State of health estimation for lithium-ion battery based on the coupling-loop nonlinear autoregressive with exogenous inputs neural network
•Coupling loop NARX neural network has better time series prediction accuracy.•Principal component feature extraction eliminates redundant variables effectively.•BR algorithm speeds up the convergence rate of neural network weights. In order to solve the problem of low accuracy of traditional artifi...
Uloženo v:
| Vydáno v: | Electrochimica acta Ročník 393; s. 139047 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
10.10.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0013-4686, 1873-3859 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Coupling loop NARX neural network has better time series prediction accuracy.•Principal component feature extraction eliminates redundant variables effectively.•BR algorithm speeds up the convergence rate of neural network weights.
In order to solve the problem of low accuracy of traditional artificial neural networks in approximating functional, a coupling-loop nonlinear autoregressive with exogenous inputs neural network estimation model is proposed and applied to the state of health forecasting of lithium-ion batteries. Firstly, eight health indicators related to the state of health of lithium-ion batteries are mined. In order to eliminate the harm of weakly correlated independent variables and redundant independent variables to the estimation results, principal component feature extraction is applied to the feature extraction of the eight health indicators. Bayesian regularization algorithm is used to learn the weights of the neural network, which solves the problems of slow convergence speed and easy to fall into local extremum of back propagation learning algorithm, and improves the generalization ability of the neural network. In order to verify the rationality of the proposed model and algorithm, the coupling-loop nonlinear autoregressive with exogenous inputs neural network model is used to estimate the state of health of lithium battery under the condition of complete charge discharge test, and the estimation results are compared with other neural network models. The simulation results show that the coupling-loop nonlinear autoregressive with exogenous inputs estimation model using feature extraction method and Bayesian network weight algorithm can approach the functional with higher accuracy, and the absolute error and relative error of lithium-ion battery's state of health estimation can be reduced by more than 50% on average, while the mean square error can be reduced by more than 80%. |
|---|---|
| AbstractList | •Coupling loop NARX neural network has better time series prediction accuracy.•Principal component feature extraction eliminates redundant variables effectively.•BR algorithm speeds up the convergence rate of neural network weights.
In order to solve the problem of low accuracy of traditional artificial neural networks in approximating functional, a coupling-loop nonlinear autoregressive with exogenous inputs neural network estimation model is proposed and applied to the state of health forecasting of lithium-ion batteries. Firstly, eight health indicators related to the state of health of lithium-ion batteries are mined. In order to eliminate the harm of weakly correlated independent variables and redundant independent variables to the estimation results, principal component feature extraction is applied to the feature extraction of the eight health indicators. Bayesian regularization algorithm is used to learn the weights of the neural network, which solves the problems of slow convergence speed and easy to fall into local extremum of back propagation learning algorithm, and improves the generalization ability of the neural network. In order to verify the rationality of the proposed model and algorithm, the coupling-loop nonlinear autoregressive with exogenous inputs neural network model is used to estimate the state of health of lithium battery under the condition of complete charge discharge test, and the estimation results are compared with other neural network models. The simulation results show that the coupling-loop nonlinear autoregressive with exogenous inputs estimation model using feature extraction method and Bayesian network weight algorithm can approach the functional with higher accuracy, and the absolute error and relative error of lithium-ion battery's state of health estimation can be reduced by more than 50% on average, while the mean square error can be reduced by more than 80%. In order to solve the problem of low accuracy of traditional artificial neural networks in approximating functional, a coupling-loop nonlinear autoregressive with exogenous inputs neural network estimation model is proposed and applied to the state of health forecasting of lithium-ion batteries. Firstly, eight health indicators related to the state of health of lithium-ion batteries are mined. In order to eliminate the harm of weakly correlated independent variables and redundant independent variables to the estimation results, principal component feature extraction is applied to the feature extraction of the eight health indicators. Bayesian regularization algorithm is used to learn the weights of the neural network, which solves the problems of slow convergence speed and easy to fall into local extremum of back propagation learning algorithm, and improves the generalization ability of the neural network. In order to verify the rationality of the proposed model and algorithm, the coupling-loop nonlinear autoregressive with exogenous inputs neural network model is used to estimate the state of health of lithium battery under the condition of complete charge discharge test, and the estimation results are compared with other neural network models. The simulation results show that the coupling-loop nonlinear autoregressive with exogenous inputs estimation model using feature extraction method and Bayesian network weight algorithm can approach the functional with higher accuracy, and the absolute error and relative error of lithium-ion battery's state of health estimation can be reduced by more than 50% on average, while the mean square error can be reduced by more than 80%. |
| ArticleNumber | 139047 |
| Author | Cui, Zhiquan Tian, Shushan Wang, Chunhui Gao, Xuhong |
| Author_xml | – sequence: 1 givenname: Zhiquan orcidid: 0000-0002-2386-7323 surname: Cui fullname: Cui, Zhiquan email: cuizhiquan@hit.edu.cn organization: School of Automotive Engineering, Harbin Institute of Technology at Weihai, No. 2 Wenhuaxi Road, Weihai 264209, China – sequence: 2 givenname: Chunhui surname: Wang fullname: Wang, Chunhui email: 1598811326@qq.com organization: School of Automotive Engineering, Harbin Institute of Technology at Weihai, No. 2 Wenhuaxi Road, Weihai 264209, China – sequence: 3 givenname: Xuhong surname: Gao fullname: Gao, Xuhong email: Gaoxuhong@linking-auto.com organization: Beijing Institute of Space Launch Technology at Beijing, No. 1 Nandahongmen Road, Fengtai District, Beijing 100076, China – sequence: 4 givenname: Shushan surname: Tian fullname: Tian, Shushan organization: Beijing Institute of Space Launch Technology at Beijing, No. 1 Nandahongmen Road, Fengtai District, Beijing 100076, China |
| BookMark | eNqNkEtLAzEUhYMo2Kq_wYDrqXnMJNOFi1J8QcGFug5peqdNnSZjkvHxG_zTplZcuFEIHG4459zkG6J95x0gdErJiBIqztcjaMEknc-IEUZHlI9JKffQgNaSF7yuxvtoQAjlRSlqcYiGMa4JIVJIMkAf90knwL7BK9BtWmGIyW50st7hxgfc2rSy_abYznOdEoT3rBEWOF-kFWDj-661blm03nc4vy0PoAPWffIBlgFitC-AX-22-80vwfk-Yuu6PkXsoA-6zZJefXg6RgeNbiOcfOsRery6fJjeFLO769vpZFYYXvJUMFYDI9rwpikraZqKcaipYVw3WpQUBFTzMTEk28CUjAlg45oZI3VdC0FKfoTOdr1d8M99_rBa-z64vFKxSgouJGNVdl3sXCb4GAM0ytj0BSYFbVtFidryV2v1w19t-asd_5yXv_JdyGTD-z-Sk10SMoQXC0FFY8EZWNiQ_Wrh7Z8dn2HxqsE |
| CitedBy_id | crossref_primary_10_1016_j_est_2022_104950 crossref_primary_10_3390_batteries9010007 crossref_primary_10_3390_en16031420 crossref_primary_10_1007_s11581_024_06049_4 crossref_primary_10_1016_j_infrared_2024_105414 crossref_primary_10_1016_j_energy_2024_132077 crossref_primary_10_1016_j_pnucene_2023_104729 crossref_primary_10_1016_j_electacta_2022_141300 crossref_primary_10_1016_j_electacta_2023_143565 crossref_primary_10_3389_fenrg_2022_972486 crossref_primary_10_1016_j_est_2023_108098 crossref_primary_10_3390_en16114423 crossref_primary_10_3390_su142315538 crossref_primary_10_3390_atmos14050798 crossref_primary_10_1016_j_est_2022_105630 crossref_primary_10_1016_j_matcom_2025_05_022 crossref_primary_10_3390_en17010206 crossref_primary_10_1016_j_chemosphere_2024_143096 crossref_primary_10_1115_1_4069311 crossref_primary_10_1016_j_electacta_2022_140940 crossref_primary_10_1002_oca_3248 crossref_primary_10_1016_j_est_2023_107031 crossref_primary_10_1016_j_egyr_2023_01_108 crossref_primary_10_1016_j_est_2024_113172 crossref_primary_10_1016_j_apenergy_2023_122417 crossref_primary_10_1002_tcr_202200131 crossref_primary_10_3390_en18102459 crossref_primary_10_1063_5_0221822 |
| Cites_doi | 10.1109/TIE.2017.2674593 10.1109/ACCESS.2020.3007046 10.1016/j.electacta.2015.12.001 10.1016/j.egypro.2015.07.163 10.1007/s11633-008-0313-7 10.1149/1.2221597 10.1109/TMECH.2020.3040010 10.1016/j.est.2019.100817 10.1016/j.electacta.2016.12.119 10.1109/TIE.2018.2880703 10.1016/j.ifacol.2018.11.734 10.1016/j.enconman.2007.03.015 10.1016/j.apenergy.2016.08.138 10.1016/j.microrel.2018.07.025 10.1016/j.electacta.2020.136576 10.1016/j.jclepro.2018.09.065 10.1016/j.jpowsour.2020.228069 10.1109/TTE.2020.2994543 10.1016/j.electacta.2019.134966 10.1016/j.electacta.2021.138501 10.1016/j.jpowsour.2020.227700 10.3390/en12224338 10.1109/TIE.2019.2946551 10.1109/ACCESS.2019.2930680 10.1109/ACCESS.2020.2981261 10.1016/j.jpowsour.2020.229233 10.1109/TIE.2017.2782224 10.1109/TEC.2006.874229 10.1016/j.jpowsour.2019.227149 10.1109/ACCESS.2020.2980961 |
| ContentType | Journal Article |
| Copyright | 2021 Copyright Elsevier BV Oct 10, 2021 |
| Copyright_xml | – notice: 2021 – notice: Copyright Elsevier BV Oct 10, 2021 |
| DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1016/j.electacta.2021.139047 |
| DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1873-3859 |
| ExternalDocumentID | 10_1016_j_electacta_2021_139047 S0013468621013372 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW T9H VH1 WUQ XOL ZY4 ~HD 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c343t-228e20ac3ff457cf523e81c23afa641e6e5b90c028eec4226e2982cc7a8866043 |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000692045200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-4686 |
| IngestDate | Sun Nov 09 06:14:15 EST 2025 Tue Nov 18 20:47:30 EST 2025 Sat Nov 29 06:57:58 EST 2025 Fri Feb 23 02:41:30 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Lithium-ion battery Coupling-loop Functional approximation State of health Bayesian regularization algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c343t-228e20ac3ff457cf523e81c23afa641e6e5b90c028eec4226e2982cc7a8866043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2386-7323 |
| PQID | 2576367225 |
| PQPubID | 2045485 |
| ParticipantIDs | proquest_journals_2576367225 crossref_citationtrail_10_1016_j_electacta_2021_139047 crossref_primary_10_1016_j_electacta_2021_139047 elsevier_sciencedirect_doi_10_1016_j_electacta_2021_139047 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-10 |
| PublicationDateYYYYMMDD | 2021-10-10 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Electrochimica acta |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | He, Bian, Liu (bib0005) 2020; 29 Kodjo, Kddahech, Dumur, Beauvois, Godoy (bib0013) 2021; 484 Meng, Cai, Luo (bib0016) 2018; 88-90 Phattara, Nita (bib0021) 2019 Ouyang, Xu, Chen (bib0037) 2020; 353 He, Wei, Bian (bib0003) 2020; 6 X., Dang, Xua (bib0038) 2016; 188 Bi, Zhang, Yu (bib0011) 2016; 186 Shen, Mohammadkazem, Chen (bib0035) 2019; 25 Dai, Zhao, Lin (bib0023) 2020; 66 Crocioni, Pau, Delorme, Gruosso (bib0033) 2020; 8 Sun, Xia (bib0014) 2019; 57 Mohamed, M’hiri (bib0041) 2008; 05 Zhou, Li, Zhu (bib0034) 2020; 8 Wei, Dong, Chen (bib0017) 2018; 65 Xia, Qahouq, Jaber (bib0019) 2019 Doyle, Fuller, Newman (bib0008) 1993; 140 Tan, Zhao (bib0032) 2020; 67 Xu, Cao, T.Z (bib0026) 2020; 44 Chen, Xue, Xiao (bib0027) 2020; 7 Zhou, Yin, Fu (bib0022) 2018; 2018 Tan, Zhan, Lyu, Rao, Fan (bib0015) 2021; 484 You, Park, Oh (bib0029) 2017; 64 Tian, Li, Tian (bib0040) 2017; 225 Li, Zhang, Xiong, Ding, Jie, Luo, Rong, Li (bib0030) 2020; 459 Li, Zhang, Xiong (bib0001) 2020; 50 Lipu, Hannan, Hussain (bib0006) 2018; 205 Li, Zhang, Yang (bib0039) 2019; 326 Chen, Rincon-Mora (bib0007) 2016; 21 Qiu, Wu, Wang (bib0010) 2020; 450 Sun, Lin, Cai (bib0036) 2021; 387 He, Hu, Guo, Zheng (bib0018) 2017; 41 Zheng, Li, X (bib0042) 2020; 164 Chen, Li, Lin (bib0043) 2020; 41 Deng, Hu, Lin (bib0002) 2021; 26 Vidal, Malysz, Kollmeyer, Emadi (bib0012) 2020; 8 Lin, Han, Cui (bib0044) 2016; 67 Hussein (bib0020) 2015; 75 Xiao, Li, Li, Wang (bib0025) 2017; 41 Smith, Rahn, Wang (bib0009) 2007; 48 Bian, Wei, He (bib0004) 2020; 278 Zhou, Huang, Pang, Wang (bib0031) 2019; 440 Venugopal, Vigneswaran (bib0028) 2019; 12 Kim, Yu, Kim, Kim, Han (bib0024) 2018; 51 Smith (10.1016/j.electacta.2021.139047_bib0009) 2007; 48 Tan (10.1016/j.electacta.2021.139047_bib0015) 2021; 484 Chen (10.1016/j.electacta.2021.139047_bib0027) 2020; 7 Ouyang (10.1016/j.electacta.2021.139047_bib0037) 2020; 353 Doyle (10.1016/j.electacta.2021.139047_bib0008) 1993; 140 Phattara (10.1016/j.electacta.2021.139047_bib0021) 2019 Kim (10.1016/j.electacta.2021.139047_bib0024) 2018; 51 Tian (10.1016/j.electacta.2021.139047_bib0040) 2017; 225 Chen (10.1016/j.electacta.2021.139047_bib0007) 2016; 21 Hussein (10.1016/j.electacta.2021.139047_bib0020) 2015; 75 You (10.1016/j.electacta.2021.139047_bib0029) 2017; 64 Li (10.1016/j.electacta.2021.139047_bib0030) 2020; 459 Wei (10.1016/j.electacta.2021.139047_bib0017) 2018; 65 Xia (10.1016/j.electacta.2021.139047_bib0019) 2019 Zhou (10.1016/j.electacta.2021.139047_bib0034) 2020; 8 Zheng (10.1016/j.electacta.2021.139047_bib0042) 2020; 164 Deng (10.1016/j.electacta.2021.139047_bib0002) 2021; 26 Sun (10.1016/j.electacta.2021.139047_bib0036) 2021; 387 Lin (10.1016/j.electacta.2021.139047_bib0044) 2016; 67 Sun (10.1016/j.electacta.2021.139047_bib0014) 2019; 57 Lipu (10.1016/j.electacta.2021.139047_bib0006) 2018; 205 Tan (10.1016/j.electacta.2021.139047_bib0032) 2020; 67 X. (10.1016/j.electacta.2021.139047_bib0038) 2016; 188 Vidal (10.1016/j.electacta.2021.139047_bib0012) 2020; 8 Mohamed (10.1016/j.electacta.2021.139047_bib0041) 2008; 05 Li (10.1016/j.electacta.2021.139047_bib0039) 2019; 326 Meng (10.1016/j.electacta.2021.139047_bib0016) 2018; 88-90 He (10.1016/j.electacta.2021.139047_bib0018) 2017; 41 Kodjo (10.1016/j.electacta.2021.139047_bib0013) 2021; 484 Xu (10.1016/j.electacta.2021.139047_bib0026) 2020; 44 Zhou (10.1016/j.electacta.2021.139047_bib0022) 2018; 2018 Shen (10.1016/j.electacta.2021.139047_bib0035) 2019; 25 Qiu (10.1016/j.electacta.2021.139047_bib0010) 2020; 450 Chen (10.1016/j.electacta.2021.139047_bib0043) 2020; 41 Li (10.1016/j.electacta.2021.139047_bib0001) 2020; 50 He (10.1016/j.electacta.2021.139047_bib0003) 2020; 6 Dai (10.1016/j.electacta.2021.139047_bib0023) 2020; 66 Xiao (10.1016/j.electacta.2021.139047_bib0025) 2017; 41 Bian (10.1016/j.electacta.2021.139047_bib0004) 2020; 278 He (10.1016/j.electacta.2021.139047_bib0005) 2020; 29 Zhou (10.1016/j.electacta.2021.139047_bib0031) 2019; 440 Crocioni (10.1016/j.electacta.2021.139047_bib0033) 2020; 8 Bi (10.1016/j.electacta.2021.139047_bib0011) 2016; 186 Venugopal (10.1016/j.electacta.2021.139047_bib0028) 2019; 12 |
| References_xml | – volume: 278 start-page: 1 year: 2020 end-page: 12 ident: bib0004 article-title: A novel model-based voltage construction method for robust state-of-health estimation of lithium-ion batteries publication-title: IEEE Trans. Ind. Electron. – volume: 8 start-page: 52796 year: 2020 end-page: 52814 ident: bib0012 article-title: Machine learning applied to electrified vehicle battery state of charge and state of health estimation: state-of-the-art publication-title: IEEE Access – volume: 48 start-page: 2565 year: 2007 end-page: 2578 ident: bib0009 article-title: Control oriented ID electrochemical model of lithium ion battery publication-title: Energy Convers. Manag. – start-page: 3361 year: 2019 end-page: 3365 ident: bib0019 article-title: Adaptive and fast state of health estimation method for lithium-ion batteries using online complex impedance and artificial neural network publication-title: Proceedings of the Annual IEEE Applied Power Electronics Conference and Exposition (APEC) – volume: 50 year: 2020 ident: bib0001 article-title: State-of health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network publication-title: J. Power Sources – volume: 6 start-page: 417 year: 2020 end-page: 426 ident: bib0003 article-title: State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model publication-title: IEEE Trans. Transp. Electrif. – year: 2019 ident: bib0021 article-title: Data-driven prognostic model of li-ion battery with deep learning algorithm publication-title: Proceedings of the Reliability and Maintainability Symposium – volume: 65 start-page: 5634 year: 2018 end-page: 5643 ident: bib0017 article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression publication-title: IEEE Trans. Ind. Electron. – volume: 12 start-page: 4338 year: 2019 ident: bib0028 article-title: State-of-health estimation of Li-ion batteries in electric vehicle using IndRNN under variable load condition publication-title: Energies – volume: 57 start-page: 67 year: 2019 end-page: 71 ident: bib0014 article-title: State of health estimation for lithium-ion batteries based on random forest publication-title: Agric. Equip. Veh. Eng. – volume: 8 start-page: 122135 year: 2020 end-page: 122146 ident: bib0033 article-title: Li-ion batteries parameter estimation with tiny neural networks embedded on intelligent IoT microcontrollers publication-title: IEEE Access – volume: 225 start-page: 225 year: 2017 end-page: 234 ident: bib0040 article-title: State of charge estimation of lithium-ion batteries using an optimal adaptive gain nonlinear observer publication-title: Electrochim. Acta – volume: 51 start-page: 392 year: 2018 end-page: 397 ident: bib0024 article-title: Estimation of li-ion battery state of health based on multilayer perceptron: as an EV application publication-title: IFAC Papers Online – volume: 41 start-page: 916 year: 2017 end-page: 919 ident: bib0025 article-title: State-of-health estimation for batteries based on ant colony neural network algorithm publication-title: J. Power Sources – volume: 164 start-page: 1 year: 2020 end-page: 14 ident: bib0042 article-title: Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction and online validation publication-title: J. Meas. – volume: 29 year: 2020 ident: bib0005 article-title: Comparative study of curve determination methods for incremental capacity analysis and state of health estimation of lithium-ion battery publication-title: J. Power Sources – volume: 484 start-page: 1 year: 2021 end-page: 14 ident: bib0013 article-title: State-of-health estimators coupled to a random forest approach for lithium-ion battery aging factor ranking publication-title: J. Power Sources – volume: 75 start-page: 1856 year: 2015 end-page: 1861 ident: bib0020 article-title: Derivation and comparison of open-loop and closed-loop neural network battery state-of-charge estimators publication-title: Energy Procedia – volume: 205 start-page: 115 year: 2018 end-page: 133 ident: bib0006 article-title: A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: challenges and recommendations publication-title: J. Clean. Prod. – volume: 44 start-page: 341 year: 2020 end-page: 345 ident: bib0026 article-title: State-of-health estimation for batteries based on SA-BP neural network publication-title: J. Power Sources – volume: 188 start-page: 356 year: 2016 end-page: 366 ident: bib0038 article-title: Open-circuit voltage-based state of charge estimation of lithium-ion battery using dual neural network fusion battery model publication-title: Electrochim. Acta – volume: 66 start-page: 7706 year: 2020 end-page: 7716 ident: bib0023 article-title: A novel estimation method for the state of health of lithium-Ion battery using prior knowledge-based neural network and Markov chain publication-title: IEEE Trans. Ind. Electron. – volume: 7 start-page: 102662 year: 2020 end-page: 102678 ident: bib0027 article-title: State of health estimation for lithium-ion batteries based on fusion of autoregressive moving average model and Elman neural network publication-title: IEEE Access – volume: 186 start-page: 558 year: 2016 end-page: 568 ident: bib0011 article-title: State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter publication-title: Appl. Energy – volume: 25 year: 2019 ident: bib0035 article-title: A deep learning method for online capacity estimation of lithium-ion batteries publication-title: J. Energy Storage – volume: 41 start-page: 735 year: 2020 end-page: 742 ident: bib0043 article-title: RUL indirect prediction method for lithium-ion batteries based on GA-ELM publication-title: J. Meas. – volume: 8 start-page: 53307 year: 2020 end-page: 53320 ident: bib0034 article-title: State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network publication-title: IEEE Access – volume: 67 start-page: 1022 year: 2016 end-page: 1031 ident: bib0044 article-title: Fault diagnosis of refrigeration system based on principal component analysis-probabilistic neural network publication-title: J. Chem. Eng. – volume: 26 start-page: 1295 year: 2021 end-page: 1306 ident: bib0002 article-title: General discharge voltage information enabled health evaluation for lithium-ion batteries publication-title: IEEE ASME Trans. Mechatron. – volume: 450 year: 2020 ident: bib0010 article-title: Remaining useful life prediction of lithium-ion battery based on improved cuckoo search particle filter and a novel state of charge estimation method publication-title: J. Power Sources – volume: 2018 start-page: 1 year: 2018 end-page: 12 ident: bib0022 article-title: Prognostics for state of health of lithium-ion batteries based on Gaussian process regression publication-title: Math. Probl. Eng. – volume: 440 start-page: 1 year: 2019 end-page: 9 ident: bib0031 article-title: Remaining useful life prediction for supercapacitor based on long short-term memory neural network publication-title: J. Power Sources – volume: 387 start-page: 1 year: 2021 end-page: 14 ident: bib0036 article-title: Improved parameter identification and state-of-charge estimation for lithium-ion battery with fixed memory recursive least squares and sigma-point Kalman filter publication-title: Electrochim. Acta – volume: 140 year: 1993 ident: bib0008 article-title: Modeling of Galvanostatic charge and discharge of the lithium polymer insertion cell publication-title: J. Electrochem. Soc. – volume: 64 start-page: 4885 year: 2017 end-page: 4893 ident: bib0029 article-title: Diagnosis of electric vehicle batteries using recurrent neural networks publication-title: IEEE Trans. Ind. Electron. – volume: 88-90 start-page: 1216 year: 2018 end-page: 1220 ident: bib0016 article-title: Lithium-ion battery state of health estimation with short-term current pulse test and support vector machine publication-title: Microelectron. Reliab. – volume: 353 start-page: 1 year: 2020 end-page: 14 ident: bib0037 article-title: Improved parameters identification and state of charge estimation for lithium-ion battery with real-time optimal forgetting factor publication-title: Electrochim. Acta – volume: 326 start-page: 1 year: 2019 end-page: 12 ident: bib0039 article-title: State of charge estimation for lithium-ion battery using an electrochemical model based on electrical double layer effect publication-title: Electrochim. Acta – volume: 05 start-page: 313 year: 2008 end-page: 318 ident: bib0041 article-title: An approach to polynomial NARX/NARMAX systems identification in a closed-loop with variable structure control publication-title: Int. J. Autom. Comput. – volume: 41 start-page: 708 year: 2017 end-page: 710 ident: bib0018 article-title: SOH estimation for lithium-ion batteries based on artificial neural network publication-title: J. Power Sources – volume: 21 start-page: 504 year: 2016 end-page: 511 ident: bib0007 article-title: Accurate electrical battery model capable of predicting, runtime and I-V performance publication-title: IEEE Trans. Energy Convers. – volume: 67 start-page: 8723 year: 2020 end-page: 8731 ident: bib0032 article-title: Transfer learning with long short-term memory network for state-of-health prediction of lithium-ion batteries publication-title: IEEE Trans. Ind. Electron. – volume: 484 start-page: 1 year: 2021 end-page: 10 ident: bib0015 article-title: Online state-of-health estimation of lithium-ion battery based on dynamic parameter identification at multi timescale and support vector regression publication-title: J. Power Sources – volume: 459 start-page: 1 year: 2020 end-page: 12 ident: bib0030 article-title: State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short-term memory neural network publication-title: J. Power Sources – volume: 41 start-page: 916 issue: 6 year: 2017 ident: 10.1016/j.electacta.2021.139047_bib0025 article-title: State-of-health estimation for batteries based on ant colony neural network algorithm publication-title: J. Power Sources – volume: 64 start-page: 4885 issue: 6 year: 2017 ident: 10.1016/j.electacta.2021.139047_bib0029 article-title: Diagnosis of electric vehicle batteries using recurrent neural networks publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2674593 – volume: 8 start-page: 122135 year: 2020 ident: 10.1016/j.electacta.2021.139047_bib0033 article-title: Li-ion batteries parameter estimation with tiny neural networks embedded on intelligent IoT microcontrollers publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3007046 – volume: 41 start-page: 735 issue: 06 year: 2020 ident: 10.1016/j.electacta.2021.139047_bib0043 article-title: RUL indirect prediction method for lithium-ion batteries based on GA-ELM publication-title: J. Meas. – volume: 188 start-page: 356 year: 2016 ident: 10.1016/j.electacta.2021.139047_bib0038 article-title: Open-circuit voltage-based state of charge estimation of lithium-ion battery using dual neural network fusion battery model publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.12.001 – volume: 75 start-page: 1856 year: 2015 ident: 10.1016/j.electacta.2021.139047_bib0020 article-title: Derivation and comparison of open-loop and closed-loop neural network battery state-of-charge estimators publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.07.163 – volume: 05 start-page: 313 issue: 03 year: 2008 ident: 10.1016/j.electacta.2021.139047_bib0041 article-title: An approach to polynomial NARX/NARMAX systems identification in a closed-loop with variable structure control publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-008-0313-7 – volume: 140 issue: 6 year: 1993 ident: 10.1016/j.electacta.2021.139047_bib0008 article-title: Modeling of Galvanostatic charge and discharge of the lithium polymer insertion cell publication-title: J. Electrochem. Soc. doi: 10.1149/1.2221597 – volume: 164 start-page: 1 year: 2020 ident: 10.1016/j.electacta.2021.139047_bib0042 article-title: Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction and online validation publication-title: J. Meas. – volume: 26 start-page: 1295 issue: 3 year: 2021 ident: 10.1016/j.electacta.2021.139047_bib0002 article-title: General discharge voltage information enabled health evaluation for lithium-ion batteries publication-title: IEEE ASME Trans. Mechatron. doi: 10.1109/TMECH.2020.3040010 – volume: 44 start-page: 341 issue: 3 year: 2020 ident: 10.1016/j.electacta.2021.139047_bib0026 article-title: State-of-health estimation for batteries based on SA-BP neural network publication-title: J. Power Sources – volume: 25 year: 2019 ident: 10.1016/j.electacta.2021.139047_bib0035 article-title: A deep learning method for online capacity estimation of lithium-ion batteries publication-title: J. Energy Storage doi: 10.1016/j.est.2019.100817 – volume: 225 start-page: 225 year: 2017 ident: 10.1016/j.electacta.2021.139047_bib0040 article-title: State of charge estimation of lithium-ion batteries using an optimal adaptive gain nonlinear observer publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.119 – volume: 66 start-page: 7706 issue: 10 year: 2020 ident: 10.1016/j.electacta.2021.139047_bib0023 article-title: A novel estimation method for the state of health of lithium-Ion battery using prior knowledge-based neural network and Markov chain publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2880703 – volume: 51 start-page: 392 issue: 28 year: 2018 ident: 10.1016/j.electacta.2021.139047_bib0024 article-title: Estimation of li-ion battery state of health based on multilayer perceptron: as an EV application publication-title: IFAC Papers Online doi: 10.1016/j.ifacol.2018.11.734 – volume: 48 start-page: 2565 issue: 9 year: 2007 ident: 10.1016/j.electacta.2021.139047_bib0009 article-title: Control oriented ID electrochemical model of lithium ion battery publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2007.03.015 – volume: 186 start-page: 558 year: 2016 ident: 10.1016/j.electacta.2021.139047_bib0011 article-title: State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.08.138 – volume: 88-90 start-page: 1216 year: 2018 ident: 10.1016/j.electacta.2021.139047_bib0016 article-title: Lithium-ion battery state of health estimation with short-term current pulse test and support vector machine publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2018.07.025 – volume: 353 start-page: 1 year: 2020 ident: 10.1016/j.electacta.2021.139047_bib0037 article-title: Improved parameters identification and state of charge estimation for lithium-ion battery with real-time optimal forgetting factor publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136576 – volume: 205 start-page: 115 year: 2018 ident: 10.1016/j.electacta.2021.139047_bib0006 article-title: A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: challenges and recommendations publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.09.065 – volume: 459 start-page: 1 year: 2020 ident: 10.1016/j.electacta.2021.139047_bib0030 article-title: State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short-term memory neural network publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228069 – volume: 57 start-page: 67 issue: 2 year: 2019 ident: 10.1016/j.electacta.2021.139047_bib0014 article-title: State of health estimation for lithium-ion batteries based on random forest publication-title: Agric. Equip. Veh. Eng. – year: 2019 ident: 10.1016/j.electacta.2021.139047_bib0021 article-title: Data-driven prognostic model of li-ion battery with deep learning algorithm – volume: 6 start-page: 417 issue: 2 year: 2020 ident: 10.1016/j.electacta.2021.139047_bib0003 article-title: State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model publication-title: IEEE Trans. Transp. Electrif. doi: 10.1109/TTE.2020.2994543 – start-page: 3361 year: 2019 ident: 10.1016/j.electacta.2021.139047_bib0019 article-title: Adaptive and fast state of health estimation method for lithium-ion batteries using online complex impedance and artificial neural network – volume: 326 start-page: 1 year: 2019 ident: 10.1016/j.electacta.2021.139047_bib0039 article-title: State of charge estimation for lithium-ion battery using an electrochemical model based on electrical double layer effect publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.134966 – volume: 387 start-page: 1 year: 2021 ident: 10.1016/j.electacta.2021.139047_bib0036 article-title: Improved parameter identification and state-of-charge estimation for lithium-ion battery with fixed memory recursive least squares and sigma-point Kalman filter publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.138501 – volume: 50 year: 2020 ident: 10.1016/j.electacta.2021.139047_bib0001 article-title: State-of health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network publication-title: J. Power Sources – volume: 450 year: 2020 ident: 10.1016/j.electacta.2021.139047_bib0010 article-title: Remaining useful life prediction of lithium-ion battery based on improved cuckoo search particle filter and a novel state of charge estimation method publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.227700 – volume: 12 start-page: 4338 issue: 22 year: 2019 ident: 10.1016/j.electacta.2021.139047_bib0028 article-title: State-of-health estimation of Li-ion batteries in electric vehicle using IndRNN under variable load condition publication-title: Energies doi: 10.3390/en12224338 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.electacta.2021.139047_bib0022 article-title: Prognostics for state of health of lithium-ion batteries based on Gaussian process regression publication-title: Math. Probl. Eng. – volume: 67 start-page: 8723 issue: 10 year: 2020 ident: 10.1016/j.electacta.2021.139047_bib0032 article-title: Transfer learning with long short-term memory network for state-of-health prediction of lithium-ion batteries publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2946551 – volume: 7 start-page: 102662 year: 2020 ident: 10.1016/j.electacta.2021.139047_bib0027 article-title: State of health estimation for lithium-ion batteries based on fusion of autoregressive moving average model and Elman neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2930680 – volume: 8 start-page: 53307 year: 2020 ident: 10.1016/j.electacta.2021.139047_bib0034 article-title: State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981261 – volume: 484 start-page: 1 year: 2021 ident: 10.1016/j.electacta.2021.139047_bib0015 article-title: Online state-of-health estimation of lithium-ion battery based on dynamic parameter identification at multi timescale and support vector regression publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.229233 – volume: 41 start-page: 708 issue: 5 year: 2017 ident: 10.1016/j.electacta.2021.139047_bib0018 article-title: SOH estimation for lithium-ion batteries based on artificial neural network publication-title: J. Power Sources – volume: 65 start-page: 5634 issue: 7 year: 2018 ident: 10.1016/j.electacta.2021.139047_bib0017 article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2782224 – volume: 29 year: 2020 ident: 10.1016/j.electacta.2021.139047_bib0005 article-title: Comparative study of curve determination methods for incremental capacity analysis and state of health estimation of lithium-ion battery publication-title: J. Power Sources – volume: 21 start-page: 504 issue: 2 year: 2016 ident: 10.1016/j.electacta.2021.139047_bib0007 article-title: Accurate electrical battery model capable of predicting, runtime and I-V performance publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2006.874229 – volume: 484 start-page: 1 year: 2021 ident: 10.1016/j.electacta.2021.139047_bib0013 article-title: State-of-health estimators coupled to a random forest approach for lithium-ion battery aging factor ranking publication-title: J. Power Sources – volume: 278 start-page: 1 year: 2020 ident: 10.1016/j.electacta.2021.139047_bib0004 article-title: A novel model-based voltage construction method for robust state-of-health estimation of lithium-ion batteries publication-title: IEEE Trans. Ind. Electron. – volume: 440 start-page: 1 year: 2019 ident: 10.1016/j.electacta.2021.139047_bib0031 article-title: Remaining useful life prediction for supercapacitor based on long short-term memory neural network publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227149 – volume: 67 start-page: 1022 issue: 03 year: 2016 ident: 10.1016/j.electacta.2021.139047_bib0044 article-title: Fault diagnosis of refrigeration system based on principal component analysis-probabilistic neural network publication-title: J. Chem. Eng. – volume: 8 start-page: 52796 year: 2020 ident: 10.1016/j.electacta.2021.139047_bib0012 article-title: Machine learning applied to electrified vehicle battery state of charge and state of health estimation: state-of-the-art publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980961 |
| SSID | ssj0007670 |
| Score | 2.524272 |
| Snippet | •Coupling loop NARX neural network has better time series prediction accuracy.•Principal component feature extraction eliminates redundant variables... In order to solve the problem of low accuracy of traditional artificial neural networks in approximating functional, a coupling-loop nonlinear autoregressive... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 139047 |
| SubjectTerms | Algorithms Artificial neural networks Back propagation networks Bayesian analysis Bayesian regularization algorithm Coupling Coupling-loop Error reduction Feature extraction Functional approximation Independent variables Indicators Lithium Lithium batteries Lithium-ion batteries Lithium-ion battery Machine learning Neural networks Rechargeable batteries Regularization State of health |
| Title | State of health estimation for lithium-ion battery based on the coupling-loop nonlinear autoregressive with exogenous inputs neural network |
| URI | https://dx.doi.org/10.1016/j.electacta.2021.139047 https://www.proquest.com/docview/2576367225 |
| Volume | 393 |
| WOSCitedRecordID | wos000692045200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007670 issn: 0013-4686 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKhgQcEAwQg4F8QFwiV4mdxjG3qeoEqCoculFxiRLXXjJ1Sdc2U_kb-Hf4A_GvpC0aDA5cotaVE7fv6_OXl_e-B8AbHrApZdEUiZBmKMykQIxTiQjjvsRZIIURez4b0tEonkzY507nR1MLcz2jZRmv12z-X02txpSxdensP5i7PakaUK-V0dVRmV0d_8rwhj42HHCVe1pG43KTUqhod17Ul0i_z4y45jdPb2VT99jA41Wtq3TP0ayq5l5ppTTShZdqtQNhbs91tpEJ4Ip15URei3Jer5aelsdURi9tcvlO2N_22-F5oQUKtIbHJkeoNikFX_Piqt6A9YuLZPfzuszrok0USk1wd1Lnldt0TRKxi-Pm9TJ3p3ChDGxy6VxSq4mvtTU2Z9suOyAojBq9bOulY0oQiZ2UuHPjhJEtRxzcuD3YSMVF17QY0l-0q5fRVSzYt7qfu4Lco0_JyelwmIwHk_Hb-RXSvcr0M33XuOUO2Me0x5Qv3T_-MJh8bBkAjajfdM7QS9_JK7zx2r9jRb_wA0N6xo_AQ3e3Ao8tyh6DjigPwL1-0yTwADzY0rN8Ar4b7MFKQos9uMEeVNiDW9iDDnvQYA-qAYU9uIM92GIP7mIPauzBFnvQYg9a7EGHvafg9GQw7r9HrtsH4iQkK4RxLLCfciJl2KNc9jARccAxSWUahYGIRC9jPld8WAiu678FZjHmnKZxHEV-SJ6BPbUu8RxAxlmgZgXTKSWhmpilPONY-oLIIFMU-hBEza-dcCeFrzuyzJIm5_Eiac2UaDMl1kyHwG8nzq0azO1T3jXmTByptWQ1UaC8ffJRA4DEuZhlokMEJKJqI37x549fgvubf9kR2FstavEK3OXXq2K5eO1A-xMUEtc4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+of+health+estimation+for+lithium-ion+battery+based+on+the+coupling-loop+nonlinear+autoregressive+with+exogenous+inputs+neural+network&rft.jtitle=Electrochimica+acta&rft.au=Cui%2C+Zhiquan&rft.au=Wang%2C+Chunhui&rft.au=Gao%2C+Xuhong&rft.au=Tian%2C+Shushan&rft.date=2021-10-10&rft.pub=Elsevier+BV&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=393&rft.spage=1&rft_id=info:doi/10.1016%2Fj.electacta.2021.139047&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |