Finite element micromechanics model of impact compression of closed-cell polymer foams

Finite element analysis, of regular Kelvin foam models with all the material in uniform-thickness faces, was used to predict the compressive impact response of low-density closed-cell polyethylene and polystyrene foams. Cell air compression was analysed, treating cells as surface-based fluid cavitie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures Jg. 46; H. 3; S. 677 - 697
Hauptverfasser: Mills, N.J., Stämpfli, R., Marone, F., Brühwiler, P.A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.02.2009
Schlagworte:
ISSN:0020-7683, 1879-2146
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Finite element analysis, of regular Kelvin foam models with all the material in uniform-thickness faces, was used to predict the compressive impact response of low-density closed-cell polyethylene and polystyrene foams. Cell air compression was analysed, treating cells as surface-based fluid cavities. For a typical 1 mm cell size and 50 s −1 impact strain rate, the elastic buckling of cell faces, and pop-in shape inversion of some buckled square faces, caused a non-linear stress strain response before yield. Pairs of plastic hinges formed across hexagonal faces, then yield occurred when trios of faces concertinaed. The predicted compressive yield stresses were close to experimental data, for a range of foam densities. Air compression was the hardening mechanism for engineering strains <0.6, with face-to-face contact also contributing for strains >0.7. Predictions of lateral expansion and residual strains after impact were reasonable. There were no significant changes in the predicted behavior at a compressive strain rate of 500 s −1.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0020-7683
1879-2146
DOI:10.1016/j.ijsolstr.2008.09.012