0002
  article-title: Adaptive distributed convex optimization for multi-agent and its application in flocking behavior
  publication-title: J. Frankl. Inst.
– start-page: 1
  year: 2021
  end-page: 15
  ident: bib0005
  article-title: Performance evaluation and optimization of flattened microchannel heat sinks for the electronic cooling application
  publication-title: J. Therm. Anal. Calorim.
– volume: 29
  start-page: 981
  year: 2018
  end-page: 992
  ident: bib0039
  article-title: A collaborative neurodynamic approach to multiple-objective distributed optimization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 2
  start-page: 226
  year: 2015
  end-page: 237
  ident: bib0027
  article-title: Distributed generator coordination for initialization and anytime optimization in economic dispatch
  publication-title: IEEE Trans. Control Netw. Syst.
– volume: 55
  start-page: 2378
  year: 2008
  end-page: 2391
  ident: bib0042
  article-title: Subgradient-based neural networks for nonsmooth convex optimization problems
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
– volume: 353
  start-page: 3966
  year: 2016
  end-page: 3984
  ident: bib0004
  article-title: A distributed continuous time consensus algorithm for maximize social welfare in micro grid
  publication-title: J. Frankl. Inst.
– volume: 62
  start-page: 3461
  year: 2017
  end-page: 3467
  ident: bib0014
  article-title: A multi-agent system with a proportional-integral protocol for distributed constrained optimization
  publication-title: IEEE Trans. Autom. Control
– volume: 61
  start-page: 2920
  year: 2016
  end-page: 2935
  ident: bib0022
  article-title: Nash equilibrium computation in subnetwork zero-sum games with switching communications
  publication-title: IEEE Trans. Autom. Control
– volume: 50
  start-page: 191
  year: 2020
  end-page: 213
  ident: bib0017
  article-title: Projected primal-dual dynamics for distributed constrained nonsmooth convex optimization
  publication-title: IEEE Trans. Cybern.
– volume: 62
  start-page: 5227
  issue: 10
  year: 2017
  ident: 10.1016/j.jfranklin.2022.03.046_bib0037
  article-title: Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2016.2628807
– volume: 24
  start-page: 2048
  issue: 6
  year: 2016
  ident: 10.1016/j.jfranklin.2022.03.046_bib0041
  article-title: Distributed extremum seeking for constrained networked optimization and its application to energy consumption control in smart grid
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2016.2517574
– volume: 61
  start-page: 2920
  issue: 10
  year: 2016
  ident: 10.1016/j.jfranklin.2022.03.046_bib0022
  article-title: Nash equilibrium computation in subnetwork zero-sum games with switching communications
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2015.2504962
– volume: 28
  start-page: 1747
  issue: 8
  year: 2017
  ident: 10.1016/j.jfranklin.2022.03.046_bib0015
  article-title: A collective neurodynamic approach to distributed constrained optimization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2549566
– volume: 235
  start-page: 255
  year: 2017
  ident: 10.1016/j.jfranklin.2022.03.046_bib0009
  article-title: Distributed optimization of first-order discrete-time multi-agent systems with event-triggered communication
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.021
– volume: 62
  start-page: 3461
  issue: 7
  year: 2017
  ident: 10.1016/j.jfranklin.2022.03.046_bib0014
  article-title: A multi-agent system with a proportional-integral protocol for distributed constrained optimization
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2016.2610945
– year: 2004
  ident: 10.1016/j.jfranklin.2022.03.046_bib0040
– volume: 67
  issue: 2
  year: 1958
  ident: 10.1016/j.jfranklin.2022.03.046_bib0011
  article-title: Studies in linear and non-linear programming
  publication-title: Am. Math. Mon.
– volume: 119
  start-page: 46
  year: 2019
  ident: 10.1016/j.jfranklin.2022.03.046_bib0031
  article-title: A generalized neural network for distributed nonsmooth optimization with inequality constraint
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.07.019
– volume: 56
  start-page: 1
  issue: 99
  year: 2017
  ident: 10.1016/j.jfranklin.2022.03.046_bib0001
  article-title: A neurodynamic approach to distributed optimization with globally coupled constraints
  publication-title: IEEE Trans. Cybern.
– volume: 83
  start-page: 45
  issue: 711
  year: 2015
  ident: 10.1016/j.jfranklin.2022.03.046_bib0013
  article-title: Distributed gradient algorithm for constrained optimization with application to load sharing in power systems
  publication-title: Syst. Control Lett.
  doi: 10.1016/j.sysconle.2015.06.006
– volume: 20
  start-page: 1690
  issue: 4
  year: 2005
  ident: 10.1016/j.jfranklin.2022.03.046_bib0035
  article-title: Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2005.857924
– volume: 55
  start-page: 2378
  issue: 8
  year: 2008
  ident: 10.1016/j.jfranklin.2022.03.046_bib0042
  article-title: Subgradient-based neural networks for nonsmooth convex optimization problems
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2008.920131
– volume: 356
  start-page: 209
  issue: 2
  year: 2018
  ident: 10.1016/j.jfranklin.2022.03.046_bib0002
  article-title: Adaptive distributed convex optimization for multi-agent and its application in flocking behavior
  publication-title: J. Frankl. Inst.
– volume: 124
  start-page: 60
  year: 2019
  ident: 10.1016/j.jfranklin.2022.03.046_bib0026
  article-title: Distributed constrained optimization for multi-agent networks with nonsmooth objective functions
  publication-title: Syst. Control Lett.
  doi: 10.1016/j.sysconle.2018.12.005
– volume: 356
  start-page: 3733
  issue: 6
  year: 2019
  ident: 10.1016/j.jfranklin.2022.03.046_bib0010
  article-title: Distributed consensus-based multi-agent convex optimization via gradient tracking technique
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2019.01.050
– volume: 63
  start-page: 1434
  issue: 5
  year: 2018
  ident: 10.1016/j.jfranklin.2022.03.046_bib0012
  article-title: Distributed adaptive convex optimization on directed graphs via continuous-time algorithms
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2017.2750103
– year: 1983
  ident: 10.1016/j.jfranklin.2022.03.046_bib0033
– volume: 64
  start-page: 2352
  issue: 6
  year: 2019
  ident: 10.1016/j.jfranklin.2022.03.046_bib0021
  article-title: Distributed discrete-time optimization in multiagent networks using only sign of relative state
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2018.2884998
– year: 1993
  ident: 10.1016/j.jfranklin.2022.03.046_bib0032
– volume: 59
  start-page: 781
  issue: 3
  year: 2014
  ident: 10.1016/j.jfranklin.2022.03.046_bib0034
  article-title: Distributed continuous-time convex optimization on weight-balanced digraphs
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2013.2278132
– volume: 63
  start-page: 1753
  issue: 6
  year: 2018
  ident: 10.1016/j.jfranklin.2022.03.046_bib0019
  article-title: Distributed nonsmooth optimization with coupled inequality constraints via modified lagrangian function
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2017.2752001
– volume: 64
  start-page: 4661
  issue: 11
  year: 2019
  ident: 10.1016/j.jfranklin.2022.03.046_bib0020
  article-title: Adaptive exact penalty design for constrained distributed optimization
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2019.2902612
– ident: 10.1016/j.jfranklin.2022.03.046_bib0025
– volume: 2
  start-page: 226
  issue: 3
  year: 2015
  ident: 10.1016/j.jfranklin.2022.03.046_bib0027
  article-title: Distributed generator coordination for initialization and anytime optimization in economic dispatch
  publication-title: IEEE Trans. Control Netw. Syst.
  doi: 10.1109/TCNS.2015.2399191
– year: 1984
  ident: 10.1016/j.jfranklin.2022.03.046_bib0038
– volume: 356
  start-page: 7548
  issue: 13
  year: 2019
  ident: 10.1016/j.jfranklin.2022.03.046_bib0036
  article-title: An adaptive online learning algorithm for distributed convex optimization with coupled constraints over unbalanced directed graphs
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2019.06.026
– volume: 355
  start-page: 8957
  issue: 17
  year: 2018
  ident: 10.1016/j.jfranklin.2022.03.046_bib0003
  article-title: Average-consensus tracking of multi-agent systems with additional interconnecting agents
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2018.10.007
– start-page: 1
  year: 2021
  ident: 10.1016/j.jfranklin.2022.03.046_bib0005
  article-title: Performance evaluation and optimization of flattened microchannel heat sinks for the electronic cooling application
  publication-title: J. Therm. Anal. Calorim.
– volume: 54
  start-page: 48
  issue: 1
  year: 2009
  ident: 10.1016/j.jfranklin.2022.03.046_bib0007
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.2009515
– volume: 63
  start-page: 1434
  issue: 5
  year: 2017
  ident: 10.1016/j.jfranklin.2022.03.046_bib0024
  article-title: Distributed adaptive convex optimization on directed graphs via continuous-time algorithms
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2017.2750103
– volume: 50
  start-page: 191
  issue: 4
  year: 2020
  ident: 10.1016/j.jfranklin.2022.03.046_bib0017
  article-title: Projected primal-dual dynamics for distributed constrained nonsmooth convex optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2883095
– volume: 57
  start-page: 2348
  issue: 9
  year: 2012
  ident: 10.1016/j.jfranklin.2022.03.046_bib0029
  article-title: Zero-gradient-sum algorithms for distributed convex optimization: the continuous-time case
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2012.2184199
– volume: 11
  start-page: 1
  issue: 99
  year: 2017
  ident: 10.1016/j.jfranklin.2022.03.046_bib0028
  article-title: Distributed continuous-time algorithms for resource allocation problems over weight-balanced digraphs
  publication-title: IEEE Trans. Cybern.
– volume: 62
  start-page: 3924
  issue: 15
  year: 2014
  ident: 10.1016/j.jfranklin.2022.03.046_bib0023
  article-title: Adaptive penalty-based distributed stochastic convex optimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2331615
– volume: 105
  start-page: 298
  year: 2019
  ident: 10.1016/j.jfranklin.2022.03.046_bib0016
  article-title: Exponential convergence of distributed primal–dual convex optimization algorithm without strong convexity
  publication-title: Automatica
  doi: 10.1016/j.automatica.2019.04.004
– volume: 353
  start-page: 3966
  issue: 15
  year: 2016
  ident: 10.1016/j.jfranklin.2022.03.046_bib0004
  article-title: A distributed continuous time consensus algorithm for maximize social welfare in micro grid
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2016.07.009
– year: 1963
  ident: 10.1016/j.jfranklin.2022.03.046_sbref0018
– volume: 337
  start-page: 225
  issue: 6
  year: 2020
  ident: 10.1016/j.jfranklin.2022.03.046_bib0030
  article-title: A penalty-like neurodynamic approach to constrained nonsmooth distributed convex optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.050
– volume: 29
  start-page: 981
  issue: 4
  year: 2018
  ident: 10.1016/j.jfranklin.2022.03.046_bib0039
  article-title: A collaborative neurodynamic approach to multiple-objective distributed optimization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2652478
– volume: 67
  start-page: 1
  issue: 99
  year: 2017
  ident: 10.1016/j.jfranklin.2022.03.046_bib0008
  article-title: Constrained consensus algorithms with fixed step size for distributed convex optimization over multi-agent networks
  publication-title: IEEE Trans. Autom. Control
– volume: 146
  start-page: 118910
  year: 2020
  ident: 10.1016/j.jfranklin.2022.03.046_bib0006
  article-title: Geometric optimization of a highly conductive insert intruding an annular fin
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.118910
SSID ssj0017100
Score 2.3649955
Snippet This paper considers a nonsmooth constrained distributed convex optimization over multi-agent systems. Each agent in the multi-agent system only has access to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3692
SubjectTerms Adaptive algorithms
Algorithms
Computational geometry
Constraints
Continuity (mathematics)
Convex analysis
Convexity
Energy consumption
Multiagent systems
Numerical analysis
Optimization
Penalty function
Title An adaptive penalty-like continuous-time algorithm to constrained distributed convex optimization
URI https://dx.doi.org/10.1016/j.jfranklin.2022.03.046
https://www.proquest.com/docview/2675697456
Volume 359
WOSCitedRecordID wos000815116800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2693
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017100
  issn: 0016-0032
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOiE-xMZAPiEuVqY0dx-FWoU6ApgIiiN4sJ3ZGSpdmXTbKkf-c59hJw-gYHLhEkRsnrt_PL7_nvA-EnoMkMy2p9lQ4AgOFBdLjnMG6yrRSjPlKZrIuNhFOp3w2i973ej-aWJiLRVgUfL2Oyv8qamgDYZvQ2X8Qd3tTaIBzEDocQexw_CvBj4uBVLKsXYJKDZdX371F_tV6pefFOZj6nqkoP5CL4-Uqr76cGP6ZGp5oykUAAVUmma6pg6WV9UpfD5ZwvxMXsnkFnzUMtikBv_FBaD10rFPuZ1182wSffbAJDD7mVQNSt_8Apmvr7Wc3xZrAmEYXbbyRaoU7Yh4oDqtw9ZY2p4SJywtu0cY7KpUwWyzvN11vtx3mB_PM_bcDM7w6ZS3dkl17-k4cfjo6EvFkFr8oTz1TeMx8oHdVWG6gHT8MIt5HO-M3k9nb9lOUSX9kX-d21L84CW599lUU59LLvmYw8V10x4kKjy1k7qGeLu6j252ElA-QHBe4AQ_uggdfAg9uwYOrJe6AB3fAgy14cBc8D1F8OIlfvfZcEQ4vJZRUXuBHfhrwiKYhsHE1YokfJQmnwzTIEsoSRiWwPA2aP5RU6lGgicoyU3Q1zXydkUeoXywL_RhhQkFfyCAhnGfUV4xLpRX1KSMjohjxdxFrpk2kLkG9GftCNJ6Ic9HOtzDzLYZEwHzvomHbsbQ5Wq7v8rKRi3BU01JIAei6vvN-I0nhFv6Z8MHyZmCcB2zvzz8_Qbc2y2gf9avVuX6KbqYXVX62eubQ9xMpA7CB
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+penalty-like+continuous-time+algorithm+to+constrained+distributed+convex+optimization&rft.jtitle=Journal+of+the+Franklin+Institute&rft.au=Jia%2C+Wenwen&rft.au=Qin%2C+Sitian&rft.date=2022-05-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0016-0032&rft.eissn=0016-0032&rft.volume=359&rft.issue=8&rft.spage=3692&rft_id=info:doi/10.1016%2Fj.jfranklin.2022.03.046&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-0032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-0032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-0032&client=summon