Inverse scattering and the Geroch group

A bstract We study the integrability of gravity-matter systems in D  = 2 spatial dimensions with matter related to a symmetric space G/K using the well-known linear systems of Belinski-Zakharov (BZ) and Breitenlohner-Maison (BM). The linear system of BM makes the group structure of the Geroch group...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The journal of high energy physics Ročník 2013; číslo 2; s. 1 - 29
Hlavní autori: Katsimpouri, Despoina, Kleinschmidt, Axel, Virmani, Amitabh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2013
Springer Nature B.V
Predmet:
ISSN:1029-8479, 1029-8479
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A bstract We study the integrability of gravity-matter systems in D  = 2 spatial dimensions with matter related to a symmetric space G/K using the well-known linear systems of Belinski-Zakharov (BZ) and Breitenlohner-Maison (BM). The linear system of BM makes the group structure of the Geroch group manifest and we analyse the relation of this group structure to the inverse scattering method of the BZ approach in general. Concrete solution generating methods are exhibited in the BM approach in the so-called soliton transformation sector where the analysis becomes purely algebraic. As a novel example we construct the Kerr-NUT solution by solving the appropriate purely algebraic Riemann-Hilbert problem in the BM approach.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP02(2013)011