State of health estimation for lithium-ion battery based on the coupling-loop nonlinear autoregressive with exogenous inputs neural network

•Coupling loop NARX neural network has better time series prediction accuracy.•Principal component feature extraction eliminates redundant variables effectively.•BR algorithm speeds up the convergence rate of neural network weights. In order to solve the problem of low accuracy of traditional artifi...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta Vol. 393; p. 139047
Main Authors: Cui, Zhiquan, Wang, Chunhui, Gao, Xuhong, Tian, Shushan
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 10.10.2021
Elsevier BV
Subjects:
ISSN:0013-4686, 1873-3859
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Coupling loop NARX neural network has better time series prediction accuracy.•Principal component feature extraction eliminates redundant variables effectively.•BR algorithm speeds up the convergence rate of neural network weights. In order to solve the problem of low accuracy of traditional artificial neural networks in approximating functional, a coupling-loop nonlinear autoregressive with exogenous inputs neural network estimation model is proposed and applied to the state of health forecasting of lithium-ion batteries. Firstly, eight health indicators related to the state of health of lithium-ion batteries are mined. In order to eliminate the harm of weakly correlated independent variables and redundant independent variables to the estimation results, principal component feature extraction is applied to the feature extraction of the eight health indicators. Bayesian regularization algorithm is used to learn the weights of the neural network, which solves the problems of slow convergence speed and easy to fall into local extremum of back propagation learning algorithm, and improves the generalization ability of the neural network. In order to verify the rationality of the proposed model and algorithm, the coupling-loop nonlinear autoregressive with exogenous inputs neural network model is used to estimate the state of health of lithium battery under the condition of complete charge discharge test, and the estimation results are compared with other neural network models. The simulation results show that the coupling-loop nonlinear autoregressive with exogenous inputs estimation model using feature extraction method and Bayesian network weight algorithm can approach the functional with higher accuracy, and the absolute error and relative error of lithium-ion battery's state of health estimation can be reduced by more than 50% on average, while the mean square error can be reduced by more than 80%.
AbstractList •Coupling loop NARX neural network has better time series prediction accuracy.•Principal component feature extraction eliminates redundant variables effectively.•BR algorithm speeds up the convergence rate of neural network weights. In order to solve the problem of low accuracy of traditional artificial neural networks in approximating functional, a coupling-loop nonlinear autoregressive with exogenous inputs neural network estimation model is proposed and applied to the state of health forecasting of lithium-ion batteries. Firstly, eight health indicators related to the state of health of lithium-ion batteries are mined. In order to eliminate the harm of weakly correlated independent variables and redundant independent variables to the estimation results, principal component feature extraction is applied to the feature extraction of the eight health indicators. Bayesian regularization algorithm is used to learn the weights of the neural network, which solves the problems of slow convergence speed and easy to fall into local extremum of back propagation learning algorithm, and improves the generalization ability of the neural network. In order to verify the rationality of the proposed model and algorithm, the coupling-loop nonlinear autoregressive with exogenous inputs neural network model is used to estimate the state of health of lithium battery under the condition of complete charge discharge test, and the estimation results are compared with other neural network models. The simulation results show that the coupling-loop nonlinear autoregressive with exogenous inputs estimation model using feature extraction method and Bayesian network weight algorithm can approach the functional with higher accuracy, and the absolute error and relative error of lithium-ion battery's state of health estimation can be reduced by more than 50% on average, while the mean square error can be reduced by more than 80%.
In order to solve the problem of low accuracy of traditional artificial neural networks in approximating functional, a coupling-loop nonlinear autoregressive with exogenous inputs neural network estimation model is proposed and applied to the state of health forecasting of lithium-ion batteries. Firstly, eight health indicators related to the state of health of lithium-ion batteries are mined. In order to eliminate the harm of weakly correlated independent variables and redundant independent variables to the estimation results, principal component feature extraction is applied to the feature extraction of the eight health indicators. Bayesian regularization algorithm is used to learn the weights of the neural network, which solves the problems of slow convergence speed and easy to fall into local extremum of back propagation learning algorithm, and improves the generalization ability of the neural network. In order to verify the rationality of the proposed model and algorithm, the coupling-loop nonlinear autoregressive with exogenous inputs neural network model is used to estimate the state of health of lithium battery under the condition of complete charge discharge test, and the estimation results are compared with other neural network models. The simulation results show that the coupling-loop nonlinear autoregressive with exogenous inputs estimation model using feature extraction method and Bayesian network weight algorithm can approach the functional with higher accuracy, and the absolute error and relative error of lithium-ion battery's state of health estimation can be reduced by more than 50% on average, while the mean square error can be reduced by more than 80%.
ArticleNumber 139047
Author Cui, Zhiquan
Tian, Shushan
Wang, Chunhui
Gao, Xuhong
Author_xml – sequence: 1
  givenname: Zhiquan
  orcidid: 0000-0002-2386-7323
  surname: Cui
  fullname: Cui, Zhiquan
  email: cuizhiquan@hit.edu.cn
  organization: School of Automotive Engineering, Harbin Institute of Technology at Weihai, No. 2 Wenhuaxi Road, Weihai 264209, China
– sequence: 2
  givenname: Chunhui
  surname: Wang
  fullname: Wang, Chunhui
  email: 1598811326@qq.com
  organization: School of Automotive Engineering, Harbin Institute of Technology at Weihai, No. 2 Wenhuaxi Road, Weihai 264209, China
– sequence: 3
  givenname: Xuhong
  surname: Gao
  fullname: Gao, Xuhong
  email: Gaoxuhong@linking-auto.com
  organization: Beijing Institute of Space Launch Technology at Beijing, No. 1 Nandahongmen Road, Fengtai District, Beijing 100076, China
– sequence: 4
  givenname: Shushan
  surname: Tian
  fullname: Tian, Shushan
  organization: Beijing Institute of Space Launch Technology at Beijing, No. 1 Nandahongmen Road, Fengtai District, Beijing 100076, China
BookMark eNqNkEtLAzEUhYMo2Kq_wYDrqXnMJNOFi1J8QcGFug5peqdNnSZjkvHxG_zTplZcuFEIHG4459zkG6J95x0gdErJiBIqztcjaMEknc-IEUZHlI9JKffQgNaSF7yuxvtoQAjlRSlqcYiGMa4JIVJIMkAf90knwL7BK9BtWmGIyW50st7hxgfc2rSy_abYznOdEoT3rBEWOF-kFWDj-661blm03nc4vy0PoAPWffIBlgFitC-AX-22-80vwfk-Yuu6PkXsoA-6zZJefXg6RgeNbiOcfOsRery6fJjeFLO769vpZFYYXvJUMFYDI9rwpikraZqKcaipYVw3WpQUBFTzMTEk28CUjAlg45oZI3VdC0FKfoTOdr1d8M99_rBa-z64vFKxSgouJGNVdl3sXCb4GAM0ytj0BSYFbVtFidryV2v1w19t-asd_5yXv_JdyGTD-z-Sk10SMoQXC0FFY8EZWNiQ_Wrh7Z8dn2HxqsE
CitedBy_id crossref_primary_10_1016_j_est_2022_104950
crossref_primary_10_3390_batteries9010007
crossref_primary_10_3390_en16031420
crossref_primary_10_1007_s11581_024_06049_4
crossref_primary_10_1016_j_infrared_2024_105414
crossref_primary_10_1016_j_energy_2024_132077
crossref_primary_10_1016_j_pnucene_2023_104729
crossref_primary_10_1016_j_electacta_2022_141300
crossref_primary_10_1016_j_electacta_2023_143565
crossref_primary_10_3389_fenrg_2022_972486
crossref_primary_10_1016_j_est_2023_108098
crossref_primary_10_3390_en16114423
crossref_primary_10_3390_su142315538
crossref_primary_10_3390_atmos14050798
crossref_primary_10_1016_j_est_2022_105630
crossref_primary_10_1016_j_matcom_2025_05_022
crossref_primary_10_3390_en17010206
crossref_primary_10_1016_j_chemosphere_2024_143096
crossref_primary_10_1115_1_4069311
crossref_primary_10_1016_j_electacta_2022_140940
crossref_primary_10_1002_oca_3248
crossref_primary_10_1016_j_est_2023_107031
crossref_primary_10_1016_j_egyr_2023_01_108
crossref_primary_10_1016_j_est_2024_113172
crossref_primary_10_1016_j_apenergy_2023_122417
crossref_primary_10_1002_tcr_202200131
crossref_primary_10_3390_en18102459
crossref_primary_10_1063_5_0221822
Cites_doi 10.1109/TIE.2017.2674593
10.1109/ACCESS.2020.3007046
10.1016/j.electacta.2015.12.001
10.1016/j.egypro.2015.07.163
10.1007/s11633-008-0313-7
10.1149/1.2221597
10.1109/TMECH.2020.3040010
10.1016/j.est.2019.100817
10.1016/j.electacta.2016.12.119
10.1109/TIE.2018.2880703
10.1016/j.ifacol.2018.11.734
10.1016/j.enconman.2007.03.015
10.1016/j.apenergy.2016.08.138
10.1016/j.microrel.2018.07.025
10.1016/j.electacta.2020.136576
10.1016/j.jclepro.2018.09.065
10.1016/j.jpowsour.2020.228069
10.1109/TTE.2020.2994543
10.1016/j.electacta.2019.134966
10.1016/j.electacta.2021.138501
10.1016/j.jpowsour.2020.227700
10.3390/en12224338
10.1109/TIE.2019.2946551
10.1109/ACCESS.2019.2930680
10.1109/ACCESS.2020.2981261
10.1016/j.jpowsour.2020.229233
10.1109/TIE.2017.2782224
10.1109/TEC.2006.874229
10.1016/j.jpowsour.2019.227149
10.1109/ACCESS.2020.2980961
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Oct 10, 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Oct 10, 2021
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2021.139047
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
ExternalDocumentID 10_1016_j_electacta_2021_139047
S0013468621013372
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
SC5
SCB
SCH
SEW
T9H
VH1
WUQ
XOL
ZY4
~HD
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c343t-228e20ac3ff457cf523e81c23afa641e6e5b90c028eec4226e2982cc7a8866043
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000692045200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-4686
IngestDate Sun Nov 09 06:14:15 EST 2025
Tue Nov 18 20:47:30 EST 2025
Sat Nov 29 06:57:58 EST 2025
Fri Feb 23 02:41:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
Coupling-loop
Functional approximation
State of health
Bayesian regularization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-228e20ac3ff457cf523e81c23afa641e6e5b90c028eec4226e2982cc7a8866043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2386-7323
PQID 2576367225
PQPubID 2045485
ParticipantIDs proquest_journals_2576367225
crossref_citationtrail_10_1016_j_electacta_2021_139047
crossref_primary_10_1016_j_electacta_2021_139047
elsevier_sciencedirect_doi_10_1016_j_electacta_2021_139047
PublicationCentury 2000
PublicationDate 2021-10-10
PublicationDateYYYYMMDD 2021-10-10
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-10
  day: 10
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electrochimica acta
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References He, Bian, Liu (bib0005) 2020; 29
Kodjo, Kddahech, Dumur, Beauvois, Godoy (bib0013) 2021; 484
Meng, Cai, Luo (bib0016) 2018; 88-90
Phattara, Nita (bib0021) 2019
Ouyang, Xu, Chen (bib0037) 2020; 353
He, Wei, Bian (bib0003) 2020; 6
X., Dang, Xua (bib0038) 2016; 188
Bi, Zhang, Yu (bib0011) 2016; 186
Shen, Mohammadkazem, Chen (bib0035) 2019; 25
Dai, Zhao, Lin (bib0023) 2020; 66
Crocioni, Pau, Delorme, Gruosso (bib0033) 2020; 8
Sun, Xia (bib0014) 2019; 57
Mohamed, M’hiri (bib0041) 2008; 05
Zhou, Li, Zhu (bib0034) 2020; 8
Wei, Dong, Chen (bib0017) 2018; 65
Xia, Qahouq, Jaber (bib0019) 2019
Doyle, Fuller, Newman (bib0008) 1993; 140
Tan, Zhao (bib0032) 2020; 67
Xu, Cao, T.Z (bib0026) 2020; 44
Chen, Xue, Xiao (bib0027) 2020; 7
Zhou, Yin, Fu (bib0022) 2018; 2018
Tan, Zhan, Lyu, Rao, Fan (bib0015) 2021; 484
You, Park, Oh (bib0029) 2017; 64
Tian, Li, Tian (bib0040) 2017; 225
Li, Zhang, Xiong, Ding, Jie, Luo, Rong, Li (bib0030) 2020; 459
Li, Zhang, Xiong (bib0001) 2020; 50
Lipu, Hannan, Hussain (bib0006) 2018; 205
Li, Zhang, Yang (bib0039) 2019; 326
Chen, Rincon-Mora (bib0007) 2016; 21
Qiu, Wu, Wang (bib0010) 2020; 450
Sun, Lin, Cai (bib0036) 2021; 387
He, Hu, Guo, Zheng (bib0018) 2017; 41
Zheng, Li, X (bib0042) 2020; 164
Chen, Li, Lin (bib0043) 2020; 41
Deng, Hu, Lin (bib0002) 2021; 26
Vidal, Malysz, Kollmeyer, Emadi (bib0012) 2020; 8
Lin, Han, Cui (bib0044) 2016; 67
Hussein (bib0020) 2015; 75
Xiao, Li, Li, Wang (bib0025) 2017; 41
Smith, Rahn, Wang (bib0009) 2007; 48
Bian, Wei, He (bib0004) 2020; 278
Zhou, Huang, Pang, Wang (bib0031) 2019; 440
Venugopal, Vigneswaran (bib0028) 2019; 12
Kim, Yu, Kim, Kim, Han (bib0024) 2018; 51
Smith (10.1016/j.electacta.2021.139047_bib0009) 2007; 48
Tan (10.1016/j.electacta.2021.139047_bib0015) 2021; 484
Chen (10.1016/j.electacta.2021.139047_bib0027) 2020; 7
Ouyang (10.1016/j.electacta.2021.139047_bib0037) 2020; 353
Doyle (10.1016/j.electacta.2021.139047_bib0008) 1993; 140
Phattara (10.1016/j.electacta.2021.139047_bib0021) 2019
Kim (10.1016/j.electacta.2021.139047_bib0024) 2018; 51
Tian (10.1016/j.electacta.2021.139047_bib0040) 2017; 225
Chen (10.1016/j.electacta.2021.139047_bib0007) 2016; 21
Hussein (10.1016/j.electacta.2021.139047_bib0020) 2015; 75
You (10.1016/j.electacta.2021.139047_bib0029) 2017; 64
Li (10.1016/j.electacta.2021.139047_bib0030) 2020; 459
Wei (10.1016/j.electacta.2021.139047_bib0017) 2018; 65
Xia (10.1016/j.electacta.2021.139047_bib0019) 2019
Zhou (10.1016/j.electacta.2021.139047_bib0034) 2020; 8
Zheng (10.1016/j.electacta.2021.139047_bib0042) 2020; 164
Deng (10.1016/j.electacta.2021.139047_bib0002) 2021; 26
Sun (10.1016/j.electacta.2021.139047_bib0036) 2021; 387
Lin (10.1016/j.electacta.2021.139047_bib0044) 2016; 67
Sun (10.1016/j.electacta.2021.139047_bib0014) 2019; 57
Lipu (10.1016/j.electacta.2021.139047_bib0006) 2018; 205
Tan (10.1016/j.electacta.2021.139047_bib0032) 2020; 67
X. (10.1016/j.electacta.2021.139047_bib0038) 2016; 188
Vidal (10.1016/j.electacta.2021.139047_bib0012) 2020; 8
Mohamed (10.1016/j.electacta.2021.139047_bib0041) 2008; 05
Li (10.1016/j.electacta.2021.139047_bib0039) 2019; 326
Meng (10.1016/j.electacta.2021.139047_bib0016) 2018; 88-90
He (10.1016/j.electacta.2021.139047_bib0018) 2017; 41
Kodjo (10.1016/j.electacta.2021.139047_bib0013) 2021; 484
Xu (10.1016/j.electacta.2021.139047_bib0026) 2020; 44
Zhou (10.1016/j.electacta.2021.139047_bib0022) 2018; 2018
Shen (10.1016/j.electacta.2021.139047_bib0035) 2019; 25
Qiu (10.1016/j.electacta.2021.139047_bib0010) 2020; 450
Chen (10.1016/j.electacta.2021.139047_bib0043) 2020; 41
Li (10.1016/j.electacta.2021.139047_bib0001) 2020; 50
He (10.1016/j.electacta.2021.139047_bib0003) 2020; 6
Dai (10.1016/j.electacta.2021.139047_bib0023) 2020; 66
Xiao (10.1016/j.electacta.2021.139047_bib0025) 2017; 41
Bian (10.1016/j.electacta.2021.139047_bib0004) 2020; 278
He (10.1016/j.electacta.2021.139047_bib0005) 2020; 29
Zhou (10.1016/j.electacta.2021.139047_bib0031) 2019; 440
Crocioni (10.1016/j.electacta.2021.139047_bib0033) 2020; 8
Bi (10.1016/j.electacta.2021.139047_bib0011) 2016; 186
Venugopal (10.1016/j.electacta.2021.139047_bib0028) 2019; 12
References_xml – volume: 278
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib0004
  article-title: A novel model-based voltage construction method for robust state-of-health estimation of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Electron.
– volume: 8
  start-page: 52796
  year: 2020
  end-page: 52814
  ident: bib0012
  article-title: Machine learning applied to electrified vehicle battery state of charge and state of health estimation: state-of-the-art
  publication-title: IEEE Access
– volume: 48
  start-page: 2565
  year: 2007
  end-page: 2578
  ident: bib0009
  article-title: Control oriented ID electrochemical model of lithium ion battery
  publication-title: Energy Convers. Manag.
– start-page: 3361
  year: 2019
  end-page: 3365
  ident: bib0019
  article-title: Adaptive and fast state of health estimation method for lithium-ion batteries using online complex impedance and artificial neural network
  publication-title: Proceedings of the Annual IEEE Applied Power Electronics Conference and Exposition (APEC)
– volume: 50
  year: 2020
  ident: bib0001
  article-title: State-of health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network
  publication-title: J. Power Sources
– volume: 6
  start-page: 417
  year: 2020
  end-page: 426
  ident: bib0003
  article-title: State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model
  publication-title: IEEE Trans. Transp. Electrif.
– year: 2019
  ident: bib0021
  article-title: Data-driven prognostic model of li-ion battery with deep learning algorithm
  publication-title: Proceedings of the Reliability and Maintainability Symposium
– volume: 65
  start-page: 5634
  year: 2018
  end-page: 5643
  ident: bib0017
  article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression
  publication-title: IEEE Trans. Ind. Electron.
– volume: 12
  start-page: 4338
  year: 2019
  ident: bib0028
  article-title: State-of-health estimation of Li-ion batteries in electric vehicle using IndRNN under variable load condition
  publication-title: Energies
– volume: 57
  start-page: 67
  year: 2019
  end-page: 71
  ident: bib0014
  article-title: State of health estimation for lithium-ion batteries based on random forest
  publication-title: Agric. Equip. Veh. Eng.
– volume: 8
  start-page: 122135
  year: 2020
  end-page: 122146
  ident: bib0033
  article-title: Li-ion batteries parameter estimation with tiny neural networks embedded on intelligent IoT microcontrollers
  publication-title: IEEE Access
– volume: 225
  start-page: 225
  year: 2017
  end-page: 234
  ident: bib0040
  article-title: State of charge estimation of lithium-ion batteries using an optimal adaptive gain nonlinear observer
  publication-title: Electrochim. Acta
– volume: 51
  start-page: 392
  year: 2018
  end-page: 397
  ident: bib0024
  article-title: Estimation of li-ion battery state of health based on multilayer perceptron: as an EV application
  publication-title: IFAC Papers Online
– volume: 41
  start-page: 916
  year: 2017
  end-page: 919
  ident: bib0025
  article-title: State-of-health estimation for batteries based on ant colony neural network algorithm
  publication-title: J. Power Sources
– volume: 164
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib0042
  article-title: Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction and online validation
  publication-title: J. Meas.
– volume: 29
  year: 2020
  ident: bib0005
  article-title: Comparative study of curve determination methods for incremental capacity analysis and state of health estimation of lithium-ion battery
  publication-title: J. Power Sources
– volume: 484
  start-page: 1
  year: 2021
  end-page: 14
  ident: bib0013
  article-title: State-of-health estimators coupled to a random forest approach for lithium-ion battery aging factor ranking
  publication-title: J. Power Sources
– volume: 75
  start-page: 1856
  year: 2015
  end-page: 1861
  ident: bib0020
  article-title: Derivation and comparison of open-loop and closed-loop neural network battery state-of-charge estimators
  publication-title: Energy Procedia
– volume: 205
  start-page: 115
  year: 2018
  end-page: 133
  ident: bib0006
  article-title: A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: challenges and recommendations
  publication-title: J. Clean. Prod.
– volume: 44
  start-page: 341
  year: 2020
  end-page: 345
  ident: bib0026
  article-title: State-of-health estimation for batteries based on SA-BP neural network
  publication-title: J. Power Sources
– volume: 188
  start-page: 356
  year: 2016
  end-page: 366
  ident: bib0038
  article-title: Open-circuit voltage-based state of charge estimation of lithium-ion battery using dual neural network fusion battery model
  publication-title: Electrochim. Acta
– volume: 66
  start-page: 7706
  year: 2020
  end-page: 7716
  ident: bib0023
  article-title: A novel estimation method for the state of health of lithium-Ion battery using prior knowledge-based neural network and Markov chain
  publication-title: IEEE Trans. Ind. Electron.
– volume: 7
  start-page: 102662
  year: 2020
  end-page: 102678
  ident: bib0027
  article-title: State of health estimation for lithium-ion batteries based on fusion of autoregressive moving average model and Elman neural network
  publication-title: IEEE Access
– volume: 186
  start-page: 558
  year: 2016
  end-page: 568
  ident: bib0011
  article-title: State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter
  publication-title: Appl. Energy
– volume: 25
  year: 2019
  ident: bib0035
  article-title: A deep learning method for online capacity estimation of lithium-ion batteries
  publication-title: J. Energy Storage
– volume: 41
  start-page: 735
  year: 2020
  end-page: 742
  ident: bib0043
  article-title: RUL indirect prediction method for lithium-ion batteries based on GA-ELM
  publication-title: J. Meas.
– volume: 8
  start-page: 53307
  year: 2020
  end-page: 53320
  ident: bib0034
  article-title: State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network
  publication-title: IEEE Access
– volume: 67
  start-page: 1022
  year: 2016
  end-page: 1031
  ident: bib0044
  article-title: Fault diagnosis of refrigeration system based on principal component analysis-probabilistic neural network
  publication-title: J. Chem. Eng.
– volume: 26
  start-page: 1295
  year: 2021
  end-page: 1306
  ident: bib0002
  article-title: General discharge voltage information enabled health evaluation for lithium-ion batteries
  publication-title: IEEE ASME Trans. Mechatron.
– volume: 450
  year: 2020
  ident: bib0010
  article-title: Remaining useful life prediction of lithium-ion battery based on improved cuckoo search particle filter and a novel state of charge estimation method
  publication-title: J. Power Sources
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib0022
  article-title: Prognostics for state of health of lithium-ion batteries based on Gaussian process regression
  publication-title: Math. Probl. Eng.
– volume: 440
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib0031
  article-title: Remaining useful life prediction for supercapacitor based on long short-term memory neural network
  publication-title: J. Power Sources
– volume: 387
  start-page: 1
  year: 2021
  end-page: 14
  ident: bib0036
  article-title: Improved parameter identification and state-of-charge estimation for lithium-ion battery with fixed memory recursive least squares and sigma-point Kalman filter
  publication-title: Electrochim. Acta
– volume: 140
  year: 1993
  ident: bib0008
  article-title: Modeling of Galvanostatic charge and discharge of the lithium polymer insertion cell
  publication-title: J. Electrochem. Soc.
– volume: 64
  start-page: 4885
  year: 2017
  end-page: 4893
  ident: bib0029
  article-title: Diagnosis of electric vehicle batteries using recurrent neural networks
  publication-title: IEEE Trans. Ind. Electron.
– volume: 88-90
  start-page: 1216
  year: 2018
  end-page: 1220
  ident: bib0016
  article-title: Lithium-ion battery state of health estimation with short-term current pulse test and support vector machine
  publication-title: Microelectron. Reliab.
– volume: 353
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib0037
  article-title: Improved parameters identification and state of charge estimation for lithium-ion battery with real-time optimal forgetting factor
  publication-title: Electrochim. Acta
– volume: 326
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib0039
  article-title: State of charge estimation for lithium-ion battery using an electrochemical model based on electrical double layer effect
  publication-title: Electrochim. Acta
– volume: 05
  start-page: 313
  year: 2008
  end-page: 318
  ident: bib0041
  article-title: An approach to polynomial NARX/NARMAX systems identification in a closed-loop with variable structure control
  publication-title: Int. J. Autom. Comput.
– volume: 41
  start-page: 708
  year: 2017
  end-page: 710
  ident: bib0018
  article-title: SOH estimation for lithium-ion batteries based on artificial neural network
  publication-title: J. Power Sources
– volume: 21
  start-page: 504
  year: 2016
  end-page: 511
  ident: bib0007
  article-title: Accurate electrical battery model capable of predicting, runtime and I-V performance
  publication-title: IEEE Trans. Energy Convers.
– volume: 67
  start-page: 8723
  year: 2020
  end-page: 8731
  ident: bib0032
  article-title: Transfer learning with long short-term memory network for state-of-health prediction of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Electron.
– volume: 484
  start-page: 1
  year: 2021
  end-page: 10
  ident: bib0015
  article-title: Online state-of-health estimation of lithium-ion battery based on dynamic parameter identification at multi timescale and support vector regression
  publication-title: J. Power Sources
– volume: 459
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib0030
  article-title: State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short-term memory neural network
  publication-title: J. Power Sources
– volume: 41
  start-page: 916
  issue: 6
  year: 2017
  ident: 10.1016/j.electacta.2021.139047_bib0025
  article-title: State-of-health estimation for batteries based on ant colony neural network algorithm
  publication-title: J. Power Sources
– volume: 64
  start-page: 4885
  issue: 6
  year: 2017
  ident: 10.1016/j.electacta.2021.139047_bib0029
  article-title: Diagnosis of electric vehicle batteries using recurrent neural networks
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2674593
– volume: 8
  start-page: 122135
  year: 2020
  ident: 10.1016/j.electacta.2021.139047_bib0033
  article-title: Li-ion batteries parameter estimation with tiny neural networks embedded on intelligent IoT microcontrollers
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3007046
– volume: 41
  start-page: 735
  issue: 06
  year: 2020
  ident: 10.1016/j.electacta.2021.139047_bib0043
  article-title: RUL indirect prediction method for lithium-ion batteries based on GA-ELM
  publication-title: J. Meas.
– volume: 188
  start-page: 356
  year: 2016
  ident: 10.1016/j.electacta.2021.139047_bib0038
  article-title: Open-circuit voltage-based state of charge estimation of lithium-ion battery using dual neural network fusion battery model
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.12.001
– volume: 75
  start-page: 1856
  year: 2015
  ident: 10.1016/j.electacta.2021.139047_bib0020
  article-title: Derivation and comparison of open-loop and closed-loop neural network battery state-of-charge estimators
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.07.163
– volume: 05
  start-page: 313
  issue: 03
  year: 2008
  ident: 10.1016/j.electacta.2021.139047_bib0041
  article-title: An approach to polynomial NARX/NARMAX systems identification in a closed-loop with variable structure control
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-008-0313-7
– volume: 140
  issue: 6
  year: 1993
  ident: 10.1016/j.electacta.2021.139047_bib0008
  article-title: Modeling of Galvanostatic charge and discharge of the lithium polymer insertion cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2221597
– volume: 164
  start-page: 1
  year: 2020
  ident: 10.1016/j.electacta.2021.139047_bib0042
  article-title: Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction and online validation
  publication-title: J. Meas.
– volume: 26
  start-page: 1295
  issue: 3
  year: 2021
  ident: 10.1016/j.electacta.2021.139047_bib0002
  article-title: General discharge voltage information enabled health evaluation for lithium-ion batteries
  publication-title: IEEE ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2020.3040010
– volume: 44
  start-page: 341
  issue: 3
  year: 2020
  ident: 10.1016/j.electacta.2021.139047_bib0026
  article-title: State-of-health estimation for batteries based on SA-BP neural network
  publication-title: J. Power Sources
– volume: 25
  year: 2019
  ident: 10.1016/j.electacta.2021.139047_bib0035
  article-title: A deep learning method for online capacity estimation of lithium-ion batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.100817
– volume: 225
  start-page: 225
  year: 2017
  ident: 10.1016/j.electacta.2021.139047_bib0040
  article-title: State of charge estimation of lithium-ion batteries using an optimal adaptive gain nonlinear observer
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.119
– volume: 66
  start-page: 7706
  issue: 10
  year: 2020
  ident: 10.1016/j.electacta.2021.139047_bib0023
  article-title: A novel estimation method for the state of health of lithium-Ion battery using prior knowledge-based neural network and Markov chain
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2880703
– volume: 51
  start-page: 392
  issue: 28
  year: 2018
  ident: 10.1016/j.electacta.2021.139047_bib0024
  article-title: Estimation of li-ion battery state of health based on multilayer perceptron: as an EV application
  publication-title: IFAC Papers Online
  doi: 10.1016/j.ifacol.2018.11.734
– volume: 48
  start-page: 2565
  issue: 9
  year: 2007
  ident: 10.1016/j.electacta.2021.139047_bib0009
  article-title: Control oriented ID electrochemical model of lithium ion battery
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2007.03.015
– volume: 186
  start-page: 558
  year: 2016
  ident: 10.1016/j.electacta.2021.139047_bib0011
  article-title: State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.08.138
– volume: 88-90
  start-page: 1216
  year: 2018
  ident: 10.1016/j.electacta.2021.139047_bib0016
  article-title: Lithium-ion battery state of health estimation with short-term current pulse test and support vector machine
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2018.07.025
– volume: 353
  start-page: 1
  year: 2020
  ident: 10.1016/j.electacta.2021.139047_bib0037
  article-title: Improved parameters identification and state of charge estimation for lithium-ion battery with real-time optimal forgetting factor
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136576
– volume: 205
  start-page: 115
  year: 2018
  ident: 10.1016/j.electacta.2021.139047_bib0006
  article-title: A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: challenges and recommendations
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.09.065
– volume: 459
  start-page: 1
  year: 2020
  ident: 10.1016/j.electacta.2021.139047_bib0030
  article-title: State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short-term memory neural network
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228069
– volume: 57
  start-page: 67
  issue: 2
  year: 2019
  ident: 10.1016/j.electacta.2021.139047_bib0014
  article-title: State of health estimation for lithium-ion batteries based on random forest
  publication-title: Agric. Equip. Veh. Eng.
– year: 2019
  ident: 10.1016/j.electacta.2021.139047_bib0021
  article-title: Data-driven prognostic model of li-ion battery with deep learning algorithm
– volume: 6
  start-page: 417
  issue: 2
  year: 2020
  ident: 10.1016/j.electacta.2021.139047_bib0003
  article-title: State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model
  publication-title: IEEE Trans. Transp. Electrif.
  doi: 10.1109/TTE.2020.2994543
– start-page: 3361
  year: 2019
  ident: 10.1016/j.electacta.2021.139047_bib0019
  article-title: Adaptive and fast state of health estimation method for lithium-ion batteries using online complex impedance and artificial neural network
– volume: 326
  start-page: 1
  year: 2019
  ident: 10.1016/j.electacta.2021.139047_bib0039
  article-title: State of charge estimation for lithium-ion battery using an electrochemical model based on electrical double layer effect
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.134966
– volume: 387
  start-page: 1
  year: 2021
  ident: 10.1016/j.electacta.2021.139047_bib0036
  article-title: Improved parameter identification and state-of-charge estimation for lithium-ion battery with fixed memory recursive least squares and sigma-point Kalman filter
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.138501
– volume: 50
  year: 2020
  ident: 10.1016/j.electacta.2021.139047_bib0001
  article-title: State-of health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network
  publication-title: J. Power Sources
– volume: 450
  year: 2020
  ident: 10.1016/j.electacta.2021.139047_bib0010
  article-title: Remaining useful life prediction of lithium-ion battery based on improved cuckoo search particle filter and a novel state of charge estimation method
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.227700
– volume: 12
  start-page: 4338
  issue: 22
  year: 2019
  ident: 10.1016/j.electacta.2021.139047_bib0028
  article-title: State-of-health estimation of Li-ion batteries in electric vehicle using IndRNN under variable load condition
  publication-title: Energies
  doi: 10.3390/en12224338
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.electacta.2021.139047_bib0022
  article-title: Prognostics for state of health of lithium-ion batteries based on Gaussian process regression
  publication-title: Math. Probl. Eng.
– volume: 67
  start-page: 8723
  issue: 10
  year: 2020
  ident: 10.1016/j.electacta.2021.139047_bib0032
  article-title: Transfer learning with long short-term memory network for state-of-health prediction of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2946551
– volume: 7
  start-page: 102662
  year: 2020
  ident: 10.1016/j.electacta.2021.139047_bib0027
  article-title: State of health estimation for lithium-ion batteries based on fusion of autoregressive moving average model and Elman neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2930680
– volume: 8
  start-page: 53307
  year: 2020
  ident: 10.1016/j.electacta.2021.139047_bib0034
  article-title: State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981261
– volume: 484
  start-page: 1
  year: 2021
  ident: 10.1016/j.electacta.2021.139047_bib0015
  article-title: Online state-of-health estimation of lithium-ion battery based on dynamic parameter identification at multi timescale and support vector regression
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.229233
– volume: 41
  start-page: 708
  issue: 5
  year: 2017
  ident: 10.1016/j.electacta.2021.139047_bib0018
  article-title: SOH estimation for lithium-ion batteries based on artificial neural network
  publication-title: J. Power Sources
– volume: 65
  start-page: 5634
  issue: 7
  year: 2018
  ident: 10.1016/j.electacta.2021.139047_bib0017
  article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2782224
– volume: 29
  year: 2020
  ident: 10.1016/j.electacta.2021.139047_bib0005
  article-title: Comparative study of curve determination methods for incremental capacity analysis and state of health estimation of lithium-ion battery
  publication-title: J. Power Sources
– volume: 21
  start-page: 504
  issue: 2
  year: 2016
  ident: 10.1016/j.electacta.2021.139047_bib0007
  article-title: Accurate electrical battery model capable of predicting, runtime and I-V performance
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2006.874229
– volume: 484
  start-page: 1
  year: 2021
  ident: 10.1016/j.electacta.2021.139047_bib0013
  article-title: State-of-health estimators coupled to a random forest approach for lithium-ion battery aging factor ranking
  publication-title: J. Power Sources
– volume: 278
  start-page: 1
  year: 2020
  ident: 10.1016/j.electacta.2021.139047_bib0004
  article-title: A novel model-based voltage construction method for robust state-of-health estimation of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Electron.
– volume: 440
  start-page: 1
  year: 2019
  ident: 10.1016/j.electacta.2021.139047_bib0031
  article-title: Remaining useful life prediction for supercapacitor based on long short-term memory neural network
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227149
– volume: 67
  start-page: 1022
  issue: 03
  year: 2016
  ident: 10.1016/j.electacta.2021.139047_bib0044
  article-title: Fault diagnosis of refrigeration system based on principal component analysis-probabilistic neural network
  publication-title: J. Chem. Eng.
– volume: 8
  start-page: 52796
  year: 2020
  ident: 10.1016/j.electacta.2021.139047_bib0012
  article-title: Machine learning applied to electrified vehicle battery state of charge and state of health estimation: state-of-the-art
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980961
SSID ssj0007670
Score 2.524272
Snippet •Coupling loop NARX neural network has better time series prediction accuracy.•Principal component feature extraction eliminates redundant variables...
In order to solve the problem of low accuracy of traditional artificial neural networks in approximating functional, a coupling-loop nonlinear autoregressive...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 139047
SubjectTerms Algorithms
Artificial neural networks
Back propagation networks
Bayesian analysis
Bayesian regularization algorithm
Coupling
Coupling-loop
Error reduction
Feature extraction
Functional approximation
Independent variables
Indicators
Lithium
Lithium batteries
Lithium-ion batteries
Lithium-ion battery
Machine learning
Neural networks
Rechargeable batteries
Regularization
State of health
Title State of health estimation for lithium-ion battery based on the coupling-loop nonlinear autoregressive with exogenous inputs neural network
URI https://dx.doi.org/10.1016/j.electacta.2021.139047
https://www.proquest.com/docview/2576367225
Volume 393
WOSCitedRecordID wos000692045200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-3859
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007670
  issn: 0013-4686
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6FFgk4ICggCgXtAXGxNnK8tnfNrYpSAYoCh7REXCx7s65dpXaaxFV4Bl6HB2T2x06CCoUDFyvZaNebzJeZ2fHMNwi9gUMV9cWUETgiM-IzJkgSspQEEc9SjwqW6vqKsyEbjfhkEn3udH40tTDXM1aWfL2O5v9V1DAGwlals_8g7nZRGIDXIHS4gtjh-leC1-5j4wOuckfRaFxuUgrB7c6L-pKo96km1_zmKFM2tY8NHFHVqkr3nMyqau6UhkojWTiJYjuQ-niuso10AFeuK0vyWpTzerV0FD0mCL00yeU7YX_Tb0fkhSIoUBwemxyhWqcUfM2Lq3oD1i82kt3P6zKvizZRKNHB3UmdV9bo6iRiG8fN62Vul7ChDE_n0tmkVh1fa2tszrZVdo8SP2z4so2W5owSyi2VuFXjNKJbirh3o3kwkYqLrm4xpL5oV22jC16wa3g_dwm5R5_ik9PhMB4PJuO38yuiepWpZ_q2ccsdtO-xIAJdun_8YTD52HoALGRu0zlDbX0nr_DGe__OK_rFP9BOz_gRemhPK_jYoOwx6sjyAN3rN00CD9CDLT7LJ-i7xh6uMmywhzfYw4A9vIU9bLGHNfYwDAD28A72cIs9vIs9rLCHW-xhgz1ssIct9p6i05PBuP-e2G4fRFCfrojncem5iaBZ5gdMZIFHJe8JjyZZEvo9GcogjVwB_rCUQtV_Sy_inhAs4TwMXZ8-Q3uwL_kcYSY9xt0UlpGJHwk3SkXQS_10SinlYGcOUdj82rGwVPiqI8ssbnIeL-JWTLESU2zEdIjcduLcsMHcPuVdI87YOrXGWY0BlLdPPmoAEFsVs4xViICGDAzxiz9__BLd3_zLjtDealHLV-iuuF4Vy8VrC9qfh3fU_A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+of+health+estimation+for+lithium-ion+battery+based+on+the+coupling-loop+nonlinear+autoregressive+with+exogenous+inputs+neural+network&rft.jtitle=Electrochimica+acta&rft.au=Cui%2C+Zhiquan&rft.au=Wang%2C+Chunhui&rft.au=Gao%2C+Xuhong&rft.au=Tian%2C+Shushan&rft.date=2021-10-10&rft.pub=Elsevier+BV&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=393&rft.spage=1&rft_id=info:doi/10.1016%2Fj.electacta.2021.139047&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon