Kinetics of Gas Carburizing of Zr–1%Nb Alloy
The kinetic characteristics of thin-sheet (approx. 1 mm) Zr–1%Nb alloy samples after treatment in a carbon-containing gas medium ( P Ar + C 3 H 8 = 0.106 Pa) in a wide temperature range of 650–850°C and time 1; 5 and 10 h were investigated. The carburizing of the alloy at temperatures of 650 and 750...
Saved in:
| Published in: | Materials science (New York, N.Y.) Vol. 59; no. 5; pp. 623 - 629 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.03.2024
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 1068-820X, 1573-885X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The kinetic characteristics of thin-sheet (approx. 1 mm) Zr–1%Nb alloy samples after treatment in a carbon-containing gas medium (
P
Ar
+
C
3
H
8
= 0.106 Pa) in a wide temperature range of 650–850°C and time 1; 5 and 10 h were investigated. The carburizing of the alloy at temperatures of 650 and 750°C occurs according to a law close to linear (
n
≈ 1), and at 850°C according to a law close to parabolic (
n
≈ 2). The activation energy of the alloy carburizing in the temperature range of 650–850°C at the propane partial pressure
p
C
3
H
8
= 0.018 Pa was 2.21 kJ/mol. The distribution of microhardness and structure of the near-surface layers of the alloy was shown. The microstructure of the near-surface layers of the alloy after carburizing was determined. The α-Zr and ZrC phase content on the alloy surface after treatment in a carbon-containing gas environment is presented. |
|---|---|
| AbstractList | The kinetic characteristics of thin-sheet (approx. 1 mm) Zr–1%Nb alloy samples after treatment in a carbon-containing gas medium (PAr+C3H8 = 0.106 Pa) in a wide temperature range of 650–850°C and time 1; 5 and 10 h were investigated. The carburizing of the alloy at temperatures of 650 and 750°C occurs according to a law close to linear (n ≈ 1), and at 850°C according to a law close to parabolic (n ≈ 2). The activation energy of the alloy carburizing in the temperature range of 650–850°C at the propane partial pressure pC3H8 = 0.018 Pa was 2.21 kJ/mol. The distribution of microhardness and structure of the near-surface layers of the alloy was shown. The microstructure of the near-surface layers of the alloy after carburizing was determined. The α-Zr and ZrC phase content on the alloy surface after treatment in a carbon-containing gas environment is presented. The kinetic characteristics of thin-sheet (approx. 1 mm) Zr-1%Nb alloy samples after treatment in a carbon-containing gas medium ( [Formula omitted] = 0.106 Pa) in a wide temperature range of 650-850°C and time 1; 5 and 10 h were investigated. The carburizing of the alloy at temperatures of 650 and 750°C occurs according to a law close to linear (n [almost equal to] 1), and at 850°C according to a law close to parabolic (n [almost equal to] 2). The activation energy of the alloy carburizing in the temperature range of 650-850°C at the propane partial pressure [Formula omitted] = 0.018 Pa was 2.21 kJ/mol. The distribution of microhardness and structure of the near-surface layers of the alloy was shown. The microstructure of the near-surface layers of the alloy after carburizing was determined. The [alpha]-Zr and ZrC phase content on the alloy surface after treatment in a carbon-containing gas environment is presented. The kinetic characteristics of thin-sheet (approx. 1 mm) Zr–1%Nb alloy samples after treatment in a carbon-containing gas medium ( P Ar + C 3 H 8 = 0.106 Pa) in a wide temperature range of 650–850°C and time 1; 5 and 10 h were investigated. The carburizing of the alloy at temperatures of 650 and 750°C occurs according to a law close to linear ( n ≈ 1), and at 850°C according to a law close to parabolic ( n ≈ 2). The activation energy of the alloy carburizing in the temperature range of 650–850°C at the propane partial pressure p C 3 H 8 = 0.018 Pa was 2.21 kJ/mol. The distribution of microhardness and structure of the near-surface layers of the alloy was shown. The microstructure of the near-surface layers of the alloy after carburizing was determined. The α-Zr and ZrC phase content on the alloy surface after treatment in a carbon-containing gas environment is presented. |
| Audience | Academic |
| Author | Kovalchuk, I. V. Pohrelyuk, I. M. Trush, V. S. Korendii, V. M. Fedirko, V. M. Kravchyshyn, T. M. Lyk’yanenko, A. G. |
| Author_xml | – sequence: 1 givenname: V. S. surname: Trush fullname: Trush, V. S. email: trushvasyl@gmail.com organization: Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine, Lviv Polytechnic National University, Ministry of Education and Science of Ukraine – sequence: 2 givenname: I. M. surname: Pohrelyuk fullname: Pohrelyuk, I. M. organization: Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine – sequence: 3 givenname: A. G. surname: Lyk’yanenko fullname: Lyk’yanenko, A. G. organization: Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine – sequence: 4 givenname: T. M. surname: Kravchyshyn fullname: Kravchyshyn, T. M. organization: Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine – sequence: 5 givenname: V. M. surname: Fedirko fullname: Fedirko, V. M. organization: Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine – sequence: 6 givenname: V. M. surname: Korendii fullname: Korendii, V. M. organization: Lviv Polytechnic National University, Ministry of Education and Science of Ukraine – sequence: 7 givenname: I. V. surname: Kovalchuk fullname: Kovalchuk, I. V. organization: Lviv Polytechnic National University, Ministry of Education and Science of Ukraine |
| BookMark | eNp9kMtKAzEUhoNUsK2-gKsBceEiNZeZXJalaC0WBS9Q3ITMmAwp7UxNZsC68h18Q5_E1BHEjZzFORy-Lyf8A9Cr6soAcIzRCCPEzwOOjUJEUoiQwBLiPdDHGadQiGzRizNiAgqCFgdgEMISRSnjWR-Mrl1lGleEpLbJVIdkon3eevfmqnK3evKf7x_49CZPxqtVvT0E-1avgjn66UPweHnxMLmC89vpbDKew4KmtIG4sBJxIyi1WFCSpprEyWIsJKeGMSmIxJbvKs8E5ykTzFIZNc4kyzkdgpPu3Y2vX1oTGrWsW1_Fk4oizpEkmWCRGnVUqVdGucrWjddFrGezdkVMyLq4HwuEGE05JVE4-yNEpjGvTanbENTs_u4vSzq28HUI3li18W6t_VZhpHahqy50FUNX36ErHCXaSSHCVWn877__sb4AZ4iB-A |
| Cites_doi | 10.4028/www.scientific.net/JERA.46.7 10.1007/s11041-015-9818-1 10.15544/balttrib.2017.09 10.1002/9783527603978.mst0111 10.1016/j.jnucmat.2016.02.010 10.1016/b978-0-12-397046-6.00007-1 10.1016/j.jallcom.2020.155110 10.1007/s11003-021-00537-y 10.2533/000942905777675480 10.1016/j.apsusc.2004.10.012 10.1007/s11003-016-9945-x 10.1016/0022-3115(75)90162-2 10.1016/j.jnucmat.2013.05.03 10.1016/j.surfcoat.2010.11.015 10.1146/annurev-matsci-070214-020951 10.1016/j.jnucmat.2021.153431 10.3390/ma15228008 10.1007/s11003-020-00342-z |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2024 Springer |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2024 Springer |
| DBID | AAYXX CITATION ISR |
| DOI | 10.1007/s11003-024-00819-1 |
| DatabaseName | CrossRef Gale In Context: Science |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-885X |
| EndPage | 629 |
| ExternalDocumentID | A800634732 10_1007_s11003_024_00819_1 |
| GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABEFU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP CZ9 D1I DDRTE DL5 DNIVK DPUIP EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IGS IHE IJ- IKXTQ ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KB. KC. KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PDBOC PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 XU3 YLTOR Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR CITATION M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c343t-1cf907e833f183244a23f1f118973e6698291f7f7f7b58774686f391cf7696b73 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001249387100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1068-820X |
| IngestDate | Thu Sep 25 00:41:25 EDT 2025 Mon Nov 24 15:41:17 EST 2025 Wed Nov 26 10:48:15 EST 2025 Sat Nov 29 06:15:17 EST 2025 Fri Feb 21 02:39:50 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | microstructure carburizing surface layer crystal lattice parameters microhardness weight change kinetics Zr–1%Nb alloy |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c343t-1cf907e833f183244a23f1f118973e6698291f7f7f7b58774686f391cf7696b73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3077092586 |
| PQPubID | 2044364 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_3077092586 gale_infotracacademiconefile_A800634732 gale_incontextgauss_ISR_A800634732 crossref_primary_10_1007_s11003_024_00819_1 springer_journals_10_1007_s11003_024_00819_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Heidelberg |
| PublicationTitle | Materials science (New York, N.Y.) |
| PublicationTitleAbbrev | Mater Sci |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | AzarenkovNABulavinLAZalyubovskyiIIKirichenkoVGNeklyudovIMShilyaevBANuclear Power Engineering2012KharkivKarazin Kharkiv. Nat. Univ. Publ. House[in Russian] SagirounMIACaoXRHelalWMKNjorogeJNReview of development of zirconium alloys as a fuel cladding material and its oxidation behavior at high-temperature steamInt. J. of Eng. Res. in Africa20204671410.4028/www.scientific.net/JERA.46.7 D. Q. Peng, X. D. Bai, and B. S. Chen, “Corrosion behavior of carbon-implanted M5 alloy in 1M H2SO4,” Appl. Surf. Sci., 245, Iss. 1–4, 215–222 (2005). https://doi.org/10.1016/j.apsusc.2004.10.012 TrushVSFedirkoVMVoyevodinVMStoevPIPanovVAInfluence of the functional layer on the operating characteristics of Zr–1%Nb alloy at a temperature of 380°CMater. Sci.20215722342391:CAS:528:DC%2BB38XivFOmsb8%3D10.1007/s11003-021-00537-y MottaATCouetAComstockRJCorrosion of zirconium alloys used for nuclear fuel claddingAnnual Rev. of Mater. Res.2015453113431:CAS:528:DC%2BC2MXhtFWqurrJ10.1146/annurev-matsci-070214-020951 KoganYa. DKolachevBALevinskyiYuVNazimovOPFishgoitAVConstants of Metals Interaction with Gases1987MoscowMetallurgiya[in Russian] TrushVSLukianenkoOHStoevPIInfluence of modification of the surface layer by penetrating impurities on the long-term strength of Zr–1% Nb alloyMater. Sci.20205545855891:CAS:528:DC%2BB3cXpt1yktrc%3D10.1007/s11003-020-00342-z Y. Katoh, G. Vasudevamurthy, T. Nozawa, and L. L. Snead, “Properties of zirconium carbide for nuclear fuel applications,” J. of Nuclear Mater., 441, Is. 1–3, 718–742 (2013). https://doi.org/10.1016/j.jnucmat.2013.05.03 Z. Zhao, F. Liu, Q. Wang, J. Li, L. Zhong, Yu. Xu, P. Hui, J. Zhu, F. Yan, and M. Zhao, “Microstructure and mechanical properties of ZrC coating on zirconium fabricated by interstitial carburization,” J. of Alloys and Compounds, 834, art. no. 155110 (2020). https://doi.org/10.1016/j.jallcom.2020.155110 V. M. Fedirko, O. H. Luk’yanenko, V. S. Trush, P. I. Stoev, M. A. Tykhonovs’kyi, “Effect of thermochemical treatment in regulated gas media on the thermal resistance of Zr–1%Nb alloy,” Mater. Sci., 56, No. 2, 209–215 (2016). https://doi.org/10.1007/s11003-016-9945-x G. Bart, and J. Bertsch, “Zirconium alloys for fuel element structures,” CHIMIA Int. J. for Chemistry, 59, Is. 12, 938–943 (2005). https://doi.org/10.2533/000942905777675480 V. N. Fedirko, A. G. Luk’yanenko, and V. S. Trush, “Solid-solution hardening of the surface layer of titanium alloys. Part 2. Effect on metallophysical properties,” Metal Sci. and Heat Treat., 56, Is. 11, 661–664 (2015). https://doi.org/10.1007/s11041-015-9818-1 S. Yagnik, and A. Garde, “Zirconium alloys for LWR fuel cladding and core internals,” Struct. Alloys for Nuclear Energy Appl., 247–291 (2019). https://doi.org/10.1016/b978-0-12-397046-6.00007-1 G. Murtaza, S. S. Hussain, N. U. Rehman, S. Naseer, M. Shafiq, and M. Zakaullah, “Carburizing of zirconium using a low energy Mather type plasma focus,” Surf. and Coat. Techn., 205, Is. 8–9, 3012–3019 (2011). https://doi.org/10.1016/j.surfcoat.2010.11.015 V. G. Kirichenko, and A. I. Kirdin, “Nuclear physics metallurgy of zirconium alloys,” Visnyk Karazin Kharkiv. Nat. Univ. [in Ukrainian], Is. 823, 25–45 (2008). D. J. M. King, A.J. Knowles, D. Bowden, M. R. Wenman, S. Capp, M. Gorley, J. Shimwell, L. Packer, M. R. Gilbert, and A. Harte, “High temperature zirconium alloys for fusion energy,” J. of Nuclear Mater., 559, art. no. 153431 (2022). https://doi.org/10.1016/j.jnucmat.2021.153431 I. M. Pohrelyuk, J. Padgurskas, S. M. Lavrys, A. G. Luk’yanenko, V. S. Trush, and R. Kreivaitis, “Topography, hardness, elastic modulus and wear resistance of nitride on titanium,” in: Proc. of the 9th Int. Sci Conf. Balttrib 2017 (November 16–17, 2017, Kaunas, Lithuania), Kaunas (2017), pp. 41–46. https://doi.org/10.15544/balttrib.2017.09 DuglasDZirconium Metallurgy1975MoscowAtomizdat[in Russian] E. Kardoulaki, N. Abdul-Jabbar, D. Byler, M. M. Hassan, S. Mann, T. Coons, and J. White, “Carburization kinetics of zircalloy-4 and its implication for small modular reactor,” Performance Mater., 15, art. no. 8008 (2022). https://doi.org/10.3390/ma15228008 C. Lemaignan, and A. T. Motta, “Zirconium alloys in nuclear applications,” in: Material Science and Technology, Vol. 10, Wiley-VCH, USA, New York (1994), pp. 1–51. https://doi.org/10.1002/9783527603978.mst0111 XuYRoquesJDomainCSimoniECarbon diffusion in bulk hcp zirconium: a multi-scale approachJ. of Nuclear Mater.201647361671:CAS:528:DC%2BC28Xjs1ekt7k%3D10.1016/j.jnucmat.2016.02.010 AgarwalaRPPaulARDiffusion of carbon in zirconium and some of its alloysJ. of Nuclear Mater.19755825301:CAS:528:DyaE28Xjs1Cksw%3D%3D10.1016/0022-3115(75)90162-2 819_CR7 819_CR14 819_CR13 Y Xu (819_CR15) 2016; 473 819_CR9 819_CR18 819_CR17 819_CR19 819_CR1 VS Trush (819_CR16) 2020; 55 VS Trush (819_CR20) 2021; 57 819_CR2 NA Azarenkov (819_CR8) 2012 819_CR5 Ya. D Kogan (819_CR21) 1987 D Duglas (819_CR6) 1975 MIA Sagiroun (819_CR3) 2020; 46 819_CR10 RP Agarwala (819_CR22) 1975; 58 AT Motta (819_CR4) 2015; 45 819_CR12 819_CR11 |
| References_xml | – reference: XuYRoquesJDomainCSimoniECarbon diffusion in bulk hcp zirconium: a multi-scale approachJ. of Nuclear Mater.201647361671:CAS:528:DC%2BC28Xjs1ekt7k%3D10.1016/j.jnucmat.2016.02.010 – reference: G. Bart, and J. Bertsch, “Zirconium alloys for fuel element structures,” CHIMIA Int. J. for Chemistry, 59, Is. 12, 938–943 (2005). https://doi.org/10.2533/000942905777675480 – reference: TrushVSLukianenkoOHStoevPIInfluence of modification of the surface layer by penetrating impurities on the long-term strength of Zr–1% Nb alloyMater. Sci.20205545855891:CAS:528:DC%2BB3cXpt1yktrc%3D10.1007/s11003-020-00342-z – reference: V. N. Fedirko, A. G. Luk’yanenko, and V. S. Trush, “Solid-solution hardening of the surface layer of titanium alloys. Part 2. Effect on metallophysical properties,” Metal Sci. and Heat Treat., 56, Is. 11, 661–664 (2015). https://doi.org/10.1007/s11041-015-9818-1 – reference: Z. Zhao, F. Liu, Q. Wang, J. Li, L. Zhong, Yu. Xu, P. Hui, J. Zhu, F. Yan, and M. Zhao, “Microstructure and mechanical properties of ZrC coating on zirconium fabricated by interstitial carburization,” J. of Alloys and Compounds, 834, art. no. 155110 (2020). https://doi.org/10.1016/j.jallcom.2020.155110 – reference: SagirounMIACaoXRHelalWMKNjorogeJNReview of development of zirconium alloys as a fuel cladding material and its oxidation behavior at high-temperature steamInt. J. of Eng. Res. in Africa20204671410.4028/www.scientific.net/JERA.46.7 – reference: TrushVSFedirkoVMVoyevodinVMStoevPIPanovVAInfluence of the functional layer on the operating characteristics of Zr–1%Nb alloy at a temperature of 380°CMater. Sci.20215722342391:CAS:528:DC%2BB38XivFOmsb8%3D10.1007/s11003-021-00537-y – reference: D. J. M. King, A.J. Knowles, D. Bowden, M. R. Wenman, S. Capp, M. Gorley, J. Shimwell, L. Packer, M. R. Gilbert, and A. Harte, “High temperature zirconium alloys for fusion energy,” J. of Nuclear Mater., 559, art. no. 153431 (2022). https://doi.org/10.1016/j.jnucmat.2021.153431 – reference: KoganYa. DKolachevBALevinskyiYuVNazimovOPFishgoitAVConstants of Metals Interaction with Gases1987MoscowMetallurgiya[in Russian] – reference: Y. Katoh, G. Vasudevamurthy, T. Nozawa, and L. L. Snead, “Properties of zirconium carbide for nuclear fuel applications,” J. of Nuclear Mater., 441, Is. 1–3, 718–742 (2013). https://doi.org/10.1016/j.jnucmat.2013.05.03 – reference: G. Murtaza, S. S. Hussain, N. U. Rehman, S. Naseer, M. Shafiq, and M. Zakaullah, “Carburizing of zirconium using a low energy Mather type plasma focus,” Surf. and Coat. Techn., 205, Is. 8–9, 3012–3019 (2011). https://doi.org/10.1016/j.surfcoat.2010.11.015 – reference: D. Q. Peng, X. D. Bai, and B. S. Chen, “Corrosion behavior of carbon-implanted M5 alloy in 1M H2SO4,” Appl. Surf. Sci., 245, Iss. 1–4, 215–222 (2005). https://doi.org/10.1016/j.apsusc.2004.10.012 – reference: S. Yagnik, and A. Garde, “Zirconium alloys for LWR fuel cladding and core internals,” Struct. Alloys for Nuclear Energy Appl., 247–291 (2019). https://doi.org/10.1016/b978-0-12-397046-6.00007-1 – reference: DuglasDZirconium Metallurgy1975MoscowAtomizdat[in Russian] – reference: V. M. Fedirko, O. H. Luk’yanenko, V. S. Trush, P. I. Stoev, M. A. Tykhonovs’kyi, “Effect of thermochemical treatment in regulated gas media on the thermal resistance of Zr–1%Nb alloy,” Mater. Sci., 56, No. 2, 209–215 (2016). https://doi.org/10.1007/s11003-016-9945-x – reference: I. M. Pohrelyuk, J. Padgurskas, S. M. Lavrys, A. G. Luk’yanenko, V. S. Trush, and R. Kreivaitis, “Topography, hardness, elastic modulus and wear resistance of nitride on titanium,” in: Proc. of the 9th Int. Sci Conf. Balttrib 2017 (November 16–17, 2017, Kaunas, Lithuania), Kaunas (2017), pp. 41–46. https://doi.org/10.15544/balttrib.2017.09 – reference: MottaATCouetAComstockRJCorrosion of zirconium alloys used for nuclear fuel claddingAnnual Rev. of Mater. Res.2015453113431:CAS:528:DC%2BC2MXhtFWqurrJ10.1146/annurev-matsci-070214-020951 – reference: E. Kardoulaki, N. Abdul-Jabbar, D. Byler, M. M. Hassan, S. Mann, T. Coons, and J. White, “Carburization kinetics of zircalloy-4 and its implication for small modular reactor,” Performance Mater., 15, art. no. 8008 (2022). https://doi.org/10.3390/ma15228008 – reference: V. G. Kirichenko, and A. I. Kirdin, “Nuclear physics metallurgy of zirconium alloys,” Visnyk Karazin Kharkiv. Nat. Univ. [in Ukrainian], Is. 823, 25–45 (2008). – reference: C. Lemaignan, and A. T. Motta, “Zirconium alloys in nuclear applications,” in: Material Science and Technology, Vol. 10, Wiley-VCH, USA, New York (1994), pp. 1–51. https://doi.org/10.1002/9783527603978.mst0111 – reference: AzarenkovNABulavinLAZalyubovskyiIIKirichenkoVGNeklyudovIMShilyaevBANuclear Power Engineering2012KharkivKarazin Kharkiv. Nat. Univ. Publ. House[in Russian] – reference: AgarwalaRPPaulARDiffusion of carbon in zirconium and some of its alloysJ. of Nuclear Mater.19755825301:CAS:528:DyaE28Xjs1Cksw%3D%3D10.1016/0022-3115(75)90162-2 – ident: 819_CR2 – volume: 46 start-page: 7 year: 2020 ident: 819_CR3 publication-title: Int. J. of Eng. Res. in Africa doi: 10.4028/www.scientific.net/JERA.46.7 – volume-title: Nuclear Power Engineering year: 2012 ident: 819_CR8 – ident: 819_CR17 doi: 10.1007/s11041-015-9818-1 – ident: 819_CR18 doi: 10.15544/balttrib.2017.09 – ident: 819_CR7 doi: 10.1002/9783527603978.mst0111 – volume: 473 start-page: 61 year: 2016 ident: 819_CR15 publication-title: J. of Nuclear Mater. doi: 10.1016/j.jnucmat.2016.02.010 – ident: 819_CR5 doi: 10.1016/b978-0-12-397046-6.00007-1 – ident: 819_CR10 doi: 10.1016/j.jallcom.2020.155110 – volume: 57 start-page: 234 issue: 2 year: 2021 ident: 819_CR20 publication-title: Mater. Sci. doi: 10.1007/s11003-021-00537-y – volume-title: Zirconium Metallurgy year: 1975 ident: 819_CR6 – volume-title: Constants of Metals Interaction with Gases year: 1987 ident: 819_CR21 – ident: 819_CR9 doi: 10.2533/000942905777675480 – ident: 819_CR14 doi: 10.1016/j.apsusc.2004.10.012 – ident: 819_CR19 doi: 10.1007/s11003-016-9945-x – volume: 58 start-page: 25 year: 1975 ident: 819_CR22 publication-title: J. of Nuclear Mater. doi: 10.1016/0022-3115(75)90162-2 – ident: 819_CR11 doi: 10.1016/j.jnucmat.2013.05.03 – ident: 819_CR12 doi: 10.1016/j.surfcoat.2010.11.015 – volume: 45 start-page: 311 year: 2015 ident: 819_CR4 publication-title: Annual Rev. of Mater. Res. doi: 10.1146/annurev-matsci-070214-020951 – ident: 819_CR1 doi: 10.1016/j.jnucmat.2021.153431 – ident: 819_CR13 doi: 10.3390/ma15228008 – volume: 55 start-page: 585 issue: 4 year: 2020 ident: 819_CR16 publication-title: Mater. Sci. doi: 10.1007/s11003-020-00342-z |
| SSID | ssj0007575 |
| Score | 2.2839923 |
| Snippet | The kinetic characteristics of thin-sheet (approx. 1 mm) Zr–1%Nb alloy samples after treatment in a carbon-containing gas medium (
P
Ar
+
C
3
H
8
= 0.106 Pa)... The kinetic characteristics of thin-sheet (approx. 1 mm) Zr-1%Nb alloy samples after treatment in a carbon-containing gas medium ( [Formula omitted] = 0.106... The kinetic characteristics of thin-sheet (approx. 1 mm) Zr–1%Nb alloy samples after treatment in a carbon-containing gas medium (PAr+C3H8 = 0.106 Pa) in a... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 623 |
| SubjectTerms | Activation energy Alloys Carbon Characterization and Evaluation of Materials Chemistry and Materials Science Gas carburizing Hardness Materials Science Microhardness Niobium base alloys Nuclear energy Partial pressure Solid Mechanics Specialty metals industry Structural Materials Surface layers Zirconium carbide |
| Title | Kinetics of Gas Carburizing of Zr–1%Nb Alloy |
| URI | https://link.springer.com/article/10.1007/s11003-024-00819-1 https://www.proquest.com/docview/3077092586 |
| Volume | 59 |
| WOSCitedRecordID | wos001249387100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-885X dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0007575 issn: 1068-820X databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-885X dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0007575 issn: 1068-820X databaseCode: M7S dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1573-885X dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0007575 issn: 1068-820X databaseCode: KB. dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-885X dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0007575 issn: 1068-820X databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-885X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007575 issn: 1068-820X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSyMxFD54e9AH72JXLYMoPmhKZ5KZJI9V1F2EUtpdKb6EzDQRQdqlUxfWJ_-D_9Bf4kmcsV4flIEhTDIhnCTnO4ec8wVgB40A7WCLmLrUhCEGEtGjmhgW017dRDbTqb9sgjebotuVrSIpLC-j3csjSa-px8luob_5LmLE4xhBn2ca4U647djunD_rXx57el30dQRBfOsWqTIf9_EKjt4q5Xenox50Tha-N9xFmC-MzKDxtCqWYML0l2HuBfXgCtTOsOwomoOBDU51HhxpJ9-rW6x1ny6GD3f34W4zDRrX14P_q_Dn5Pj30U9S3J1AMsroiISZRbfXCEqt27SM6QhLFt0JyalJEikiGVrunjQWaAMmIrFU4m88kUnK6RpM9Qd9sw4B57bnDmhSZiXLegYdEo1WoxXouVHL4wrslyJUf58oMtSYDNlJQaEUlJeCCiuw7aSsHPdE3wW3XOqbPFe_Om3VEM5gYpxGFdgrGtnBaKgzXeQK4IAcXdWrlpvlbKli9-UK9RavyygWSQUOytkZV38-uB9fa74Bs5GfYBeStglTo-GN2YKZ7N_oKh9WYfrwuNlqV2Hy7LBWdUGlHXy34ouqX6-PQB7bTA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThsxEB4hQIIeaPmpGkjLCoE4gFF27V3bxygigKARSgBFXCzvxq4ioQRlQ6X21HfgDfskHZvdhvBzAO3FWntX1tieb0Yz8xlgG40A7WCLmJrUhCEGEtGjmhgW017NRDbTqb9sgrdaotuV50VRWF5mu5chSa-pJ8Vuob_5LmLE4xhBn2eOIWK5RL525-q__uWxp9dFX0cQxLduUSrz8j-m4OipUn4WHfWg0_z4vul-gqXCyAzqD7tiGWbMYAU-PKIeXIWDU2w7iuZgaIMjnQcN7eTb_4297tX16O-f-3CnlQb1m5vhrzW4bB5eNI5JcXcCySijYxJmFt1eIyi17tAypiNsWXQnJKcmSaSIZGi5e9JYoA2YiMRSiZ_xRCYpp59hdjAcmC8QcG57LkCTMitZ1jPokGi0Gq1Az41aHldgrxShun2gyFATMmQnBYVSUF4KKqzAlpOyctwTA5fc8kPf5bk66bRVXTiDiXEaVWC3GGSH45HOdFErgBNydFVTI6vlaqni9OUK9RavySgWSQX2y9WZdL8-ufW3Dd-EheOL72fq7KR1ugGLkV9sl55Whdnx6M58hfns57ifj775HfoPUIDZwg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5VtKroob9U3ZaWqCriAC6b2Int44p2KaJaIaDViovlJHaFhLJoEyq1J96BN-RJmPFmu1DggFAuVjyJrBnbM5_s-QbgEwYBltwWc11tmUAfyFTJLXMi5WXXJb6weSg2IQcDNRzqnUtZ_OG2-_RIcpLTQCxNVbN-XPr1WeJbHKrgJYIFn8YQ_zwUVDSI8Prez397sUwD1S7iHsXQ1w3btJmb_3HFNf2_QV87KQ0OqP_s_kN_Dk_b4DPqTWbLC3jgqpfw5BIl4Sv4vI1tom6ORj7atHW0YUnvh3-xl14djM9Pz-LlQR71jo5GfxbgR__r_sY31tZUYAUXvGFx4REOO8W5p8UshE2w5RFmaMldlmmV6NhLevJUYWyYqcxzjZ_JTGe55K9hrhpV7g1EUvqSDm5y4bUoSodAxWI06RUiOu5l2oHVqTrN8YQ6w8xIkkkLBrVgghZM3IGPpHFDnBQVXXr5ZU_q2mzt7ZqeokBKSJ50YKUV8qNmbAvb5hDggIjG6ork4tRypl2VtcH9THZ1kqqsA2tTS826bx_c27uJL8HjnS99831rsP0O5pNga7q1tghzzfjEvYdHxe_msB5_CJP1AoV84qY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetics+of+Gas+Carburizing+of+Zr%E2%80%931%25Nb+Alloy&rft.jtitle=Materials+science+%28New+York%2C+N.Y.%29&rft.au=Trush%2C+V.+S.&rft.au=Pohrelyuk%2C+I.+M.&rft.au=Lyk%E2%80%99yanenko%2C+A.+G.&rft.au=Kravchyshyn%2C+T.+M.&rft.date=2024-03-01&rft.pub=Springer+US&rft.issn=1068-820X&rft.eissn=1573-885X&rft.volume=59&rft.issue=5&rft.spage=623&rft.epage=629&rft_id=info:doi/10.1007%2Fs11003-024-00819-1&rft.externalDocID=10_1007_s11003_024_00819_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-820X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-820X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-820X&client=summon |