Optimal estimation of proton exchange membrane fuel cell model parameters based on an improved chicken swarm optimization algorithm
Proton exchange membrane fuel cell (PEMFC) has been gradually applied in new energy vehicles, aviation and other industries, attracting widespread attention. Accurately identifying unknown parameters in the mathematical model of PEMFC is beneficial to the simulation, control and prediction of its ou...
Gespeichert in:
| Veröffentlicht in: | International journal of green energy Jg. 20; H. 9; S. 946 - 965 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Taylor & Francis
15.07.2023
|
| Schlagworte: | |
| ISSN: | 1543-5075, 1543-5083, 1543-5083 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Proton exchange membrane fuel cell (PEMFC) has been gradually applied in new energy vehicles, aviation and other industries, attracting widespread attention. Accurately identifying unknown parameters in the mathematical model of PEMFC is beneficial to the simulation, control and prediction of its output Current-Voltage curve. In order to identify the optimal unknown parameters, based on basic Chicken Swarm Optimization, this paper introduces positive/negative learning strategies for roosters and positive learning strategies for hens and chicks. An Improved Chicken Swarm Optimization algorithm is proposed. Compared with Particle Swarm Optimization, Salp Swarm Algorithm, Whale Optimization Algorithm and basic CSO algorithm, the proposed algorithm shows better convergence and accuracy. The five algorithms are applied to three common stacks (250W PEMFC, NedStack PS6 PEMFC, Ballard Mark V) and PEMFC monomer for model unknown parameter identification and optimization. The results show that, the ICSO algorithm obtains the minimum integral of absolute error of the actual stack voltage and the simulated stack voltage in the three test stacks and a PEMFC monomer, which are 2.288, 5.857, 2.407 and 0.408, the ICSO algorithm has a maximum increase of 8.63%, 4.52%, 6.20% and 64.83% in accuracy, respectively. The simulation data agrees well with the experimental data. These indicating that the mathematical model of PEMFC based on ICSO algorithm can accurately simulate the polarization curve at different temperatures and partial pressures, and it can be obtained that with the increase of temperature and partial pressure, the output performance of the PEMFC is also getting better. |
|---|---|
| AbstractList | Proton exchange membrane fuel cell (PEMFC) has been gradually applied in new energy vehicles, aviation and other industries, attracting widespread attention. Accurately identifying unknown parameters in the mathematical model of PEMFC is beneficial to the simulation, control and prediction of its output Current-Voltage curve. In order to identify the optimal unknown parameters, based on basic Chicken Swarm Optimization, this paper introduces positive/negative learning strategies for roosters and positive learning strategies for hens and chicks. An Improved Chicken Swarm Optimization algorithm is proposed. Compared with Particle Swarm Optimization, Salp Swarm Algorithm, Whale Optimization Algorithm and basic CSO algorithm, the proposed algorithm shows better convergence and accuracy. The five algorithms are applied to three common stacks (250W PEMFC, NedStack PS6 PEMFC, Ballard Mark V) and PEMFC monomer for model unknown parameter identification and optimization. The results show that, the ICSO algorithm obtains the minimum integral of absolute error of the actual stack voltage and the simulated stack voltage in the three test stacks and a PEMFC monomer, which are 2.288, 5.857, 2.407 and 0.408, the ICSO algorithm has a maximum increase of 8.63%, 4.52%, 6.20% and 64.83% in accuracy, respectively. The simulation data agrees well with the experimental data. These indicating that the mathematical model of PEMFC based on ICSO algorithm can accurately simulate the polarization curve at different temperatures and partial pressures, and it can be obtained that with the increase of temperature and partial pressure, the output performance of the PEMFC is also getting better. |
| Author | Li, Xuan Liu, Mingxin Huang, Haozhong Guo, Xiaoyu Lei, Han Wang, Tongying |
| Author_xml | – sequence: 1 givenname: Tongying surname: Wang fullname: Wang, Tongying organization: Guangxi University – sequence: 2 givenname: Haozhong surname: Huang fullname: Huang, Haozhong email: hhz421@gxu.edu.cn organization: Guangxi University – sequence: 3 givenname: Xuan surname: Li fullname: Li, Xuan organization: Guangxi University – sequence: 4 givenname: Xiaoyu surname: Guo fullname: Guo, Xiaoyu organization: Guangxi University – sequence: 5 givenname: Mingxin surname: Liu fullname: Liu, Mingxin organization: Guangxi University – sequence: 6 givenname: Han surname: Lei fullname: Lei, Han organization: Guangxi University |
| BookMark | eNqFUMtOBCEQJEYTn59gwtHLrjwGZyZeNMZXYuJFz6SHAReFYQXW19Ufl3HVgwc9dXXTVU3VJlodwqAR2qVkSklD9qmouCC1mDLC2JRRTivOVtDGOJ8I0vDVH1yLdbSZ0j0hrAwONtD79TxbDw7rNNZsw4CDwfMYckH6Rc1guNPYa99FGDQ2C-2w0s5hH_oC5xDB66xjwh0k3ePCggFbXxSeSqtmVj3oAadniB6H8Zh9W54BdxeizTO_jdYMuKR3vuoWuj07vTm5mFxdn1-eHF9NFK94nnBTC6iaviLGdIwxU3ND66aDnlEletXWHW11X5VtDeXBcNO2zJBWsBrGdgvtLXXL3x4XxbD0No1eirGwSJI1vKJty5umrIrlqoohpaiNnMcST3yVlMgxdPkduhxDl1-hF97hL56y-dNujmDdv-yjJdsOJkQPzyG6XmZ4dSGaEr-ySfK_JT4AP4ifuw |
| CitedBy_id | crossref_primary_10_1007_s10462_024_10786_3 crossref_primary_10_1016_j_jpowsour_2025_238396 crossref_primary_10_1016_j_rser_2025_115603 crossref_primary_10_1080_15435075_2023_2194373 crossref_primary_10_1155_2024_7931501 crossref_primary_10_1080_15567036_2023_2252672 crossref_primary_10_3389_fenrg_2023_1148323 crossref_primary_10_1038_s41598_025_93162_7 crossref_primary_10_1016_j_elecom_2025_108033 crossref_primary_10_1007_s00202_024_02935_2 crossref_primary_10_1007_s11356_024_35273_8 crossref_primary_10_1080_15435075_2023_2244062 crossref_primary_10_1002_eng2_13065 crossref_primary_10_1109_JSEN_2024_3472022 crossref_primary_10_1038_s41598_023_46847_w crossref_primary_10_1080_15435075_2023_2266744 |
| Cites_doi | 10.1016/j.asoc.2022.108562 10.1016/j.scs.2021.103075 10.1007/s40010-017-0475-1 10.1016/j.enconman.2018.09.031 10.1080/15472450.2021.1890070 10.1016/j.advengsoft.2016.01.008 10.1007/978-3-319-11857-4_10 10.1016/j.electacta.2021.138214 10.1002/er.2915 10.1016/j.electacta.2019.04.073 10.1007/s11356-021-13097-0 10.1117/1.JRS.14.026518 10.1016/j.energy.2017.03.082 10.1016/j.energy.2019.04.074 10.1016/j.scitotenv.2020.137927 10.1016/j.enconman.2021.114099 10.1016/S1464-2859(20)30546-0 10.1016/j.egyr.2017.10.002 10.1016/j.ijhydene.2020.06.256 10.1080/15435075.2020.1865370 10.1016/j.egyr.2020.04.012 10.1016/j.renene.2019.08.046 10.1109/JSYST.2016.2633512 10.1016/j.ijhydene.2020.04.256 10.1016/j.energy.2018.08.104 10.1016/j.jpowsour.2020.229412 10.1016/j.egyr.2020.03.010 10.1108/COMPEL-07-2021-0257 10.1016/j.ijhydene.2020.12.203 10.1016/j.jpowsour.2021.230655 10.1016/j.energy.2021.122096 10.1002/er.1170 10.1016/j.energy.2017.10.102 10.1016/j.energy.2020.118738 10.1080/1331677X.2018.1429291 10.1016/j.electacta.2021.137814 10.1016/j.applthermaleng.2018.11.122 10.1016/j.jclepro.2019.04.008 10.1016/j.energy.2019.06.152 10.1016/j.advengsoft.2017.07.002 10.1016/j.jpowsour.2021.230385 10.1080/15435075.2021.1974450 10.1016/j.electacta.2021.139183 10.1016/j.jpowsour.2018.08.082 10.1049/iet-rpg.2019.0485 10.1016/j.enconman.2018.03.002 10.1016/j.asoc.2022.109287 10.1016/j.asoc.2022.108574 10.1016/S0378-7753(99)00484-X 10.1016/j.electacta.2020.136345 10.1016/j.est.2019.101054 10.1080/01430750.2020.1745276 10.1016/j.egyr.2020.06.002 10.1016/j.egyr.2020.02.035 |
| ContentType | Journal Article |
| Copyright | 2022 Taylor & Francis Group, LLC 2022 |
| Copyright_xml | – notice: 2022 Taylor & Francis Group, LLC 2022 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1080/15435075.2022.2131432 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1543-5083 |
| EndPage | 965 |
| ExternalDocumentID | 10_1080_15435075_2022_2131432 2131432 |
| Genre | Research Article |
| GroupedDBID | .7F .QJ 0BK 0R~ 29J 30N 4.4 4P2 5GY 5VS AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EDH E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM L8X LJTGL M4Z ML. NA5 O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TTHFI TUROJ TWF TWQ UT5 UU3 ZGOLN ~S~ AAYXX BANNL CITATION 7S9 L.6 |
| ID | FETCH-LOGICAL-c343t-3f75a48d40ffb222f73f178bad21c5dc97b19ed4c34ea178f3f992f09527a78f3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000867545900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1543-5075 1543-5083 |
| IngestDate | Fri Sep 05 17:24:49 EDT 2025 Sat Nov 29 06:40:04 EST 2025 Tue Nov 18 22:01:32 EST 2025 Mon Oct 20 23:46:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c343t-3f75a48d40ffb222f73f178bad21c5dc97b19ed4c34ea178f3f992f09527a78f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2834199388 |
| PQPubID | 24069 |
| PageCount | 20 |
| ParticipantIDs | crossref_citationtrail_10_1080_15435075_2022_2131432 proquest_miscellaneous_2834199388 informaworld_taylorfrancis_310_1080_15435075_2022_2131432 crossref_primary_10_1080_15435075_2022_2131432 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-15 |
| PublicationDateYYYYMMDD | 2023-07-15 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of green energy |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | cit0033 cit0034 cit0031 cit0032 cit0030 cit0039 cit0037 cit0038 cit0035 cit0036 cit0023 cit0020 cit0021 Kennedy J. (cit0022) 1995; 11 cit0028 cit0029 cit0026 cit0027 cit0024 cit0025 cit0011 cit0055 cit0012 cit0053 cit0010 cit0054 cit0051 cit0052 cit0050 cit0019 cit0017 cit0018 cit0015 cit0016 cit0013 cit0014 cit0044 cit0001 cit0045 cit0042 cit0043 cit0040 cit0041 cit0008 cit0009 cit0006 cit0007 cit0004 cit0048 cit0005 cit0049 cit0002 cit0046 cit0003 cit0047 |
| References_xml | – ident: cit0011 doi: 10.1016/j.asoc.2022.108562 – ident: cit0012 doi: 10.1016/j.scs.2021.103075 – ident: cit0009 doi: 10.1007/s40010-017-0475-1 – ident: cit0052 doi: 10.1016/j.enconman.2018.09.031 – ident: cit0006 doi: 10.1080/15472450.2021.1890070 – ident: cit0026 doi: 10.1016/j.advengsoft.2016.01.008 – ident: cit0024 doi: 10.1007/978-3-319-11857-4_10 – ident: cit0038 doi: 10.1016/j.electacta.2021.138214 – ident: cit0003 doi: 10.1002/er.2915 – ident: cit0002 doi: 10.1016/j.electacta.2019.04.073 – ident: cit0039 doi: 10.1007/s11356-021-13097-0 – ident: cit0053 doi: 10.1117/1.JRS.14.026518 – ident: cit0035 doi: 10.1016/j.energy.2017.03.082 – ident: cit0018 doi: 10.1016/j.energy.2019.04.074 – ident: cit0041 doi: 10.1016/j.scitotenv.2020.137927 – ident: cit0014 doi: 10.1016/j.enconman.2021.114099 – ident: cit0029 doi: 10.1016/S1464-2859(20)30546-0 – ident: cit0001 doi: 10.1016/j.egyr.2017.10.002 – ident: cit0034 doi: 10.1016/j.ijhydene.2020.06.256 – ident: cit0016 doi: 10.1080/15435075.2020.1865370 – ident: cit0015 doi: 10.1016/j.egyr.2020.04.012 – ident: cit0010 doi: 10.1016/j.renene.2019.08.046 – ident: cit0013 doi: 10.1109/JSYST.2016.2633512 – ident: cit0004 doi: 10.1016/j.ijhydene.2020.04.256 – ident: cit0008 doi: 10.1016/j.energy.2018.08.104 – ident: cit0044 doi: 10.1016/j.jpowsour.2020.229412 – ident: cit0051 doi: 10.1016/j.egyr.2020.03.010 – ident: cit0040 doi: 10.1108/COMPEL-07-2021-0257 – ident: cit0030 doi: 10.1016/j.ijhydene.2020.12.203 – ident: cit0048 doi: 10.1016/j.jpowsour.2021.230655 – ident: cit0032 doi: 10.1016/j.energy.2021.122096 – ident: cit0027 doi: 10.1002/er.1170 – ident: cit0043 doi: 10.1016/j.energy.2017.10.102 – ident: cit0046 doi: 10.1016/j.energy.2020.118738 – ident: cit0007 doi: 10.1080/1331677X.2018.1429291 – ident: cit0037 doi: 10.1016/j.electacta.2021.137814 – ident: cit0036 doi: 10.1016/j.applthermaleng.2018.11.122 – ident: cit0045 doi: 10.1016/j.jclepro.2019.04.008 – ident: cit0021 doi: 10.1016/j.energy.2019.06.152 – volume: 11 start-page: 111 year: 1995 ident: cit0022 publication-title: Proceedings of IEEE International Conference on Neural Network – ident: cit0025 doi: 10.1016/j.advengsoft.2017.07.002 – ident: cit0031 doi: 10.1016/j.jpowsour.2021.230385 – ident: cit0055 doi: 10.1080/15435075.2021.1974450 – ident: cit0047 doi: 10.1016/j.electacta.2021.139183 – ident: cit0033 doi: 10.1016/j.jpowsour.2018.08.082 – ident: cit0049 doi: 10.1049/iet-rpg.2019.0485 – ident: cit0020 doi: 10.1016/j.enconman.2018.03.002 – ident: cit0017 doi: 10.1016/j.asoc.2022.109287 – ident: cit0019 doi: 10.1016/j.asoc.2022.108574 – ident: cit0023 doi: 10.1016/S0378-7753(99)00484-X – ident: cit0028 doi: 10.1016/j.electacta.2020.136345 – ident: cit0050 doi: 10.1016/j.est.2019.101054 – ident: cit0054 doi: 10.1080/01430750.2020.1745276 – ident: cit0042 doi: 10.1016/j.egyr.2020.06.002 – ident: cit0005 doi: 10.1016/j.egyr.2020.02.035 |
| SSID | ssj0025436 |
| Score | 2.394581 |
| Snippet | Proton exchange membrane fuel cell (PEMFC) has been gradually applied in new energy vehicles, aviation and other industries, attracting widespread attention.... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 946 |
| SubjectTerms | algorithms aviation chickens electric potential difference fuel cells improved chicken swarm algorithm integral of absolute error mathematical models parameter estimation partial pressure polarization curves prediction Proton exchange membrane fuel cell renewable energy sources swarms temperature |
| Title | Optimal estimation of proton exchange membrane fuel cell model parameters based on an improved chicken swarm optimization algorithm |
| URI | https://www.tandfonline.com/doi/abs/10.1080/15435075.2022.2131432 https://www.proquest.com/docview/2834199388 |
| Volume | 20 |
| WOSCitedRecordID | wos000867545900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1543-5083 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025436 issn: 1543-5075 databaseCode: TFW dateStart: 20041226 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvTgW3wTwWvVNOm2PYq4eBD1sKK3kqQZXdy2su2qd_-4M32Ii4gHPaWhmbRkknmEmW8YO-yhV0GS3xPOSU85G3nad8Jz0vQCQLZAWoO4XoZXV9H9fXzTRhOWbVgl-dDQAEXUspoOtzZlFxF3jFpfohkToHfn-0e-kKjzSQpjQ0dz0L_7dLlwZJ1fhK1HJF0Oz0-zTGmnKezSb7K6VkD9pX_49WW22Fqf_LTZLitsxuWrbOELJuEae79GIZLhIILfaPIaeQGc8Bzwyb01mcI8cxn62bnjMHEjTtf_vC6qwwlLPKMYm5KThkw5UumcD-vLC-xS7ZUnl_PyVY8zXtDH2lRQrkcPxXhYPWbr7LZ_Pji78NpKDZ6VSlaehDDQKkrVCYBBiwNCCSKMjE59YYPUxqERsUsVjnYaX4CEOPYBzTs_1NTdYLN5kbtNxlUYGJMaa4MeTh0FsQLrTgSgH2SklbDFVMehxLYw5lRNY5SIFu20W-OE1jhp13iLHX2SPTc4Hr8RxF_Zn1T1BQo01U4S-QvtQbdXEjytxANkSDEpEzTmFIVMRtH2H-bfYfNU9Z6umEWwy2ar8cTtsTn7Ug3L8X59Aj4AaAEDEA |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swELcmmMR4gAFDFNhmJF4DOLab5BFNq5jWlZcieLMSxwcVTYLaFHjnH-cuH1UrNPGwPSWRfU7ks-_DufsdY8dd9CpI8nvCOekpZ0Mv9p3wnEy6GpAtkFYgrv1gMAhvbqLFXBgKqyQfGmqgiEpW0-amw-g2JO4U1b5EO0aje-f7J76QqPRRDK_qSGpa5cPe9dzpwq5VhhFePaJps3j-NsySflpCL30jrSsV1Nv8Hx__mW00Big_r1fMFvvg8m22vgBLuMNeLlGOZNiJEDjq1EZeACdIB7xzz3WyMM9chq527jjM3JjTHwBe1dXhBCeeUZjNlJOSTDlSxTkfVecX-EjlV-5dzqdP8STjBb2syQbl8fi2mIzKu-wLu-r9HP648JpiDZ6VSpaehEDHKkzVGUCCRgcEEkQQJnHqC6tTGwWJiFyqsLeLsQEkRJEPaOH5QUyPu2wlL3K3x7gKdJKkibW6i0OHOlJg3ZkAdIUSaSV0mGpZZGyDZE4FNcZGNICn7RwbmmPTzHGHnczJHmooj_cIokX-m7I6Q4G64ImR79AetYvF4IYlHiBDitnUoD2nKGoyDPf_YfzvbO1i-Kdv-r8Gvw_YJ2ySdOIs9CFbKScz95V9tI_laDr5Vm2HV8qYBzo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwELYQILR74Lloy9NIXAM4dprkiIAKRFU4gOBmJY4HKpqkatJd7vxxZvJAIIQ47J4Syx4n8tjzsGa-YWy_i14FSX5HWCsdZU3gRK4VjpVx1wNkCyQViGvfHwyC-_vwuokmLJqwSvKhoQaKqGQ1He5xAm1E3CFqfYlmjIfeneseuEKizkcpPIems6Korpve3ZvPhUOrBCN8OkTTJvF8Nc0H9fQBvPSTsK40UG_pP_z7MltszE9-XO-XFTZjs1X28x0o4Rp7uUIpkuIgwt-oExt5DpwAHfDNPtepwjy1KTrameUwtSNO9_-8qqrDCUw8pSCbgpOKTDhSRRkfVrcX2KTiK08248XfaJLynD7W5ILyaPSQT4blY_qL3fbObk7OnaZUg2OkkqUjwfciFSTqCCBGkwN8CcIP4ihxhfESE_qxCG2icLSNsAMkhKELaN-5fkTNdTab5Zn9zbjyvThOYmO8Lk4deKECY48EoCMUSyOhw1TLIW0aHHMqpzHSooE7bddY0xrrZo077OCNbFwDeXxHEL5nvy6rGxSoy51o-Q3tXrtXNB5X4gEyJJ8WGq05RTGTQbDxD_PvsoXr057uXwwuN9kP7JF03Sy8LTZbTqZ2m82bP-WwmOxUh-EVqVQF7A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+estimation+of+proton+exchange+membrane+fuel+cell+model+parameters+based+on+an+improved+chicken+swarm+optimization+algorithm&rft.jtitle=International+journal+of+green+energy&rft.au=Wang%2C+Tongying&rft.au=Huang%2C+Haozhong&rft.au=Li%2C+Xuan&rft.au=Guo%2C+Xiaoyu&rft.date=2023-07-15&rft.pub=Taylor+%26+Francis&rft.issn=1543-5075&rft.eissn=1543-5083&rft.volume=20&rft.issue=9&rft.spage=946&rft.epage=965&rft_id=info:doi/10.1080%2F15435075.2022.2131432&rft.externalDocID=2131432 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1543-5075&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1543-5075&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1543-5075&client=summon |