Kinetics of Gas Carburizing of Zr–1%Nb Alloy

The kinetic characteristics of thin-sheet (approx. 1 mm) Zr–1%Nb alloy samples after treatment in a carbon-containing gas medium ( P Ar + C 3 H 8 = 0.106 Pa) in a wide temperature range of 650–850°C and time 1; 5 and 10 h were investigated. The carburizing of the alloy at temperatures of 650 and 750...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Materials science (New York, N.Y.) Ročník 59; číslo 5; s. 623 - 629
Hlavní autoři: Trush, V. S., Pohrelyuk, I. M., Lyk’yanenko, A. G., Kravchyshyn, T. M., Fedirko, V. M., Korendii, V. M., Kovalchuk, I. V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2024
Springer
Springer Nature B.V
Témata:
ISSN:1068-820X, 1573-885X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The kinetic characteristics of thin-sheet (approx. 1 mm) Zr–1%Nb alloy samples after treatment in a carbon-containing gas medium ( P Ar + C 3 H 8 = 0.106 Pa) in a wide temperature range of 650–850°C and time 1; 5 and 10 h were investigated. The carburizing of the alloy at temperatures of 650 and 750°C occurs according to a law close to linear ( n ≈ 1), and at 850°C according to a law close to parabolic ( n ≈ 2). The activation energy of the alloy carburizing in the temperature range of 650–850°C at the propane partial pressure p C 3 H 8 = 0.018 Pa was 2.21 kJ/mol. The distribution of microhardness and structure of the near-surface layers of the alloy was shown. The microstructure of the near-surface layers of the alloy after carburizing was determined. The α-Zr and ZrC phase content on the alloy surface after treatment in a carbon-containing gas environment is presented.
AbstractList The kinetic characteristics of thin-sheet (approx. 1 mm) Zr–1%Nb alloy samples after treatment in a carbon-containing gas medium (PAr+C3H8 = 0.106 Pa) in a wide temperature range of 650–850°C and time 1; 5 and 10 h were investigated. The carburizing of the alloy at temperatures of 650 and 750°C occurs according to a law close to linear (n ≈ 1), and at 850°C according to a law close to parabolic (n ≈ 2). The activation energy of the alloy carburizing in the temperature range of 650–850°C at the propane partial pressure pC3H8 = 0.018 Pa was 2.21 kJ/mol. The distribution of microhardness and structure of the near-surface layers of the alloy was shown. The microstructure of the near-surface layers of the alloy after carburizing was determined. The α-Zr and ZrC phase content on the alloy surface after treatment in a carbon-containing gas environment is presented.
The kinetic characteristics of thin-sheet (approx. 1 mm) Zr-1%Nb alloy samples after treatment in a carbon-containing gas medium ( [Formula omitted] = 0.106 Pa) in a wide temperature range of 650-850°C and time 1; 5 and 10 h were investigated. The carburizing of the alloy at temperatures of 650 and 750°C occurs according to a law close to linear (n [almost equal to] 1), and at 850°C according to a law close to parabolic (n [almost equal to] 2). The activation energy of the alloy carburizing in the temperature range of 650-850°C at the propane partial pressure [Formula omitted] = 0.018 Pa was 2.21 kJ/mol. The distribution of microhardness and structure of the near-surface layers of the alloy was shown. The microstructure of the near-surface layers of the alloy after carburizing was determined. The [alpha]-Zr and ZrC phase content on the alloy surface after treatment in a carbon-containing gas environment is presented.
The kinetic characteristics of thin-sheet (approx. 1 mm) Zr–1%Nb alloy samples after treatment in a carbon-containing gas medium ( P Ar + C 3 H 8 = 0.106 Pa) in a wide temperature range of 650–850°C and time 1; 5 and 10 h were investigated. The carburizing of the alloy at temperatures of 650 and 750°C occurs according to a law close to linear ( n ≈ 1), and at 850°C according to a law close to parabolic ( n ≈ 2). The activation energy of the alloy carburizing in the temperature range of 650–850°C at the propane partial pressure p C 3 H 8 = 0.018 Pa was 2.21 kJ/mol. The distribution of microhardness and structure of the near-surface layers of the alloy was shown. The microstructure of the near-surface layers of the alloy after carburizing was determined. The α-Zr and ZrC phase content on the alloy surface after treatment in a carbon-containing gas environment is presented.
Audience Academic
Author Kovalchuk, I. V.
Pohrelyuk, I. M.
Trush, V. S.
Korendii, V. M.
Fedirko, V. M.
Kravchyshyn, T. M.
Lyk’yanenko, A. G.
Author_xml – sequence: 1
  givenname: V. S.
  surname: Trush
  fullname: Trush, V. S.
  email: trushvasyl@gmail.com
  organization: Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine, Lviv Polytechnic National University, Ministry of Education and Science of Ukraine
– sequence: 2
  givenname: I. M.
  surname: Pohrelyuk
  fullname: Pohrelyuk, I. M.
  organization: Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine
– sequence: 3
  givenname: A. G.
  surname: Lyk’yanenko
  fullname: Lyk’yanenko, A. G.
  organization: Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine
– sequence: 4
  givenname: T. M.
  surname: Kravchyshyn
  fullname: Kravchyshyn, T. M.
  organization: Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine
– sequence: 5
  givenname: V. M.
  surname: Fedirko
  fullname: Fedirko, V. M.
  organization: Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine
– sequence: 6
  givenname: V. M.
  surname: Korendii
  fullname: Korendii, V. M.
  organization: Lviv Polytechnic National University, Ministry of Education and Science of Ukraine
– sequence: 7
  givenname: I. V.
  surname: Kovalchuk
  fullname: Kovalchuk, I. V.
  organization: Lviv Polytechnic National University, Ministry of Education and Science of Ukraine
BookMark eNp9kMtKAzEUhoNUsK2-gKsBceEiNZeZXJalaC0WBS9Q3ITMmAwp7UxNZsC68h18Q5_E1BHEjZzFORy-Lyf8A9Cr6soAcIzRCCPEzwOOjUJEUoiQwBLiPdDHGadQiGzRizNiAgqCFgdgEMISRSnjWR-Mrl1lGleEpLbJVIdkon3eevfmqnK3evKf7x_49CZPxqtVvT0E-1avgjn66UPweHnxMLmC89vpbDKew4KmtIG4sBJxIyi1WFCSpprEyWIsJKeGMSmIxJbvKs8E5ykTzFIZNc4kyzkdgpPu3Y2vX1oTGrWsW1_Fk4oizpEkmWCRGnVUqVdGucrWjddFrGezdkVMyLq4HwuEGE05JVE4-yNEpjGvTanbENTs_u4vSzq28HUI3li18W6t_VZhpHahqy50FUNX36ErHCXaSSHCVWn877__sb4AZ4iB-A
Cites_doi 10.4028/www.scientific.net/JERA.46.7
10.1007/s11041-015-9818-1
10.15544/balttrib.2017.09
10.1002/9783527603978.mst0111
10.1016/j.jnucmat.2016.02.010
10.1016/b978-0-12-397046-6.00007-1
10.1016/j.jallcom.2020.155110
10.1007/s11003-021-00537-y
10.2533/000942905777675480
10.1016/j.apsusc.2004.10.012
10.1007/s11003-016-9945-x
10.1016/0022-3115(75)90162-2
10.1016/j.jnucmat.2013.05.03
10.1016/j.surfcoat.2010.11.015
10.1146/annurev-matsci-070214-020951
10.1016/j.jnucmat.2021.153431
10.3390/ma15228008
10.1007/s11003-020-00342-z
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2024 Springer
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2024 Springer
DBID AAYXX
CITATION
ISR
DOI 10.1007/s11003-024-00819-1
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-885X
EndPage 629
ExternalDocumentID A800634732
10_1007_s11003_024_00819_1
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABEFU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
CZ9
D1I
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IGS
IHE
IJ-
IKXTQ
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KB.
KC.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9N
PDBOC
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
XU3
YLTOR
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
CITATION
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c343t-1cf907e833f183244a23f1f118973e6698291f7f7f7b58774686f391cf7696b73
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001249387100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1068-820X
IngestDate Thu Sep 25 00:41:25 EDT 2025
Mon Nov 24 15:41:17 EST 2025
Wed Nov 26 10:48:15 EST 2025
Sat Nov 29 06:15:17 EST 2025
Fri Feb 21 02:39:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords microstructure
carburizing
surface layer
crystal lattice parameters
microhardness
weight change kinetics
Zr–1%Nb alloy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-1cf907e833f183244a23f1f118973e6698291f7f7f7b58774686f391cf7696b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3077092586
PQPubID 2044364
PageCount 7
ParticipantIDs proquest_journals_3077092586
gale_infotracacademiconefile_A800634732
gale_incontextgauss_ISR_A800634732
crossref_primary_10_1007_s11003_024_00819_1
springer_journals_10_1007_s11003_024_00819_1
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Heidelberg
PublicationTitle Materials science (New York, N.Y.)
PublicationTitleAbbrev Mater Sci
PublicationYear 2024
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References AzarenkovNABulavinLAZalyubovskyiIIKirichenkoVGNeklyudovIMShilyaevBANuclear Power Engineering2012KharkivKarazin Kharkiv. Nat. Univ. Publ. House[in Russian]
SagirounMIACaoXRHelalWMKNjorogeJNReview of development of zirconium alloys as a fuel cladding material and its oxidation behavior at high-temperature steamInt. J. of Eng. Res. in Africa20204671410.4028/www.scientific.net/JERA.46.7
D. Q. Peng, X. D. Bai, and B. S. Chen, “Corrosion behavior of carbon-implanted M5 alloy in 1M H2SO4,” Appl. Surf. Sci., 245, Iss. 1–4, 215–222 (2005). https://doi.org/10.1016/j.apsusc.2004.10.012
TrushVSFedirkoVMVoyevodinVMStoevPIPanovVAInfluence of the functional layer on the operating characteristics of Zr–1%Nb alloy at a temperature of 380°CMater. Sci.20215722342391:CAS:528:DC%2BB38XivFOmsb8%3D10.1007/s11003-021-00537-y
MottaATCouetAComstockRJCorrosion of zirconium alloys used for nuclear fuel claddingAnnual Rev. of Mater. Res.2015453113431:CAS:528:DC%2BC2MXhtFWqurrJ10.1146/annurev-matsci-070214-020951
KoganYa. DKolachevBALevinskyiYuVNazimovOPFishgoitAVConstants of Metals Interaction with Gases1987MoscowMetallurgiya[in Russian]
TrushVSLukianenkoOHStoevPIInfluence of modification of the surface layer by penetrating impurities on the long-term strength of Zr–1% Nb alloyMater. Sci.20205545855891:CAS:528:DC%2BB3cXpt1yktrc%3D10.1007/s11003-020-00342-z
Y. Katoh, G. Vasudevamurthy, T. Nozawa, and L. L. Snead, “Properties of zirconium carbide for nuclear fuel applications,” J. of Nuclear Mater., 441, Is. 1–3, 718–742 (2013). https://doi.org/10.1016/j.jnucmat.2013.05.03
Z. Zhao, F. Liu, Q. Wang, J. Li, L. Zhong, Yu. Xu, P. Hui, J. Zhu, F. Yan, and M. Zhao, “Microstructure and mechanical properties of ZrC coating on zirconium fabricated by interstitial carburization,” J. of Alloys and Compounds, 834, art. no. 155110 (2020). https://doi.org/10.1016/j.jallcom.2020.155110
V. M. Fedirko, O. H. Luk’yanenko, V. S. Trush, P. I. Stoev, M. A. Tykhonovs’kyi, “Effect of thermochemical treatment in regulated gas media on the thermal resistance of Zr–1%Nb alloy,” Mater. Sci., 56, No. 2, 209–215 (2016). https://doi.org/10.1007/s11003-016-9945-x
G. Bart, and J. Bertsch, “Zirconium alloys for fuel element structures,” CHIMIA Int. J. for Chemistry, 59, Is. 12, 938–943 (2005). https://doi.org/10.2533/000942905777675480
V. N. Fedirko, A. G. Luk’yanenko, and V. S. Trush, “Solid-solution hardening of the surface layer of titanium alloys. Part 2. Effect on metallophysical properties,” Metal Sci. and Heat Treat., 56, Is. 11, 661–664 (2015). https://doi.org/10.1007/s11041-015-9818-1
S. Yagnik, and A. Garde, “Zirconium alloys for LWR fuel cladding and core internals,” Struct. Alloys for Nuclear Energy Appl., 247–291 (2019). https://doi.org/10.1016/b978-0-12-397046-6.00007-1
G. Murtaza, S. S. Hussain, N. U. Rehman, S. Naseer, M. Shafiq, and M. Zakaullah, “Carburizing of zirconium using a low energy Mather type plasma focus,” Surf. and Coat. Techn., 205, Is. 8–9, 3012–3019 (2011). https://doi.org/10.1016/j.surfcoat.2010.11.015
V. G. Kirichenko, and A. I. Kirdin, “Nuclear physics metallurgy of zirconium alloys,” Visnyk Karazin Kharkiv. Nat. Univ. [in Ukrainian], Is. 823, 25–45 (2008).
D. J. M. King, A.J. Knowles, D. Bowden, M. R. Wenman, S. Capp, M. Gorley, J. Shimwell, L. Packer, M. R. Gilbert, and A. Harte, “High temperature zirconium alloys for fusion energy,” J. of Nuclear Mater., 559, art. no. 153431 (2022). https://doi.org/10.1016/j.jnucmat.2021.153431
I. M. Pohrelyuk, J. Padgurskas, S. M. Lavrys, A. G. Luk’yanenko, V. S. Trush, and R. Kreivaitis, “Topography, hardness, elastic modulus and wear resistance of nitride on titanium,” in: Proc. of the 9th Int. Sci Conf. Balttrib 2017 (November 16–17, 2017, Kaunas, Lithuania), Kaunas (2017), pp. 41–46. https://doi.org/10.15544/balttrib.2017.09
DuglasDZirconium Metallurgy1975MoscowAtomizdat[in Russian]
E. Kardoulaki, N. Abdul-Jabbar, D. Byler, M. M. Hassan, S. Mann, T. Coons, and J. White, “Carburization kinetics of zircalloy-4 and its implication for small modular reactor,” Performance Mater., 15, art. no. 8008 (2022). https://doi.org/10.3390/ma15228008
C. Lemaignan, and A. T. Motta, “Zirconium alloys in nuclear applications,” in: Material Science and Technology, Vol. 10, Wiley-VCH, USA, New York (1994), pp. 1–51. https://doi.org/10.1002/9783527603978.mst0111
XuYRoquesJDomainCSimoniECarbon diffusion in bulk hcp zirconium: a multi-scale approachJ. of Nuclear Mater.201647361671:CAS:528:DC%2BC28Xjs1ekt7k%3D10.1016/j.jnucmat.2016.02.010
AgarwalaRPPaulARDiffusion of carbon in zirconium and some of its alloysJ. of Nuclear Mater.19755825301:CAS:528:DyaE28Xjs1Cksw%3D%3D10.1016/0022-3115(75)90162-2
819_CR7
819_CR14
819_CR13
Y Xu (819_CR15) 2016; 473
819_CR9
819_CR18
819_CR17
819_CR19
819_CR1
VS Trush (819_CR16) 2020; 55
VS Trush (819_CR20) 2021; 57
819_CR2
NA Azarenkov (819_CR8) 2012
819_CR5
Ya. D Kogan (819_CR21) 1987
D Duglas (819_CR6) 1975
MIA Sagiroun (819_CR3) 2020; 46
819_CR10
RP Agarwala (819_CR22) 1975; 58
AT Motta (819_CR4) 2015; 45
819_CR12
819_CR11
References_xml – reference: XuYRoquesJDomainCSimoniECarbon diffusion in bulk hcp zirconium: a multi-scale approachJ. of Nuclear Mater.201647361671:CAS:528:DC%2BC28Xjs1ekt7k%3D10.1016/j.jnucmat.2016.02.010
– reference: G. Bart, and J. Bertsch, “Zirconium alloys for fuel element structures,” CHIMIA Int. J. for Chemistry, 59, Is. 12, 938–943 (2005). https://doi.org/10.2533/000942905777675480
– reference: TrushVSLukianenkoOHStoevPIInfluence of modification of the surface layer by penetrating impurities on the long-term strength of Zr–1% Nb alloyMater. Sci.20205545855891:CAS:528:DC%2BB3cXpt1yktrc%3D10.1007/s11003-020-00342-z
– reference: V. N. Fedirko, A. G. Luk’yanenko, and V. S. Trush, “Solid-solution hardening of the surface layer of titanium alloys. Part 2. Effect on metallophysical properties,” Metal Sci. and Heat Treat., 56, Is. 11, 661–664 (2015). https://doi.org/10.1007/s11041-015-9818-1
– reference: Z. Zhao, F. Liu, Q. Wang, J. Li, L. Zhong, Yu. Xu, P. Hui, J. Zhu, F. Yan, and M. Zhao, “Microstructure and mechanical properties of ZrC coating on zirconium fabricated by interstitial carburization,” J. of Alloys and Compounds, 834, art. no. 155110 (2020). https://doi.org/10.1016/j.jallcom.2020.155110
– reference: SagirounMIACaoXRHelalWMKNjorogeJNReview of development of zirconium alloys as a fuel cladding material and its oxidation behavior at high-temperature steamInt. J. of Eng. Res. in Africa20204671410.4028/www.scientific.net/JERA.46.7
– reference: TrushVSFedirkoVMVoyevodinVMStoevPIPanovVAInfluence of the functional layer on the operating characteristics of Zr–1%Nb alloy at a temperature of 380°CMater. Sci.20215722342391:CAS:528:DC%2BB38XivFOmsb8%3D10.1007/s11003-021-00537-y
– reference: D. J. M. King, A.J. Knowles, D. Bowden, M. R. Wenman, S. Capp, M. Gorley, J. Shimwell, L. Packer, M. R. Gilbert, and A. Harte, “High temperature zirconium alloys for fusion energy,” J. of Nuclear Mater., 559, art. no. 153431 (2022). https://doi.org/10.1016/j.jnucmat.2021.153431
– reference: KoganYa. DKolachevBALevinskyiYuVNazimovOPFishgoitAVConstants of Metals Interaction with Gases1987MoscowMetallurgiya[in Russian]
– reference: Y. Katoh, G. Vasudevamurthy, T. Nozawa, and L. L. Snead, “Properties of zirconium carbide for nuclear fuel applications,” J. of Nuclear Mater., 441, Is. 1–3, 718–742 (2013). https://doi.org/10.1016/j.jnucmat.2013.05.03
– reference: G. Murtaza, S. S. Hussain, N. U. Rehman, S. Naseer, M. Shafiq, and M. Zakaullah, “Carburizing of zirconium using a low energy Mather type plasma focus,” Surf. and Coat. Techn., 205, Is. 8–9, 3012–3019 (2011). https://doi.org/10.1016/j.surfcoat.2010.11.015
– reference: D. Q. Peng, X. D. Bai, and B. S. Chen, “Corrosion behavior of carbon-implanted M5 alloy in 1M H2SO4,” Appl. Surf. Sci., 245, Iss. 1–4, 215–222 (2005). https://doi.org/10.1016/j.apsusc.2004.10.012
– reference: S. Yagnik, and A. Garde, “Zirconium alloys for LWR fuel cladding and core internals,” Struct. Alloys for Nuclear Energy Appl., 247–291 (2019). https://doi.org/10.1016/b978-0-12-397046-6.00007-1
– reference: DuglasDZirconium Metallurgy1975MoscowAtomizdat[in Russian]
– reference: V. M. Fedirko, O. H. Luk’yanenko, V. S. Trush, P. I. Stoev, M. A. Tykhonovs’kyi, “Effect of thermochemical treatment in regulated gas media on the thermal resistance of Zr–1%Nb alloy,” Mater. Sci., 56, No. 2, 209–215 (2016). https://doi.org/10.1007/s11003-016-9945-x
– reference: I. M. Pohrelyuk, J. Padgurskas, S. M. Lavrys, A. G. Luk’yanenko, V. S. Trush, and R. Kreivaitis, “Topography, hardness, elastic modulus and wear resistance of nitride on titanium,” in: Proc. of the 9th Int. Sci Conf. Balttrib 2017 (November 16–17, 2017, Kaunas, Lithuania), Kaunas (2017), pp. 41–46. https://doi.org/10.15544/balttrib.2017.09
– reference: MottaATCouetAComstockRJCorrosion of zirconium alloys used for nuclear fuel claddingAnnual Rev. of Mater. Res.2015453113431:CAS:528:DC%2BC2MXhtFWqurrJ10.1146/annurev-matsci-070214-020951
– reference: E. Kardoulaki, N. Abdul-Jabbar, D. Byler, M. M. Hassan, S. Mann, T. Coons, and J. White, “Carburization kinetics of zircalloy-4 and its implication for small modular reactor,” Performance Mater., 15, art. no. 8008 (2022). https://doi.org/10.3390/ma15228008
– reference: V. G. Kirichenko, and A. I. Kirdin, “Nuclear physics metallurgy of zirconium alloys,” Visnyk Karazin Kharkiv. Nat. Univ. [in Ukrainian], Is. 823, 25–45 (2008).
– reference: C. Lemaignan, and A. T. Motta, “Zirconium alloys in nuclear applications,” in: Material Science and Technology, Vol. 10, Wiley-VCH, USA, New York (1994), pp. 1–51. https://doi.org/10.1002/9783527603978.mst0111
– reference: AzarenkovNABulavinLAZalyubovskyiIIKirichenkoVGNeklyudovIMShilyaevBANuclear Power Engineering2012KharkivKarazin Kharkiv. Nat. Univ. Publ. House[in Russian]
– reference: AgarwalaRPPaulARDiffusion of carbon in zirconium and some of its alloysJ. of Nuclear Mater.19755825301:CAS:528:DyaE28Xjs1Cksw%3D%3D10.1016/0022-3115(75)90162-2
– ident: 819_CR2
– volume: 46
  start-page: 7
  year: 2020
  ident: 819_CR3
  publication-title: Int. J. of Eng. Res. in Africa
  doi: 10.4028/www.scientific.net/JERA.46.7
– volume-title: Nuclear Power Engineering
  year: 2012
  ident: 819_CR8
– ident: 819_CR17
  doi: 10.1007/s11041-015-9818-1
– ident: 819_CR18
  doi: 10.15544/balttrib.2017.09
– ident: 819_CR7
  doi: 10.1002/9783527603978.mst0111
– volume: 473
  start-page: 61
  year: 2016
  ident: 819_CR15
  publication-title: J. of Nuclear Mater.
  doi: 10.1016/j.jnucmat.2016.02.010
– ident: 819_CR5
  doi: 10.1016/b978-0-12-397046-6.00007-1
– ident: 819_CR10
  doi: 10.1016/j.jallcom.2020.155110
– volume: 57
  start-page: 234
  issue: 2
  year: 2021
  ident: 819_CR20
  publication-title: Mater. Sci.
  doi: 10.1007/s11003-021-00537-y
– volume-title: Zirconium Metallurgy
  year: 1975
  ident: 819_CR6
– volume-title: Constants of Metals Interaction with Gases
  year: 1987
  ident: 819_CR21
– ident: 819_CR9
  doi: 10.2533/000942905777675480
– ident: 819_CR14
  doi: 10.1016/j.apsusc.2004.10.012
– ident: 819_CR19
  doi: 10.1007/s11003-016-9945-x
– volume: 58
  start-page: 25
  year: 1975
  ident: 819_CR22
  publication-title: J. of Nuclear Mater.
  doi: 10.1016/0022-3115(75)90162-2
– ident: 819_CR11
  doi: 10.1016/j.jnucmat.2013.05.03
– ident: 819_CR12
  doi: 10.1016/j.surfcoat.2010.11.015
– volume: 45
  start-page: 311
  year: 2015
  ident: 819_CR4
  publication-title: Annual Rev. of Mater. Res.
  doi: 10.1146/annurev-matsci-070214-020951
– ident: 819_CR1
  doi: 10.1016/j.jnucmat.2021.153431
– ident: 819_CR13
  doi: 10.3390/ma15228008
– volume: 55
  start-page: 585
  issue: 4
  year: 2020
  ident: 819_CR16
  publication-title: Mater. Sci.
  doi: 10.1007/s11003-020-00342-z
SSID ssj0007575
Score 2.2839923
Snippet The kinetic characteristics of thin-sheet (approx. 1 mm) Zr–1%Nb alloy samples after treatment in a carbon-containing gas medium ( P Ar + C 3 H 8 = 0.106 Pa)...
The kinetic characteristics of thin-sheet (approx. 1 mm) Zr-1%Nb alloy samples after treatment in a carbon-containing gas medium ( [Formula omitted] = 0.106...
The kinetic characteristics of thin-sheet (approx. 1 mm) Zr–1%Nb alloy samples after treatment in a carbon-containing gas medium (PAr+C3H8 = 0.106 Pa) in a...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 623
SubjectTerms Activation energy
Alloys
Carbon
Characterization and Evaluation of Materials
Chemistry and Materials Science
Gas carburizing
Hardness
Materials Science
Microhardness
Niobium base alloys
Nuclear energy
Partial pressure
Solid Mechanics
Specialty metals industry
Structural Materials
Surface layers
Zirconium carbide
Title Kinetics of Gas Carburizing of Zr–1%Nb Alloy
URI https://link.springer.com/article/10.1007/s11003-024-00819-1
https://www.proquest.com/docview/3077092586
Volume 59
WOSCitedRecordID wos001249387100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-885X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007575
  issn: 1068-820X
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-885X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007575
  issn: 1068-820X
  databaseCode: M7S
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1573-885X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007575
  issn: 1068-820X
  databaseCode: KB.
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-885X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007575
  issn: 1068-820X
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-885X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007575
  issn: 1068-820X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58HfTgW6yPsojiQSPuJk2yxyq-UEppVYqXkKwbEaSVbhX05H_wH_pLnMRd6_OgLCxhkw3DTDIPMvMFYJVaa2zINTE05YShS0KMNpdEhkI7_DaMyDy6_omo1WSrFdfzorCsyHYvjiS9pu4Xu4X-5ruIEW_HCMY8w2jupNuOjeb5u_4VFQ-vi7GOJGjfWnmpzM9zfDJHX5Xyt9NRb3T2J_5H7iSM505mUH1bFVMwkLanYewD9OAMbB1j20E0Bx0bHOgs2NWOv9eP2Os-XXRfnp7DtZoJqjc3nYdZONvfO909JPndCSShjPZImFgMe1NJqXWbljEdYctiOBELlAqPZRSHVrjHVCT6gFxyS2P8TfCYG0HnYKjdaafzEOgoNe5aap0wzrQNY2ZTnI9FIhH00ugSbBQsVLdvEBmqD4bsuKCQC8pzQYUlWHFcVg57ou2SW670XZapo2ZDVaVzmJigUQnW80G20-vqROe1AkiQg6v6NHKpkJbKd1-mUG-J7TiqSF6CzUI6_e7fiVv42_BFGI28gF1K2hIM9bp36TKMJPe966xbhuGdvVq9UYbB452tsksqbeK7Xrko-_X6ChDZ29s
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5EBfXgW6xWXUTxoBF3kybZYym-sBbxRfESknUjgrTSrYKe_A_-Q3-Jk7hrfR6UvYTNg2EmmQeZ-QKwQq01NuSaGJpywtAlIUabSyJDoR1-G0ZkHl2_LhoN2WzGR3lRWFZkuxdXkl5T94rdQv_yXcSIt2MEY54BhhbLJfIdn5y_619R8fC6GOtIgvatmZfK_LzGJ3P0VSl_ux31Rmdn7H_kjsNo7mQG1bddMQF9aWsSRj5AD07B5gG2HURz0LbBrs6Cmnb8vX7EXvfrovPy9ByuNkxQvblpP0zD2c72aW2P5G8nkIQy2iVhYjHsTSWl1h1axnSELYvhRCxQKjyWURxa4T5TkegDcsktjXGa4DE3gs5Af6vdSmch0FFq3LPUOmGcaRvGzKa4HotEIuil0SVYL1iobt8gMlQPDNlxQSEXlOeCCkuw7LisHPZEyyW3XOm7LFP7J8eqKp3DxASNSrCWD7LtbkcnOq8VQIIcXNWnkeVCWio_fZlCvSW24qgieQk2Cun0un8nbu5vw5dgaO_0sK7q-42DeRiOvLBdeloZ-rudu3QBBpP77nXWWfQ79BUZadpR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB-KlqIPVqvFs34s0uKDTc_d5JLs46GeFeWQasvRl5DsbUSQPbldBX3q_9D_sH9JZ3J7Pb_6UMq-hM0khJlkPkjmNwDvuffOx9Iyx3PJBLokzFnXZzpWlvDbMCIL6PrHqtvVvV56ci-LP7x2H19JjnIaCKWpqJpXfd-cJL7FoQpeIliwaQzjn2lBRYMoXj_99kcXq1aA2sW4RzO0db06beb5OR6YpscK-slNaTBAndf_v_R5mKudz6g92i0L8CIv3sDsPUjCRfh0hG2Cbo4GPjqwZbRrie8Xd9hLv74Pf_34GX_ouqh9eTm4XYKvnf2z3c-srqnAMi54xeLMYzica849HWYhbIItj2FGqlBaMtVJGntFn2tp9A2llp6nOEzJVDrF38JUMSjyZYhskjsqV20zIYX1cSp8jvOJRGWK951twPaYneZqBJ1hJiDJxAWDXDCBCyZuwCZx3BAmRUGPXs7tdVmaw9Mvpq3JkRKKJw3Yqon8oBrazNY5BLgggrF6QLk6lpypT2VpUJ-pnTRpadmAj2NJTbr_vriVfyPfgFcnex1zfNg9egczSZA1vVpbhalqeJ2vwcvsprooh-ths_4GTh7jNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetics+of+Gas+Carburizing+of+Zr-1%25Nb+Alloy&rft.jtitle=Materials+science+%28New+York%2C+N.Y.%29&rft.au=Trush%2C+V.+S&rft.au=Pohrelyuk%2C+I.+M&rft.au=Lyk%27yanenko%2C+A.+G&rft.au=Kravchyshyn%2C+T.+M&rft.date=2024-03-01&rft.pub=Springer&rft.issn=1068-820X&rft.volume=59&rft.issue=5&rft.spage=623&rft_id=info:doi/10.1007%2Fs11003-024-00819-1&rft.externalDBID=ISR&rft.externalDocID=A800634732
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-820X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-820X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-820X&client=summon