Hierarchical least squares parameter estimation algorithm for two-input Hammerstein finite impulse response systems
This paper considers the parameter estimation problems of two-input single-output Hammerstein finite impulse response systems. A hierarchical least squares algorithm is proposed for improving the computational efficiency through combining the hierarchical identification principle and the identificat...
Uloženo v:
| Vydáno v: | Journal of the Franklin Institute Ročník 357; číslo 8; s. 5019 - 5032 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elmsford
Elsevier Ltd
01.05.2020
Elsevier Science Ltd |
| Témata: | |
| ISSN: | 0016-0032, 1879-2693, 0016-0032 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper considers the parameter estimation problems of two-input single-output Hammerstein finite impulse response systems. A hierarchical least squares algorithm is proposed for improving the computational efficiency through combining the hierarchical identification principle and the identification model decomposition, and a multi-innovation least squares algorithm is proposed for enhancing the parameter estimation accuracy based on the multi-innovation identification theory. The key is to derive two sub-identification models, each of which contains a set of merged parameter vectors. The proposed algorithm is effective and can generate highly accurate parameter estimates compared with the over-parametrization identification method, and can be easily extended to multi-input multi-output systems. Finally, an illustrative example is provided to verify the effectiveness of the proposed algorithm. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0016-0032 1879-2693 0016-0032 |
| DOI: | 10.1016/j.jfranklin.2020.03.027 |