A New Numerical Algorithm for the Analytic Continuation of Green's Functions

The need to calculate the spectral properties of a Hermitian operatorHfrequently arises in the technical sciences. A common approach to its solution involves the construction of the Green's function operatorG(z) = [z−H]−1in the complexzplane. For example, the energy spectrum and other physical...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational physics Ročník 126; číslo 1; s. 99 - 108
Hlavní autoři: Natoli, Vincent D., Cohen, Morrel H., Fornberg, Bengt
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.06.1996
ISSN:0021-9991, 1090-2716
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The need to calculate the spectral properties of a Hermitian operatorHfrequently arises in the technical sciences. A common approach to its solution involves the construction of the Green's function operatorG(z) = [z−H]−1in the complexzplane. For example, the energy spectrum and other physical properties of condensed matter systems can often be elegantly and naturally expressed in terms of the Kohn–Sham Green's functions. However, the nonanalyticity of resolvents on the real axis makes them difficult to compute and manipulate. The Herglotz property of a Green's function allows one to calculate it along an arc with a small but finite imaginary part, i.e.,G(x+iy), and then to continue it to the real axis to determine quantities of physical interest. In the past, finite-difference techniques have been used for this continuation. We present here a fundamentally new algorithm based on the fast Fourier transform which is both simpler and more effective.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-9991
1090-2716
DOI:10.1006/jcph.1996.0123