Optimal estimation of proton exchange membrane fuel cell model parameters based on an improved chicken swarm optimization algorithm

Proton exchange membrane fuel cell (PEMFC) has been gradually applied in new energy vehicles, aviation and other industries, attracting widespread attention. Accurately identifying unknown parameters in the mathematical model of PEMFC is beneficial to the simulation, control and prediction of its ou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of green energy Jg. 20; H. 9; S. 946 - 965
Hauptverfasser: Wang, Tongying, Huang, Haozhong, Li, Xuan, Guo, Xiaoyu, Liu, Mingxin, Lei, Han
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Taylor & Francis 15.07.2023
Schlagworte:
ISSN:1543-5075, 1543-5083, 1543-5083
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Proton exchange membrane fuel cell (PEMFC) has been gradually applied in new energy vehicles, aviation and other industries, attracting widespread attention. Accurately identifying unknown parameters in the mathematical model of PEMFC is beneficial to the simulation, control and prediction of its output Current-Voltage curve. In order to identify the optimal unknown parameters, based on basic Chicken Swarm Optimization, this paper introduces positive/negative learning strategies for roosters and positive learning strategies for hens and chicks. An Improved Chicken Swarm Optimization algorithm is proposed. Compared with Particle Swarm Optimization, Salp Swarm Algorithm, Whale Optimization Algorithm and basic CSO algorithm, the proposed algorithm shows better convergence and accuracy. The five algorithms are applied to three common stacks (250W PEMFC, NedStack PS6 PEMFC, Ballard Mark V) and PEMFC monomer for model unknown parameter identification and optimization. The results show that, the ICSO algorithm obtains the minimum integral of absolute error of the actual stack voltage and the simulated stack voltage in the three test stacks and a PEMFC monomer, which are 2.288, 5.857, 2.407 and 0.408, the ICSO algorithm has a maximum increase of 8.63%, 4.52%, 6.20% and 64.83% in accuracy, respectively. The simulation data agrees well with the experimental data. These indicating that the mathematical model of PEMFC based on ICSO algorithm can accurately simulate the polarization curve at different temperatures and partial pressures, and it can be obtained that with the increase of temperature and partial pressure, the output performance of the PEMFC is also getting better.
AbstractList Proton exchange membrane fuel cell (PEMFC) has been gradually applied in new energy vehicles, aviation and other industries, attracting widespread attention. Accurately identifying unknown parameters in the mathematical model of PEMFC is beneficial to the simulation, control and prediction of its output Current-Voltage curve. In order to identify the optimal unknown parameters, based on basic Chicken Swarm Optimization, this paper introduces positive/negative learning strategies for roosters and positive learning strategies for hens and chicks. An Improved Chicken Swarm Optimization algorithm is proposed. Compared with Particle Swarm Optimization, Salp Swarm Algorithm, Whale Optimization Algorithm and basic CSO algorithm, the proposed algorithm shows better convergence and accuracy. The five algorithms are applied to three common stacks (250W PEMFC, NedStack PS6 PEMFC, Ballard Mark V) and PEMFC monomer for model unknown parameter identification and optimization. The results show that, the ICSO algorithm obtains the minimum integral of absolute error of the actual stack voltage and the simulated stack voltage in the three test stacks and a PEMFC monomer, which are 2.288, 5.857, 2.407 and 0.408, the ICSO algorithm has a maximum increase of 8.63%, 4.52%, 6.20% and 64.83% in accuracy, respectively. The simulation data agrees well with the experimental data. These indicating that the mathematical model of PEMFC based on ICSO algorithm can accurately simulate the polarization curve at different temperatures and partial pressures, and it can be obtained that with the increase of temperature and partial pressure, the output performance of the PEMFC is also getting better.
Author Li, Xuan
Liu, Mingxin
Huang, Haozhong
Guo, Xiaoyu
Lei, Han
Wang, Tongying
Author_xml – sequence: 1
  givenname: Tongying
  surname: Wang
  fullname: Wang, Tongying
  organization: Guangxi University
– sequence: 2
  givenname: Haozhong
  surname: Huang
  fullname: Huang, Haozhong
  email: hhz421@gxu.edu.cn
  organization: Guangxi University
– sequence: 3
  givenname: Xuan
  surname: Li
  fullname: Li, Xuan
  organization: Guangxi University
– sequence: 4
  givenname: Xiaoyu
  surname: Guo
  fullname: Guo, Xiaoyu
  organization: Guangxi University
– sequence: 5
  givenname: Mingxin
  surname: Liu
  fullname: Liu, Mingxin
  organization: Guangxi University
– sequence: 6
  givenname: Han
  surname: Lei
  fullname: Lei, Han
  organization: Guangxi University
BookMark eNqFUMtOBCEQJEYTn59gwtHLrjwGZyZeNMZXYuJFz6SHAReFYQXW19Ufl3HVgwc9dXXTVU3VJlodwqAR2qVkSklD9qmouCC1mDLC2JRRTivOVtDGOJ8I0vDVH1yLdbSZ0j0hrAwONtD79TxbDw7rNNZsw4CDwfMYckH6Rc1guNPYa99FGDQ2C-2w0s5hH_oC5xDB66xjwh0k3ePCggFbXxSeSqtmVj3oAadniB6H8Zh9W54BdxeizTO_jdYMuKR3vuoWuj07vTm5mFxdn1-eHF9NFK94nnBTC6iaviLGdIwxU3ND66aDnlEletXWHW11X5VtDeXBcNO2zJBWsBrGdgvtLXXL3x4XxbD0No1eirGwSJI1vKJty5umrIrlqoohpaiNnMcST3yVlMgxdPkduhxDl1-hF97hL56y-dNujmDdv-yjJdsOJkQPzyG6XmZ4dSGaEr-ySfK_JT4AP4ifuw
CitedBy_id crossref_primary_10_1007_s10462_024_10786_3
crossref_primary_10_1016_j_jpowsour_2025_238396
crossref_primary_10_1016_j_rser_2025_115603
crossref_primary_10_1080_15435075_2023_2194373
crossref_primary_10_1155_2024_7931501
crossref_primary_10_1080_15567036_2023_2252672
crossref_primary_10_3389_fenrg_2023_1148323
crossref_primary_10_1038_s41598_025_93162_7
crossref_primary_10_1016_j_elecom_2025_108033
crossref_primary_10_1007_s00202_024_02935_2
crossref_primary_10_1007_s11356_024_35273_8
crossref_primary_10_1080_15435075_2023_2244062
crossref_primary_10_1002_eng2_13065
crossref_primary_10_1109_JSEN_2024_3472022
crossref_primary_10_1038_s41598_023_46847_w
crossref_primary_10_1080_15435075_2023_2266744
Cites_doi 10.1016/j.asoc.2022.108562
10.1016/j.scs.2021.103075
10.1007/s40010-017-0475-1
10.1016/j.enconman.2018.09.031
10.1080/15472450.2021.1890070
10.1016/j.advengsoft.2016.01.008
10.1007/978-3-319-11857-4_10
10.1016/j.electacta.2021.138214
10.1002/er.2915
10.1016/j.electacta.2019.04.073
10.1007/s11356-021-13097-0
10.1117/1.JRS.14.026518
10.1016/j.energy.2017.03.082
10.1016/j.energy.2019.04.074
10.1016/j.scitotenv.2020.137927
10.1016/j.enconman.2021.114099
10.1016/S1464-2859(20)30546-0
10.1016/j.egyr.2017.10.002
10.1016/j.ijhydene.2020.06.256
10.1080/15435075.2020.1865370
10.1016/j.egyr.2020.04.012
10.1016/j.renene.2019.08.046
10.1109/JSYST.2016.2633512
10.1016/j.ijhydene.2020.04.256
10.1016/j.energy.2018.08.104
10.1016/j.jpowsour.2020.229412
10.1016/j.egyr.2020.03.010
10.1108/COMPEL-07-2021-0257
10.1016/j.ijhydene.2020.12.203
10.1016/j.jpowsour.2021.230655
10.1016/j.energy.2021.122096
10.1002/er.1170
10.1016/j.energy.2017.10.102
10.1016/j.energy.2020.118738
10.1080/1331677X.2018.1429291
10.1016/j.electacta.2021.137814
10.1016/j.applthermaleng.2018.11.122
10.1016/j.jclepro.2019.04.008
10.1016/j.energy.2019.06.152
10.1016/j.advengsoft.2017.07.002
10.1016/j.jpowsour.2021.230385
10.1080/15435075.2021.1974450
10.1016/j.electacta.2021.139183
10.1016/j.jpowsour.2018.08.082
10.1049/iet-rpg.2019.0485
10.1016/j.enconman.2018.03.002
10.1016/j.asoc.2022.109287
10.1016/j.asoc.2022.108574
10.1016/S0378-7753(99)00484-X
10.1016/j.electacta.2020.136345
10.1016/j.est.2019.101054
10.1080/01430750.2020.1745276
10.1016/j.egyr.2020.06.002
10.1016/j.egyr.2020.02.035
ContentType Journal Article
Copyright 2022 Taylor & Francis Group, LLC 2022
Copyright_xml – notice: 2022 Taylor & Francis Group, LLC 2022
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1080/15435075.2022.2131432
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1543-5083
EndPage 965
ExternalDocumentID 10_1080_15435075_2022_2131432
2131432
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
29J
30N
4.4
4P2
5GY
5VS
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EDH
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
L8X
LJTGL
M4Z
ML.
NA5
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
TWF
TWQ
UT5
UU3
ZGOLN
~S~
AAYXX
BANNL
CITATION
7S9
L.6
ID FETCH-LOGICAL-c343t-3f75a48d40ffb222f73f178bad21c5dc97b19ed4c34ea178f3f992f09527a78f3
IEDL.DBID TFW
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000867545900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1543-5075
1543-5083
IngestDate Fri Sep 05 17:24:49 EDT 2025
Sat Nov 29 06:40:04 EST 2025
Tue Nov 18 22:01:32 EST 2025
Mon Oct 20 23:46:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-3f75a48d40ffb222f73f178bad21c5dc97b19ed4c34ea178f3f992f09527a78f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2834199388
PQPubID 24069
PageCount 20
ParticipantIDs crossref_citationtrail_10_1080_15435075_2022_2131432
proquest_miscellaneous_2834199388
informaworld_taylorfrancis_310_1080_15435075_2022_2131432
crossref_primary_10_1080_15435075_2022_2131432
PublicationCentury 2000
PublicationDate 2023-07-15
PublicationDateYYYYMMDD 2023-07-15
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-15
  day: 15
PublicationDecade 2020
PublicationTitle International journal of green energy
PublicationYear 2023
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0033
cit0034
cit0031
cit0032
cit0030
cit0039
cit0037
cit0038
cit0035
cit0036
cit0023
cit0020
cit0021
Kennedy J. (cit0022) 1995; 11
cit0028
cit0029
cit0026
cit0027
cit0024
cit0025
cit0011
cit0055
cit0012
cit0053
cit0010
cit0054
cit0051
cit0052
cit0050
cit0019
cit0017
cit0018
cit0015
cit0016
cit0013
cit0014
cit0044
cit0001
cit0045
cit0042
cit0043
cit0040
cit0041
cit0008
cit0009
cit0006
cit0007
cit0004
cit0048
cit0005
cit0049
cit0002
cit0046
cit0003
cit0047
References_xml – ident: cit0011
  doi: 10.1016/j.asoc.2022.108562
– ident: cit0012
  doi: 10.1016/j.scs.2021.103075
– ident: cit0009
  doi: 10.1007/s40010-017-0475-1
– ident: cit0052
  doi: 10.1016/j.enconman.2018.09.031
– ident: cit0006
  doi: 10.1080/15472450.2021.1890070
– ident: cit0026
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: cit0024
  doi: 10.1007/978-3-319-11857-4_10
– ident: cit0038
  doi: 10.1016/j.electacta.2021.138214
– ident: cit0003
  doi: 10.1002/er.2915
– ident: cit0002
  doi: 10.1016/j.electacta.2019.04.073
– ident: cit0039
  doi: 10.1007/s11356-021-13097-0
– ident: cit0053
  doi: 10.1117/1.JRS.14.026518
– ident: cit0035
  doi: 10.1016/j.energy.2017.03.082
– ident: cit0018
  doi: 10.1016/j.energy.2019.04.074
– ident: cit0041
  doi: 10.1016/j.scitotenv.2020.137927
– ident: cit0014
  doi: 10.1016/j.enconman.2021.114099
– ident: cit0029
  doi: 10.1016/S1464-2859(20)30546-0
– ident: cit0001
  doi: 10.1016/j.egyr.2017.10.002
– ident: cit0034
  doi: 10.1016/j.ijhydene.2020.06.256
– ident: cit0016
  doi: 10.1080/15435075.2020.1865370
– ident: cit0015
  doi: 10.1016/j.egyr.2020.04.012
– ident: cit0010
  doi: 10.1016/j.renene.2019.08.046
– ident: cit0013
  doi: 10.1109/JSYST.2016.2633512
– ident: cit0004
  doi: 10.1016/j.ijhydene.2020.04.256
– ident: cit0008
  doi: 10.1016/j.energy.2018.08.104
– ident: cit0044
  doi: 10.1016/j.jpowsour.2020.229412
– ident: cit0051
  doi: 10.1016/j.egyr.2020.03.010
– ident: cit0040
  doi: 10.1108/COMPEL-07-2021-0257
– ident: cit0030
  doi: 10.1016/j.ijhydene.2020.12.203
– ident: cit0048
  doi: 10.1016/j.jpowsour.2021.230655
– ident: cit0032
  doi: 10.1016/j.energy.2021.122096
– ident: cit0027
  doi: 10.1002/er.1170
– ident: cit0043
  doi: 10.1016/j.energy.2017.10.102
– ident: cit0046
  doi: 10.1016/j.energy.2020.118738
– ident: cit0007
  doi: 10.1080/1331677X.2018.1429291
– ident: cit0037
  doi: 10.1016/j.electacta.2021.137814
– ident: cit0036
  doi: 10.1016/j.applthermaleng.2018.11.122
– ident: cit0045
  doi: 10.1016/j.jclepro.2019.04.008
– ident: cit0021
  doi: 10.1016/j.energy.2019.06.152
– volume: 11
  start-page: 111
  year: 1995
  ident: cit0022
  publication-title: Proceedings of IEEE International Conference on Neural Network
– ident: cit0025
  doi: 10.1016/j.advengsoft.2017.07.002
– ident: cit0031
  doi: 10.1016/j.jpowsour.2021.230385
– ident: cit0055
  doi: 10.1080/15435075.2021.1974450
– ident: cit0047
  doi: 10.1016/j.electacta.2021.139183
– ident: cit0033
  doi: 10.1016/j.jpowsour.2018.08.082
– ident: cit0049
  doi: 10.1049/iet-rpg.2019.0485
– ident: cit0020
  doi: 10.1016/j.enconman.2018.03.002
– ident: cit0017
  doi: 10.1016/j.asoc.2022.109287
– ident: cit0019
  doi: 10.1016/j.asoc.2022.108574
– ident: cit0023
  doi: 10.1016/S0378-7753(99)00484-X
– ident: cit0028
  doi: 10.1016/j.electacta.2020.136345
– ident: cit0050
  doi: 10.1016/j.est.2019.101054
– ident: cit0054
  doi: 10.1080/01430750.2020.1745276
– ident: cit0042
  doi: 10.1016/j.egyr.2020.06.002
– ident: cit0005
  doi: 10.1016/j.egyr.2020.02.035
SSID ssj0025436
Score 2.394581
Snippet Proton exchange membrane fuel cell (PEMFC) has been gradually applied in new energy vehicles, aviation and other industries, attracting widespread attention....
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 946
SubjectTerms algorithms
aviation
chickens
electric potential difference
fuel cells
improved chicken swarm algorithm
integral of absolute error
mathematical models
parameter estimation
partial pressure
polarization curves
prediction
Proton exchange membrane fuel cell
renewable energy sources
swarms
temperature
Title Optimal estimation of proton exchange membrane fuel cell model parameters based on an improved chicken swarm optimization algorithm
URI https://www.tandfonline.com/doi/abs/10.1080/15435075.2022.2131432
https://www.proquest.com/docview/2834199388
Volume 20
WOSCitedRecordID wos000867545900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1543-5083
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025436
  issn: 1543-5075
  databaseCode: TFW
  dateStart: 20041226
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvTgW3wTwWvVNOm2PYq4eBD1sKK3kqQZXdy2su2qd_-4M32Ii4gHPaWhmbRkknmEmW8YO-yhV0GS3xPOSU85G3nad8Jz0vQCQLZAWoO4XoZXV9H9fXzTRhOWbVgl-dDQAEXUspoOtzZlFxF3jFpfohkToHfn-0e-kKjzSQpjQ0dz0L_7dLlwZJ1fhK1HJF0Oz0-zTGmnKezSb7K6VkD9pX_49WW22Fqf_LTZLitsxuWrbOELJuEae79GIZLhIILfaPIaeQGc8Bzwyb01mcI8cxn62bnjMHEjTtf_vC6qwwlLPKMYm5KThkw5UumcD-vLC-xS7ZUnl_PyVY8zXtDH2lRQrkcPxXhYPWbr7LZ_Pji78NpKDZ6VSlaehDDQKkrVCYBBiwNCCSKMjE59YYPUxqERsUsVjnYaX4CEOPYBzTs_1NTdYLN5kbtNxlUYGJMaa4MeTh0FsQLrTgSgH2SklbDFVMehxLYw5lRNY5SIFu20W-OE1jhp13iLHX2SPTc4Hr8RxF_Zn1T1BQo01U4S-QvtQbdXEjytxANkSDEpEzTmFIVMRtH2H-bfYfNU9Z6umEWwy2ar8cTtsTn7Ug3L8X59Aj4AaAEDEA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swELcmmMR4gAFDFNhmJF4DOLab5BFNq5jWlZcieLMSxwcVTYLaFHjnH-cuH1UrNPGwPSWRfU7ks-_DufsdY8dd9CpI8nvCOekpZ0Mv9p3wnEy6GpAtkFYgrv1gMAhvbqLFXBgKqyQfGmqgiEpW0-amw-g2JO4U1b5EO0aje-f7J76QqPRRDK_qSGpa5cPe9dzpwq5VhhFePaJps3j-NsySflpCL30jrSsV1Nv8Hx__mW00Big_r1fMFvvg8m22vgBLuMNeLlGOZNiJEDjq1EZeACdIB7xzz3WyMM9chq527jjM3JjTHwBe1dXhBCeeUZjNlJOSTDlSxTkfVecX-EjlV-5dzqdP8STjBb2syQbl8fi2mIzKu-wLu-r9HP648JpiDZ6VSpaehEDHKkzVGUCCRgcEEkQQJnHqC6tTGwWJiFyqsLeLsQEkRJEPaOH5QUyPu2wlL3K3x7gKdJKkibW6i0OHOlJg3ZkAdIUSaSV0mGpZZGyDZE4FNcZGNICn7RwbmmPTzHGHnczJHmooj_cIokX-m7I6Q4G64ImR79AetYvF4IYlHiBDitnUoD2nKGoyDPf_YfzvbO1i-Kdv-r8Gvw_YJ2ySdOIs9CFbKScz95V9tI_laDr5Vm2HV8qYBzo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwELYQILR74Lloy9NIXAM4dprkiIAKRFU4gOBmJY4HKpqkatJd7vxxZvJAIIQ47J4Syx4n8tjzsGa-YWy_i14FSX5HWCsdZU3gRK4VjpVx1wNkCyQViGvfHwyC-_vwuokmLJqwSvKhoQaKqGQ1He5xAm1E3CFqfYlmjIfeneseuEKizkcpPIems6Korpve3ZvPhUOrBCN8OkTTJvF8Nc0H9fQBvPSTsK40UG_pP_z7MltszE9-XO-XFTZjs1X28x0o4Rp7uUIpkuIgwt-oExt5DpwAHfDNPtepwjy1KTrameUwtSNO9_-8qqrDCUw8pSCbgpOKTDhSRRkfVrcX2KTiK08248XfaJLynD7W5ILyaPSQT4blY_qL3fbObk7OnaZUg2OkkqUjwfciFSTqCCBGkwN8CcIP4ihxhfESE_qxCG2icLSNsAMkhKELaN-5fkTNdTab5Zn9zbjyvThOYmO8Lk4deKECY48EoCMUSyOhw1TLIW0aHHMqpzHSooE7bddY0xrrZo077OCNbFwDeXxHEL5nvy6rGxSoy51o-Q3tXrtXNB5X4gEyJJ8WGq05RTGTQbDxD_PvsoXr057uXwwuN9kP7JF03Sy8LTZbTqZ2m82bP-WwmOxUh-EVqVQF7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+estimation+of+proton+exchange+membrane+fuel+cell+model+parameters+based+on+an+improved+chicken+swarm+optimization+algorithm&rft.jtitle=International+journal+of+green+energy&rft.au=Wang%2C+Tongying&rft.au=Huang%2C+Haozhong&rft.au=Li%2C+Xuan&rft.au=Guo%2C+Xiaoyu&rft.date=2023-07-15&rft.pub=Taylor+%26+Francis&rft.issn=1543-5075&rft.eissn=1543-5083&rft.volume=20&rft.issue=9&rft.spage=946&rft.epage=965&rft_id=info:doi/10.1080%2F15435075.2022.2131432&rft.externalDocID=2131432
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1543-5075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1543-5075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1543-5075&client=summon