An accurate and efficient Chebyshev expansion method for large-scale transient heat conduction problems

•An efficient method is proposed for large-scale heat conduction problems.•The matrix exponential is approximated with Chebyshev matrix polynomials.•The computational cost of the proposed method decreases with time step increases.•The proposed method is proved to be unconditionally stable. In this p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & structures Ročník 249; s. 106513
Hlavní autoři: Gao, Q., Nie, C.B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 01.06.2021
Elsevier BV
Témata:
ISSN:0045-7949, 1879-2243
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •An efficient method is proposed for large-scale heat conduction problems.•The matrix exponential is approximated with Chebyshev matrix polynomials.•The computational cost of the proposed method decreases with time step increases.•The proposed method is proved to be unconditionally stable. In this paper, an efficient and accurate Chebyshev expansion method is presented for solving large-scale transient heat conduction problems. Based on the Chebyshev expansion method, the matrix exponential is approximated with a series of Chebyshev matrix polynomials. Furthermore, according to the characteristics of practical thermal loads, an efficient method is developed to decrease the computational cost of temperature response induced by heat sources and nonhomogeneous boundary conditions. A theoretical method is developed to investigate the relationship of the computational cost of the proposed method and the time step, and the results indicate that under the given truncation criterion, the computational cost decreases with the increasing of the time step. Since the computational cost is sparse matrix–vector multiplications and only a few of vectors are stored in the computer memory, the proposed method has great advantages both in computational cost and storage requirement for large-scale transient heat conduction problems. In addition, a stability analysis is developed and the results show that the proposed method is unconditionally stable. Numerical examples exhibit that the proposed method has excellent efficiency and accuracy.
AbstractList •An efficient method is proposed for large-scale heat conduction problems.•The matrix exponential is approximated with Chebyshev matrix polynomials.•The computational cost of the proposed method decreases with time step increases.•The proposed method is proved to be unconditionally stable. In this paper, an efficient and accurate Chebyshev expansion method is presented for solving large-scale transient heat conduction problems. Based on the Chebyshev expansion method, the matrix exponential is approximated with a series of Chebyshev matrix polynomials. Furthermore, according to the characteristics of practical thermal loads, an efficient method is developed to decrease the computational cost of temperature response induced by heat sources and nonhomogeneous boundary conditions. A theoretical method is developed to investigate the relationship of the computational cost of the proposed method and the time step, and the results indicate that under the given truncation criterion, the computational cost decreases with the increasing of the time step. Since the computational cost is sparse matrix–vector multiplications and only a few of vectors are stored in the computer memory, the proposed method has great advantages both in computational cost and storage requirement for large-scale transient heat conduction problems. In addition, a stability analysis is developed and the results show that the proposed method is unconditionally stable. Numerical examples exhibit that the proposed method has excellent efficiency and accuracy.
In this paper, an efficient and accurate Chebyshev expansion method is presented for solving large-scale transient heat conduction problems. Based on the Chebyshev expansion method, the matrix exponential is approximated with a series of Chebyshev matrix polynomials. Furthermore, according to the characteristics of practical thermal loads, an efficient method is developed to decrease the computational cost of temperature response induced by heat sources and nonhomogeneous boundary conditions. A theoretical method is developed to investigate the relationship of the computational cost of the proposed method and the time step, and the results indicate that under the given truncation criterion, the computational cost decreases with the increasing of the time step. Since the computational cost is sparse matrix–vector multiplications and only a few of vectors are stored in the computer memory, the proposed method has great advantages both in computational cost and storage requirement for large-scale transient heat conduction problems. In addition, a stability analysis is developed and the results show that the proposed method is unconditionally stable. Numerical examples exhibit that the proposed method has excellent efficiency and accuracy.
ArticleNumber 106513
Author Nie, C.B.
Gao, Q.
Author_xml – sequence: 1
  givenname: Q.
  surname: Gao
  fullname: Gao, Q.
  email: qgao@dlut.edu.cn
– sequence: 2
  givenname: C.B.
  surname: Nie
  fullname: Nie, C.B.
  email: ncbchina@mail.dlut.edu.cn
BookMark eNqNkEtrGzEQgEVxoLaT3xBBz-uOtNrXoQdjmrQQyKU9C600smXWkitpTf3vs4tLD700p4GZ-ebxrcjCB4-EPDLYMGD15-NGh9M55TjqDQfOpmxdsfIDWbK26QrORbkgSwBRFU0nuo9kldIRAGoBsCT7radK6zGqjFR5Q9Fapx36THcH7K_pgBeKv8_KJxc8PWE-BENtiHRQcY9F0mpAmuNcn6EDqkx18GbUeQbOMfQDntI9ubNqSPjwJ67Jz6evP3bfipfX5--77UuhS1HmQgCKGrBUrANbGVBNrVHYijHLRG9aDca2dQMlqK5vuRXcmIYp0femND3Dck0-3eZOi3-NmLI8hjH6aaXkFWd1xaFtpq4vty4dQ0oRrdQuq_ng6RM3SAZydiuP8q9bObuVN7cT3_zDn6M7qXh9B7m9kThJuDiMMs22NRoXUWdpgvvvjDeP-Z2b
CitedBy_id crossref_primary_10_1016_j_cma_2023_116473
crossref_primary_10_1080_10407790_2023_2266769
crossref_primary_10_1007_s10973_024_13635_1
crossref_primary_10_1002_htj_23175
crossref_primary_10_3390_math11030593
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125153
crossref_primary_10_1016_j_compstruc_2023_107071
crossref_primary_10_1108_HFF_02_2022_0087
Cites_doi 10.1002/oca.2298
10.1016/j.finel.2011.02.004
10.1243/PIME_PROC_1994_208_148_02
10.1002/nme.952
10.1016/j.ijsolstr.2005.11.007
10.1080/104077901317091712
10.1016/j.ijthermalsci.2017.05.011
10.1016/j.cma.2009.03.002
10.1016/j.applthermaleng.2018.10.075
10.1007/s00466-012-0829-0
10.1016/0045-7949(94)00537-D
10.1016/j.icheatmasstransfer.2017.06.017
10.1080/10407790590935920
10.1016/j.ijthermalsci.2018.01.006
10.1016/j.ijheatmasstransfer.2017.01.021
10.1016/j.cma.2017.12.024
10.1016/j.ijheatmasstransfer.2015.01.008
10.1002/(SICI)1099-1506(200001/02)7:1<27::AID-NLA185>3.0.CO;2-4
10.1016/j.cam.2003.08.053
10.1016/j.jcp.2006.08.021
10.1002/nme.1737
10.1063/1.448136
10.1016/j.cma.2007.07.022
10.1016/j.ijheatmasstransfer.2015.12.019
10.1002/(SICI)1097-0207(19990810)45:10<1403::AID-NME636>3.0.CO;2-E
10.1016/S0045-7825(02)00378-X
10.1016/j.cma.2017.08.020
10.1016/j.compstruc.2017.02.004
10.1121/1.429577
10.1007/s00466-005-0720-3
10.1016/j.ijthermalsci.2019.03.003
10.1002/nme.217
10.1137/S00361445024180
10.1016/0009-2614(95)00465-G
10.1016/j.compstruc.2014.01.007
10.1016/S0045-7825(01)00286-9
10.1002/nme.1205
10.1137/0726001
10.1080/10407790.2013.873311
10.1016/j.apnum.2018.10.011
10.2514/2.1248
10.1016/j.anucene.2018.01.013
10.1016/j.enganabound.2018.04.008
10.1016/j.ijheatmasstransfer.2014.07.029
10.1016/j.wavemoti.2003.09.002
10.1016/j.compstruc.2019.04.010
10.1137/1020098
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jun 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 2021
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.compstruc.2021.106513
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2243
ExternalDocumentID 10_1016_j_compstruc_2021_106513
S0045794921000353
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSV
SSW
SSZ
T5K
T9H
TAE
TN5
UAO
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
JQ2
KR7
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c343t-40e460e3a190f5d0a76ce4f511f14bd8c0df867030a9b82f42dd71a4bbd3db1e3
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000637304300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7949
IngestDate Mon Jul 14 09:50:14 EDT 2025
Sat Nov 29 07:28:11 EST 2025
Tue Nov 18 21:48:56 EST 2025
Fri Feb 23 02:46:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chebyshev expansion method
Transient heat conduction
Matrix exponential
Crank-Nicholson method
Large-scale problems
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-40e460e3a190f5d0a76ce4f511f14bd8c0df867030a9b82f42dd71a4bbd3db1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2521652087
PQPubID 2045492
ParticipantIDs proquest_journals_2521652087
crossref_citationtrail_10_1016_j_compstruc_2021_106513
crossref_primary_10_1016_j_compstruc_2021_106513
elsevier_sciencedirect_doi_10_1016_j_compstruc_2021_106513
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & structures
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Moler, Loan (b0265) 1978; 20
Gu, Chen, Zhang, Guan (b0180) 2001; 39
Tal-Ezer, Kosloff (b0240) 1984; 81
Fic, Białecki, Kassab (b0120) 2005; 48
Karageorghis, Lesnic, Marin (b0045) 2014; 135
Song, Wolf (b0075) 1999; 45
Wang, Turteltaub, Abdalla (b0025) 2017; 185
Birk, Song (b0080) 2009; 198
Białecki, Kassab, Fic (b0115) 2005; 62
Binion, Chen (b0135) 2011; 47
Golub, Van Loan (b0285) 2012
Yao, Wyatt (b0250) 1995; 239
Lin, Shen, Williams (b0175) 1995; 56
Martins, Affonso, Moreira, de Sampaio (b0005) 2018; 115
Gu, Fan, Qu, Wang (b0020) 2019; 220
Singh, Singh (b0110) 2018; 93
Zhong, Williams (b0145) 1994; 208
Ingber, Mammoli, Brown (b0105) 2001; 52
Cheng, Liu, Liang, To (b0030) 2018; 332
Gao, Zhang, Zhong, Howson, Williams (b0225) 2016;08.
Jeffrey, Zwillinger (b0280) 2007
Yu, Yao, Gao (b0070) 2014; 65
Tan, Zhou, Peng, Wu (b0210) 2017; 38
Zhong (b0275) 2004; 163
Mishra, Roy (b0065) 2007; 223
Gao, Yao, Wu, Zhang, Lin, Zhong (b0220) 2012; 52
Bathe (b0140) 1996
Yao, Yu, Gao, Gao (b0155) 2014; 78
Li, Ren (b0160) 2016; 95
Barrett, Berry, Chan, Demmel, Donato, Dongarra (b0095) 1994
Bergamaschi, Vianello (b0255) 2000; 7
Hughes (b0050) 2000
Yu, Xu, Zhou, Cui (b0170) 2019; 147
Zhang, Xiang (b0125) 2015; 84
Reddy, Gartling (b0055) 2010
Gao, Cui (b0235) 2018; 127
Amos (b0290) 1985
Özişik, Orlande, Colaço, Cotta (b0060) 2017
Tal-Ezer (b0245) 1989; 26
Fung, Chen (b0215) 2006; 68
Moler, Loan (b0270) 2003; 45
Gao, Cui (b0230) 2017; 108
Özişik (b0090) 1993
Reddy, Dulikravich, Zeidi (b0040) 2017; 118
Iwamura, Costa, Sbarski, Easton, Li (b0100) 2003; 192
Gao, Zhong, Howson (b0190) 2004; 40
Zhong, Howson, Williams (b0205) 2001; 191
Gao, Lin, Zhong, Howson, Williams (b0195) 2006; 43
Chinesta, Ammar, Lemarchand, Beauchene, Boust (b0130) 2008; 197
Chen, Gu, Guan, Zhang (b0150) 2001; 40
Pan, Wang (b0260) 2000; 108
Zhong, Lin, Gao (b0185) 2004; 60
Yu, Yao, Gao, Zhou, Xu (b0035) 2017; 87
Wang, Qin, Kang (b0085) 2005; 38
Dong, Cui, Nie, Yang, Ma, Cheng (b0010) 2019; 136
Nie, Yu (b0165) 2019; 140
Gao, Zhang (b0200) 2019;141.
Hesch, Schuß, Dittmann, Eugster, Favino, Krause (b0015) 2017; 326
Özişik (10.1016/j.compstruc.2021.106513_b0060) 2017
Martins (10.1016/j.compstruc.2021.106513_b0005) 2018; 115
Chen (10.1016/j.compstruc.2021.106513_b0150) 2001; 40
Iwamura (10.1016/j.compstruc.2021.106513_b0100) 2003; 192
Moler (10.1016/j.compstruc.2021.106513_b0265) 1978; 20
Jeffrey (10.1016/j.compstruc.2021.106513_b0280) 2007
Chinesta (10.1016/j.compstruc.2021.106513_b0130) 2008; 197
Wang (10.1016/j.compstruc.2021.106513_b0085) 2005; 38
Yu (10.1016/j.compstruc.2021.106513_b0170) 2019; 147
Gao (10.1016/j.compstruc.2021.106513_b0190) 2004; 40
Tan (10.1016/j.compstruc.2021.106513_b0210) 2017; 38
Ingber (10.1016/j.compstruc.2021.106513_b0105) 2001; 52
Gao (10.1016/j.compstruc.2021.106513_b0230) 2017; 108
Zhong (10.1016/j.compstruc.2021.106513_b0275) 2004; 163
Zhang (10.1016/j.compstruc.2021.106513_b0125) 2015; 84
Tal-Ezer (10.1016/j.compstruc.2021.106513_b0245) 1989; 26
Gao (10.1016/j.compstruc.2021.106513_b0200) 2019141
Li (10.1016/j.compstruc.2021.106513_b0160) 2016; 95
Özişik (10.1016/j.compstruc.2021.106513_b0090) 1993
Fung (10.1016/j.compstruc.2021.106513_b0215) 2006; 68
Song (10.1016/j.compstruc.2021.106513_b0075) 1999; 45
Bergamaschi (10.1016/j.compstruc.2021.106513_b0255) 2000; 7
Barrett (10.1016/j.compstruc.2021.106513_b0095) 1994
Yao (10.1016/j.compstruc.2021.106513_b0155) 2014; 78
Karageorghis (10.1016/j.compstruc.2021.106513_b0045) 2014; 135
Yu (10.1016/j.compstruc.2021.106513_b0035) 2017; 87
Lin (10.1016/j.compstruc.2021.106513_b0175) 1995; 56
Hughes (10.1016/j.compstruc.2021.106513_b0050) 2000
Binion (10.1016/j.compstruc.2021.106513_b0135) 2011; 47
Wang (10.1016/j.compstruc.2021.106513_b0025) 2017; 185
Birk (10.1016/j.compstruc.2021.106513_b0080) 2009; 198
Gao (10.1016/j.compstruc.2021.106513_b0225) 201608
Amos (10.1016/j.compstruc.2021.106513_b0290) 1985
Reddy (10.1016/j.compstruc.2021.106513_b0055) 2010
Gu (10.1016/j.compstruc.2021.106513_b0020) 2019; 220
Reddy (10.1016/j.compstruc.2021.106513_b0040) 2017; 118
Zhong (10.1016/j.compstruc.2021.106513_b0185) 2004; 60
Białecki (10.1016/j.compstruc.2021.106513_b0115) 2005; 62
Hesch (10.1016/j.compstruc.2021.106513_b0015) 2017; 326
Bathe (10.1016/j.compstruc.2021.106513_b0140) 1996
Zhong (10.1016/j.compstruc.2021.106513_b0205) 2001; 191
Gu (10.1016/j.compstruc.2021.106513_b0180) 2001; 39
Pan (10.1016/j.compstruc.2021.106513_b0260) 2000; 108
Tal-Ezer (10.1016/j.compstruc.2021.106513_b0240) 1984; 81
Cheng (10.1016/j.compstruc.2021.106513_b0030) 2018; 332
Singh (10.1016/j.compstruc.2021.106513_b0110) 2018; 93
Yao (10.1016/j.compstruc.2021.106513_b0250) 1995; 239
Fic (10.1016/j.compstruc.2021.106513_b0120) 2005; 48
Gao (10.1016/j.compstruc.2021.106513_b0220) 2012; 52
Dong (10.1016/j.compstruc.2021.106513_b0010) 2019; 136
Moler (10.1016/j.compstruc.2021.106513_b0270) 2003; 45
Yu (10.1016/j.compstruc.2021.106513_b0070) 2014; 65
Golub (10.1016/j.compstruc.2021.106513_b0285) 2012
Gao (10.1016/j.compstruc.2021.106513_b0235) 2018; 127
Mishra (10.1016/j.compstruc.2021.106513_b0065) 2007; 223
Gao (10.1016/j.compstruc.2021.106513_b0195) 2006; 43
Zhong (10.1016/j.compstruc.2021.106513_b0145) 1994; 208
Nie (10.1016/j.compstruc.2021.106513_b0165) 2019; 140
References_xml – volume: 52
  start-page: 525
  year: 2012
  end-page: 534
  ident: b0220
  article-title: An efficient algorithm for computing the dynamic responses of one-dimensional periodic structures and periodic structures with defects
  publication-title: Comput Mech
– volume: 60
  start-page: 11
  year: 2004
  end-page: 25
  ident: b0185
  article-title: The precise computation for wave propagation in stratified materials
  publication-title: Int J Numer Methods Eng
– volume: 108
  start-page: 481
  year: 2000
  end-page: 487
  ident: b0260
  article-title: Acoustical wave propagator
  publication-title: J Acoust Soc Am
– volume: 40
  start-page: 191
  year: 2004
  end-page: 207
  ident: b0190
  article-title: A precise method for solving wave propagation problems in layered anisotropic media
  publication-title: Wave Motion
– volume: 163
  start-page: 59
  year: 2004
  end-page: 78
  ident: b0275
  article-title: On precise integration method
  publication-title: J Comput Appl Math
– volume: 62
  start-page: 774
  year: 2005
  end-page: 797
  ident: b0115
  article-title: Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis
  publication-title: Int J Numer Methods Eng
– volume: 223
  start-page: 89
  year: 2007
  end-page: 107
  ident: b0065
  article-title: Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method
  publication-title: J Comput Phys
– volume: 239
  start-page: 207
  year: 1995
  end-page: 216
  ident: b0250
  article-title: A Krylov-subspace Chebyshev method and its application to pulsed laser-molecule interaction
  publication-title: Chem Phys Lett
– volume: 52
  start-page: 417
  year: 2001
  end-page: 432
  ident: b0105
  article-title: A comparison of domain integral evaluation techniques for boundary element methods
  publication-title: Int J Numer Methods Eng
– year: 2016;08.
  ident: b0225
  article-title: An accurate and efficient method for dynamic analysis of two-dimensional periodic structures
  publication-title: Int J Appl Mech
– volume: 7
  start-page: 27
  year: 2000
  end-page: 45
  ident: b0255
  article-title: Efficient computation of the exponential operator for large, sparse, symmetric matrices
  publication-title: Numer Linear Algebr
– volume: 84
  start-page: 729
  year: 2015
  end-page: 739
  ident: b0125
  article-title: A fast meshless method based on proper orthogonal decomposition for the transient heat conduction problems
  publication-title: Int J Heat Mass Transf
– volume: 135
  start-page: 32
  year: 2014
  end-page: 39
  ident: b0045
  article-title: The method of fundamental solutions for an inverse boundary value problem in static thermo-elasticity
  publication-title: Comput Struct
– volume: 40
  start-page: 325
  year: 2001
  end-page: 341
  ident: b0150
  article-title: Nonlinear transient heat conduction analysis with precise time integration method
  publication-title: Numer Heat Tr B-Fund
– volume: 326
  start-page: 541
  year: 2017
  end-page: 572
  ident: b0015
  article-title: Variational space–time elements for large-scale systems
  publication-title: Comput Methods Appl Mech Eng
– year: 2017
  ident: b0060
  article-title: Finite difference methods in heat transfer
– volume: 48
  start-page: 103
  year: 2005
  end-page: 124
  ident: b0120
  article-title: Solving transient nonlinear heat conduction problems by proper orthogonal decomposition and the finite-element method
  publication-title: Numer Heat Tr B-Fund
– volume: 47
  start-page: 728
  year: 2011
  end-page: 738
  ident: b0135
  article-title: A Krylov enhanced proper orthogonal decomposition method for efficient nonlinear model reduction
  publication-title: Finite Elem Anal Des
– volume: 127
  start-page: 213
  year: 2018
  end-page: 231
  ident: b0235
  article-title: Efficient and accurate method for 2D periodic structures based on the physical features of the transient heat conduction
  publication-title: Int J Therm Sci
– volume: 87
  start-page: 91
  year: 2017
  end-page: 97
  ident: b0035
  article-title: A novel non-iterative inverse method for estimating boundary condition of the furnace inner wall
  publication-title: Int Commun Heat Mass
– year: 1996
  ident: b0140
  article-title: Finite element procedures
– year: 2012
  ident: b0285
  article-title: Matrix computations
– volume: 140
  start-page: 201
  year: 2019
  end-page: 224
  ident: b0165
  article-title: Inversing heat flux boundary conditions based on precise integration FEM without iteration and estimation of thermal stress in FGMs
  publication-title: Int J Therm Sci
– year: 1993
  ident: b0090
  article-title: Heat conduction
– volume: 68
  start-page: 1115
  year: 2006
  end-page: 1136
  ident: b0215
  article-title: Krylov precise time-step integration method
  publication-title: Int J Numer Methods Eng
– volume: 208
  start-page: 427
  year: 1994
  end-page: 430
  ident: b0145
  article-title: A precise time step integration method
  publication-title: P I Mech Eng C-Mech
– year: 2019;141.
  ident: b0200
  article-title: Stable and accurate computation of dispersion relations for layered waveguides, semi-infinite spaces and infinite spaces. ASME
  publication-title: J Vib Acoust
– year: 2000
  ident: b0050
  article-title: The finite element method: linear static and dynamic finite element analysis
– volume: 118
  start-page: 488
  year: 2017
  end-page: 496
  ident: b0040
  article-title: Non-destructive estimation of spatially varying thermal conductivity in 3D objects using boundary thermal measurements
  publication-title: Int J Therm Sci
– volume: 198
  start-page: 2576
  year: 2009
  end-page: 2590
  ident: b0080
  article-title: A continued-fraction approach for transient diffusion in unbounded medium
  publication-title: Comput Methods Appl Mech Eng
– volume: 332
  start-page: 408
  year: 2018
  end-page: 439
  ident: b0030
  article-title: Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design
  publication-title: Comput Methods Appl Mech Eng
– volume: 191
  start-page: 489
  year: 2001
  end-page: 501
  ident: b0205
  article-title: H∞ control state feedback and Rayleigh quotient
  publication-title: Comput Methods Appl Mech Eng
– volume: 26
  start-page: 1
  year: 1989
  end-page: 11
  ident: b0245
  article-title: Spectral methods in time for parabolic problems
  publication-title: SIAM J Numer Anal
– year: 2010
  ident: b0055
  article-title: The finite element method in heat transfer and fluid dynamics
– volume: 78
  start-page: 883
  year: 2014
  end-page: 891
  ident: b0155
  article-title: A precise integration boundary element method for solving transient heat conduction problems
  publication-title: Int J Heat Mass Transf
– volume: 95
  start-page: 678
  year: 2016
  end-page: 688
  ident: b0160
  article-title: A novel solution for heat conduction problems by extending scaled boundary finite element method
  publication-title: Int J Heat Mass Transf
– volume: 136
  start-page: 215
  year: 2019
  end-page: 234
  ident: b0010
  article-title: Multiscale computational method for transient heat conduction problems of periodic porous materials with diverse periodic configurations in different subdomains
  publication-title: Appl Numer Math
– volume: 39
  start-page: 2394
  year: 2001
  end-page: 2399
  ident: b0180
  article-title: Precise time-integration method with dimensional expanding for structural dynamic equations
  publication-title: AIAA J
– volume: 147
  start-page: 251
  year: 2019
  end-page: 271
  ident: b0170
  article-title: A novel non-iterative method for estimating boundary conditions and geometry of furnace inner wall made of FGMs
  publication-title: Appl Therm Eng
– year: 2007
  ident: b0280
  article-title: Table of integrals, series, and products
– volume: 115
  start-page: 39
  year: 2018
  end-page: 54
  ident: b0005
  article-title: Transient 3D heat transfer analysis up to the state of Dryout in fuel rods
  publication-title: Ann Nucl Energy
– volume: 56
  start-page: 113
  year: 1995
  end-page: 120
  ident: b0175
  article-title: A high precision direct integration scheme for structures subjected to transient dynamic loading
  publication-title: Comput Struct
– volume: 45
  start-page: 1403
  year: 1999
  end-page: 1431
  ident: b0075
  article-title: The scaled boundary finite element method—alias consistent infinitesimal finite element cell method—for diffusion
  publication-title: Int J Numer Methods Eng
– volume: 20
  start-page: 801
  year: 1978
  end-page: 836
  ident: b0265
  article-title: Nineteen dubious ways to compute the exponential of a matrix
  publication-title: SIAM Rev
– volume: 45
  start-page: 3
  year: 2003
  end-page: 49
  ident: b0270
  article-title: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later
  publication-title: SIAM Rev
– volume: 43
  start-page: 6453
  year: 2006
  end-page: 6471
  ident: b0195
  article-title: Random wave propagation in a viscoelastic layered half space
  publication-title: Int J Solids Struct
– volume: 93
  start-page: 83
  year: 2018
  end-page: 93
  ident: b0110
  article-title: On preconditioned BiCGSTAB solver for MLPG method applied to heat conduction in 3D complex geometry
  publication-title: Eng Anal Bound Elem
– volume: 185
  start-page: 59
  year: 2017
  end-page: 74
  ident: b0025
  article-title: Shape optimization and optimal control for transient heat conduction problems using an isogeometric approach
  publication-title: Comput Struct
– volume: 197
  start-page: 400
  year: 2008
  end-page: 413
  ident: b0130
  article-title: Alleviating mesh constraints: Model reduction, parallel time integration and high resolution homogenization
  publication-title: Comput Methods Appl Mech Eng
– volume: 38
  start-page: 896
  year: 2017
  end-page: 907
  ident: b0210
  article-title: A novel extended precise integration method based on Fourier series expansion for periodic Riccati differential equations
  publication-title: Optim Contr Appl Met
– year: 1994
  ident: b0095
  article-title: Templates for the solution of linear systems: building blocks for iterative methods
– volume: 65
  start-page: 472
  year: 2014
  end-page: 493
  ident: b0070
  article-title: A precise integration boundary-element method for solving transient heat conduction problems with variable thermal conductivity
  publication-title: Numer Heat Tr B-Fund
– volume: 81
  start-page: 3967
  year: 1984
  end-page: 3971
  ident: b0240
  article-title: An accurate and efficient scheme for propagating the time dependent Schrödinger equation
  publication-title: J Chem Phys
– volume: 192
  start-page: 2299
  year: 2003
  end-page: 2318
  ident: b0100
  article-title: An efficient algebraic multigrid preconditioned conjugate gradient solver
  publication-title: Comput Methods Appl Mech Eng
– year: 1985
  ident: b0290
  article-title: A subroutine package for Bessel functions of a complex argument and nonnegative order: Sandia National Laboratory Report SAND85-1018
– volume: 220
  start-page: 144
  year: 2019
  end-page: 155
  ident: b0020
  article-title: Localized method of fundamental solutions for large-scale modelling of three-dimensional anisotropic heat conduction problems – Theory and MATLAB code
  publication-title: Comput Struct
– volume: 38
  start-page: 51
  year: 2005
  end-page: 60
  ident: b0085
  article-title: A meshless model for transient heat conduction in functionally graded materials
  publication-title: Comput Mech
– volume: 108
  start-page: 1535
  year: 2017
  end-page: 1550
  ident: b0230
  article-title: An efficient and accurate method for transient heat conduction in 1D periodic structures
  publication-title: Int J Heat Mass Transf
– volume: 38
  start-page: 896
  year: 2017
  ident: 10.1016/j.compstruc.2021.106513_b0210
  article-title: A novel extended precise integration method based on Fourier series expansion for periodic Riccati differential equations
  publication-title: Optim Contr Appl Met
  doi: 10.1002/oca.2298
– year: 201608
  ident: 10.1016/j.compstruc.2021.106513_b0225
  article-title: An accurate and efficient method for dynamic analysis of two-dimensional periodic structures
  publication-title: Int J Appl Mech
– volume: 47
  start-page: 728
  year: 2011
  ident: 10.1016/j.compstruc.2021.106513_b0135
  article-title: A Krylov enhanced proper orthogonal decomposition method for efficient nonlinear model reduction
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2011.02.004
– volume: 208
  start-page: 427
  year: 1994
  ident: 10.1016/j.compstruc.2021.106513_b0145
  article-title: A precise time step integration method
  publication-title: P I Mech Eng C-Mech
  doi: 10.1243/PIME_PROC_1994_208_148_02
– year: 2000
  ident: 10.1016/j.compstruc.2021.106513_b0050
– volume: 60
  start-page: 11
  year: 2004
  ident: 10.1016/j.compstruc.2021.106513_b0185
  article-title: The precise computation for wave propagation in stratified materials
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.952
– volume: 43
  start-page: 6453
  year: 2006
  ident: 10.1016/j.compstruc.2021.106513_b0195
  article-title: Random wave propagation in a viscoelastic layered half space
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2005.11.007
– volume: 40
  start-page: 325
  year: 2001
  ident: 10.1016/j.compstruc.2021.106513_b0150
  article-title: Nonlinear transient heat conduction analysis with precise time integration method
  publication-title: Numer Heat Tr B-Fund
  doi: 10.1080/104077901317091712
– volume: 118
  start-page: 488
  year: 2017
  ident: 10.1016/j.compstruc.2021.106513_b0040
  article-title: Non-destructive estimation of spatially varying thermal conductivity in 3D objects using boundary thermal measurements
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2017.05.011
– year: 2017
  ident: 10.1016/j.compstruc.2021.106513_b0060
– volume: 198
  start-page: 2576
  year: 2009
  ident: 10.1016/j.compstruc.2021.106513_b0080
  article-title: A continued-fraction approach for transient diffusion in unbounded medium
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2009.03.002
– volume: 147
  start-page: 251
  year: 2019
  ident: 10.1016/j.compstruc.2021.106513_b0170
  article-title: A novel non-iterative method for estimating boundary conditions and geometry of furnace inner wall made of FGMs
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.10.075
– volume: 52
  start-page: 525
  year: 2012
  ident: 10.1016/j.compstruc.2021.106513_b0220
  article-title: An efficient algorithm for computing the dynamic responses of one-dimensional periodic structures and periodic structures with defects
  publication-title: Comput Mech
  doi: 10.1007/s00466-012-0829-0
– volume: 56
  start-page: 113
  year: 1995
  ident: 10.1016/j.compstruc.2021.106513_b0175
  article-title: A high precision direct integration scheme for structures subjected to transient dynamic loading
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(94)00537-D
– volume: 87
  start-page: 91
  year: 2017
  ident: 10.1016/j.compstruc.2021.106513_b0035
  article-title: A novel non-iterative inverse method for estimating boundary condition of the furnace inner wall
  publication-title: Int Commun Heat Mass
  doi: 10.1016/j.icheatmasstransfer.2017.06.017
– year: 1993
  ident: 10.1016/j.compstruc.2021.106513_b0090
– volume: 48
  start-page: 103
  year: 2005
  ident: 10.1016/j.compstruc.2021.106513_b0120
  article-title: Solving transient nonlinear heat conduction problems by proper orthogonal decomposition and the finite-element method
  publication-title: Numer Heat Tr B-Fund
  doi: 10.1080/10407790590935920
– volume: 127
  start-page: 213
  year: 2018
  ident: 10.1016/j.compstruc.2021.106513_b0235
  article-title: Efficient and accurate method for 2D periodic structures based on the physical features of the transient heat conduction
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2018.01.006
– volume: 108
  start-page: 1535
  year: 2017
  ident: 10.1016/j.compstruc.2021.106513_b0230
  article-title: An efficient and accurate method for transient heat conduction in 1D periodic structures
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.01.021
– volume: 332
  start-page: 408
  year: 2018
  ident: 10.1016/j.compstruc.2021.106513_b0030
  article-title: Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.12.024
– year: 2010
  ident: 10.1016/j.compstruc.2021.106513_b0055
– year: 1994
  ident: 10.1016/j.compstruc.2021.106513_b0095
– volume: 84
  start-page: 729
  year: 2015
  ident: 10.1016/j.compstruc.2021.106513_b0125
  article-title: A fast meshless method based on proper orthogonal decomposition for the transient heat conduction problems
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2015.01.008
– year: 2019141
  ident: 10.1016/j.compstruc.2021.106513_b0200
  article-title: Stable and accurate computation of dispersion relations for layered waveguides, semi-infinite spaces and infinite spaces. ASME
  publication-title: J Vib Acoust
– volume: 7
  start-page: 27
  year: 2000
  ident: 10.1016/j.compstruc.2021.106513_b0255
  article-title: Efficient computation of the exponential operator for large, sparse, symmetric matrices
  publication-title: Numer Linear Algebr
  doi: 10.1002/(SICI)1099-1506(200001/02)7:1<27::AID-NLA185>3.0.CO;2-4
– volume: 163
  start-page: 59
  year: 2004
  ident: 10.1016/j.compstruc.2021.106513_b0275
  article-title: On precise integration method
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2003.08.053
– volume: 223
  start-page: 89
  year: 2007
  ident: 10.1016/j.compstruc.2021.106513_b0065
  article-title: Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2006.08.021
– year: 2012
  ident: 10.1016/j.compstruc.2021.106513_b0285
– volume: 68
  start-page: 1115
  year: 2006
  ident: 10.1016/j.compstruc.2021.106513_b0215
  article-title: Krylov precise time-step integration method
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1737
– volume: 81
  start-page: 3967
  year: 1984
  ident: 10.1016/j.compstruc.2021.106513_b0240
  article-title: An accurate and efficient scheme for propagating the time dependent Schrödinger equation
  publication-title: J Chem Phys
  doi: 10.1063/1.448136
– volume: 197
  start-page: 400
  year: 2008
  ident: 10.1016/j.compstruc.2021.106513_b0130
  article-title: Alleviating mesh constraints: Model reduction, parallel time integration and high resolution homogenization
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2007.07.022
– volume: 95
  start-page: 678
  year: 2016
  ident: 10.1016/j.compstruc.2021.106513_b0160
  article-title: A novel solution for heat conduction problems by extending scaled boundary finite element method
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2015.12.019
– volume: 45
  start-page: 1403
  year: 1999
  ident: 10.1016/j.compstruc.2021.106513_b0075
  article-title: The scaled boundary finite element method—alias consistent infinitesimal finite element cell method—for diffusion
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/(SICI)1097-0207(19990810)45:10<1403::AID-NME636>3.0.CO;2-E
– volume: 192
  start-page: 2299
  year: 2003
  ident: 10.1016/j.compstruc.2021.106513_b0100
  article-title: An efficient algebraic multigrid preconditioned conjugate gradient solver
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(02)00378-X
– volume: 326
  start-page: 541
  year: 2017
  ident: 10.1016/j.compstruc.2021.106513_b0015
  article-title: Variational space–time elements for large-scale systems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.08.020
– year: 1985
  ident: 10.1016/j.compstruc.2021.106513_b0290
– volume: 185
  start-page: 59
  year: 2017
  ident: 10.1016/j.compstruc.2021.106513_b0025
  article-title: Shape optimization and optimal control for transient heat conduction problems using an isogeometric approach
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2017.02.004
– volume: 108
  start-page: 481
  year: 2000
  ident: 10.1016/j.compstruc.2021.106513_b0260
  article-title: Acoustical wave propagator
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.429577
– volume: 38
  start-page: 51
  year: 2005
  ident: 10.1016/j.compstruc.2021.106513_b0085
  article-title: A meshless model for transient heat conduction in functionally graded materials
  publication-title: Comput Mech
  doi: 10.1007/s00466-005-0720-3
– volume: 140
  start-page: 201
  year: 2019
  ident: 10.1016/j.compstruc.2021.106513_b0165
  article-title: Inversing heat flux boundary conditions based on precise integration FEM without iteration and estimation of thermal stress in FGMs
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2019.03.003
– volume: 52
  start-page: 417
  year: 2001
  ident: 10.1016/j.compstruc.2021.106513_b0105
  article-title: A comparison of domain integral evaluation techniques for boundary element methods
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.217
– volume: 45
  start-page: 3
  year: 2003
  ident: 10.1016/j.compstruc.2021.106513_b0270
  article-title: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later
  publication-title: SIAM Rev
  doi: 10.1137/S00361445024180
– volume: 239
  start-page: 207
  year: 1995
  ident: 10.1016/j.compstruc.2021.106513_b0250
  article-title: A Krylov-subspace Chebyshev method and its application to pulsed laser-molecule interaction
  publication-title: Chem Phys Lett
  doi: 10.1016/0009-2614(95)00465-G
– year: 1996
  ident: 10.1016/j.compstruc.2021.106513_b0140
– volume: 135
  start-page: 32
  year: 2014
  ident: 10.1016/j.compstruc.2021.106513_b0045
  article-title: The method of fundamental solutions for an inverse boundary value problem in static thermo-elasticity
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2014.01.007
– volume: 191
  start-page: 489
  year: 2001
  ident: 10.1016/j.compstruc.2021.106513_b0205
  article-title: H∞ control state feedback and Rayleigh quotient
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(01)00286-9
– volume: 62
  start-page: 774
  year: 2005
  ident: 10.1016/j.compstruc.2021.106513_b0115
  article-title: Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1205
– volume: 26
  start-page: 1
  year: 1989
  ident: 10.1016/j.compstruc.2021.106513_b0245
  article-title: Spectral methods in time for parabolic problems
  publication-title: SIAM J Numer Anal
  doi: 10.1137/0726001
– volume: 65
  start-page: 472
  year: 2014
  ident: 10.1016/j.compstruc.2021.106513_b0070
  article-title: A precise integration boundary-element method for solving transient heat conduction problems with variable thermal conductivity
  publication-title: Numer Heat Tr B-Fund
  doi: 10.1080/10407790.2013.873311
– volume: 136
  start-page: 215
  year: 2019
  ident: 10.1016/j.compstruc.2021.106513_b0010
  article-title: Multiscale computational method for transient heat conduction problems of periodic porous materials with diverse periodic configurations in different subdomains
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2018.10.011
– volume: 39
  start-page: 2394
  year: 2001
  ident: 10.1016/j.compstruc.2021.106513_b0180
  article-title: Precise time-integration method with dimensional expanding for structural dynamic equations
  publication-title: AIAA J
  doi: 10.2514/2.1248
– volume: 115
  start-page: 39
  year: 2018
  ident: 10.1016/j.compstruc.2021.106513_b0005
  article-title: Transient 3D heat transfer analysis up to the state of Dryout in fuel rods
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2018.01.013
– volume: 93
  start-page: 83
  year: 2018
  ident: 10.1016/j.compstruc.2021.106513_b0110
  article-title: On preconditioned BiCGSTAB solver for MLPG method applied to heat conduction in 3D complex geometry
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2018.04.008
– volume: 78
  start-page: 883
  year: 2014
  ident: 10.1016/j.compstruc.2021.106513_b0155
  article-title: A precise integration boundary element method for solving transient heat conduction problems
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.07.029
– volume: 40
  start-page: 191
  year: 2004
  ident: 10.1016/j.compstruc.2021.106513_b0190
  article-title: A precise method for solving wave propagation problems in layered anisotropic media
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2003.09.002
– volume: 220
  start-page: 144
  year: 2019
  ident: 10.1016/j.compstruc.2021.106513_b0020
  article-title: Localized method of fundamental solutions for large-scale modelling of three-dimensional anisotropic heat conduction problems – Theory and MATLAB code
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2019.04.010
– year: 2007
  ident: 10.1016/j.compstruc.2021.106513_b0280
– volume: 20
  start-page: 801
  year: 1978
  ident: 10.1016/j.compstruc.2021.106513_b0265
  article-title: Nineteen dubious ways to compute the exponential of a matrix
  publication-title: SIAM Rev
  doi: 10.1137/1020098
SSID ssj0006400
Score 2.3879342
Snippet •An efficient method is proposed for large-scale heat conduction problems.•The matrix exponential is approximated with Chebyshev matrix polynomials.•The...
In this paper, an efficient and accurate Chebyshev expansion method is presented for solving large-scale transient heat conduction problems. Based on the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106513
SubjectTerms Boundary conditions
Chebyshev approximation
Chebyshev expansion method
Computational efficiency
Computing costs
Conduction heating
Conductive heat transfer
Crank-Nicholson method
Heat sources
Large-scale problems
Mathematical analysis
Matrix algebra
Matrix exponential
Matrix methods
Polynomials
Sparse matrices
Stability analysis
Thermal analysis
Transient heat conduction
Title An accurate and efficient Chebyshev expansion method for large-scale transient heat conduction problems
URI https://dx.doi.org/10.1016/j.compstruc.2021.106513
https://www.proquest.com/docview/2521652087
Volume 249
WOSCitedRecordID wos000637304300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2243
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006400
  issn: 0045-7949
  databaseCode: AIEXJ
  dateStart: 19950103
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOiKdoKcgHbpWjxHYSp7elKi-hCkRBe7Pi2AGqKqyaturPZ8aOk1BABSEu0cpZ29F8X8aT8XiGkGdtJYwxrWO5LWomZVMxVaWKuRYXeFNnzgfRfHpbHhyo1ap6N1Qb7X05gbLr1MVFtf6vUEMbgI1HZ_8C7nFQaIDfADpcAXa4_hHwy26nbpozTAHhdwacTxKBW_57Xxx6o9055vWHJQqRDxWkfbDhMQaFsx5Ac1g5Au5jJ1TWGJtuQ5rZnaECTT-3amNpiN4TKaSkPTuZohNf1t4h-z6ZdkFCAGLyPJm7HfgsPCr4wuJ5mCn4yOtXiQkwQxLSxAWVqsqKgaEg5jqXh7_8pL-DK-EIxb_2T5vg3NBe5OHI6qXk2B9wRpyQZ35TVFwnG7zMK7UgG8vX-6s346pcyHgcKTzhD7F-v5zud5bKpTXbGyKHd8jt4QuCLgPyd8k1190jt2Z5Je-Tz8uORg5Q4AAdOUBHDtCRAzRwgAIH6IwDdOQARQ7QiQM0cuAB-fhi_3DvFRsqarBGSHHKZOpkkTpRgxnY5jaty6JxsgWju82ksapJbasKXATqyijeSm5tmdXSGCusyZx4SBbdt849IhQGcoKXoABarFhjK16nhhsJ8jVlU4hNUkTp6WZIN49VT451jCs80qPYNYpdB7FvknTsuA4ZV67ushvh0YPhGAxCDby6uvN2BFQPr3GvOVi1Rc5TVW79y9iPyc3p3dkmC7jvnpAbzfnp1_7k6UDR73WspDw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accurate+and+efficient+Chebyshev+expansion+method+for+large-scale+transient+heat+conduction+problems&rft.jtitle=Computers+%26+structures&rft.au=Gao%2C+Q.&rft.au=Nie%2C+C.B.&rft.date=2021-06-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7949&rft.eissn=1879-2243&rft.volume=249&rft_id=info:doi/10.1016%2Fj.compstruc.2021.106513&rft.externalDocID=S0045794921000353
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7949&client=summon