Does Flexoelectricity Drive Triboelectricity?
The triboelectric effect, charge transfer during sliding, is well established but the thermodynamic driver is not well understood. We hypothesize here that flexoelectric potential differences induced by inhomogeneous strains at nanoscale asperities drive tribocharge separation. Modeling single asper...
Uloženo v:
| Vydáno v: | Physical review letters Ročník 123; číslo 11; s. 1 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
College Park
American Physical Society
12.09.2019
|
| Témata: | |
| ISSN: | 0031-9007, 1079-7114, 1079-7114 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The triboelectric effect, charge transfer during sliding, is well established but the thermodynamic driver is not well understood. We hypothesize here that flexoelectric potential differences induced by inhomogeneous strains at nanoscale asperities drive tribocharge separation. Modeling single asperity elastic contacts suggests that nanoscale flexoelectric potential differences of ±1–10 V or larger arise during indentation and pull-off. This hypothesis agrees with several experimental observations, including bipolar charging during stick slip, inhomogeneous tribocharge patterns, charging between similar materials, and surface charge density measurements. |
|---|---|
| AbstractList | The triboelectric effect, charge transfer during sliding, is well established but the thermodynamic driver is not well understood. We hypothesize here that flexoelectric potential differences induced by inhomogeneous strains at nanoscale asperities drive tribocharge separation. Modeling single asperity elastic contacts suggests that nanoscale flexoelectric potential differences of ±1-10 V or larger arise during indentation and pull-off. This hypothesis agrees with several experimental observations, including bipolar charging during stick slip, inhomogeneous tribocharge patterns, charging between similar materials, and surface charge density measurements.The triboelectric effect, charge transfer during sliding, is well established but the thermodynamic driver is not well understood. We hypothesize here that flexoelectric potential differences induced by inhomogeneous strains at nanoscale asperities drive tribocharge separation. Modeling single asperity elastic contacts suggests that nanoscale flexoelectric potential differences of ±1-10 V or larger arise during indentation and pull-off. This hypothesis agrees with several experimental observations, including bipolar charging during stick slip, inhomogeneous tribocharge patterns, charging between similar materials, and surface charge density measurements. The triboelectric effect, charge transfer during sliding, is well established but the thermodynamic driver is not well understood. We hypothesize here that flexoelectric potential differences induced by inhomogeneous strains at nanoscale asperities drive tribocharge separation. Modeling single asperity elastic contacts suggests that nanoscale flexoelectric potential differences of ±1–10 V or larger arise during indentation and pull-off. This hypothesis agrees with several experimental observations, including bipolar charging during stick slip, inhomogeneous tribocharge patterns, charging between similar materials, and surface charge density measurements. |
| ArticleNumber | 116103 |
| Author | Mizzi, C. A. Marks, L. D. Lin, A. Y. W. |
| Author_xml | – sequence: 1 givenname: C. A. orcidid: 0000-0002-4209-854X surname: Mizzi fullname: Mizzi, C. A. – sequence: 2 givenname: A. Y. W. surname: Lin fullname: Lin, A. Y. W. – sequence: 3 givenname: L. D. surname: Marks fullname: Marks, L. D. |
| BackLink | https://www.osti.gov/biblio/1561402$$D View this record in Osti.gov |
| BookMark | eNqFkE9LAzEQxYMoWP98BSl68bJ1JtkkXRBE1KpQUKSew252ipF1o0la7Lc3sh7Ei6eBx-_Nm3l7bLv3PTF2hDBBBHH2-LKJT7SeU0oT5CKLKstbbISgq0IjlttsBCCwqAD0LtuL8RUAkKvpiBXXnuJ41tGnp45sCs66tBlfB7em8SK45rd8ccB2lnUX6fBn7rPn2c3i6q6YP9zeX13OCytKkQqUNddNCRJEU2tU1KqqwanQklCrSrdTIUEBiUZK3mKrbaMsRwHLRpFqK7HPjoe9PiZnYs4m-2J93-dTDEqFJfAMnQ7Qe_AfK4rJvLloqevqnvwqGs6rSiulK5XRkz_oq1-FPr8wUFIpWWbqfKBs8DEGWpocXCfn-xRq1xkE8124-VW4yYWbofBsV3_s78G91WHzn_ELX8qIgA |
| CitedBy_id | crossref_primary_10_3390_ma13040872 crossref_primary_10_1002_adfm_202103132 crossref_primary_10_1002_advs_202101793 crossref_primary_10_3390_act12030114 crossref_primary_10_3390_surfaces6030020 crossref_primary_10_1002_smll_202310546 crossref_primary_10_1016_j_apm_2023_11_015 crossref_primary_10_1016_j_nanoen_2020_104477 crossref_primary_10_1209_0295_5075_129_10006 crossref_primary_10_1038_s41467_023_44346_0 crossref_primary_10_1557_s43577_024_00848_w crossref_primary_10_1002_aenm_202502920 crossref_primary_10_1038_s41467_025_61566_8 crossref_primary_10_26599_FRICT_2025_9440893 crossref_primary_10_1016_j_ijmecsci_2024_109280 crossref_primary_10_1016_j_cis_2025_103436 crossref_primary_10_1039_D4RA07768G crossref_primary_10_1038_s41567_025_02995_6 crossref_primary_10_1016_j_nanoen_2024_110104 crossref_primary_10_1002_adfm_202110516 crossref_primary_10_1088_1361_6463_ac6f2e crossref_primary_10_1002_adma_201907336 crossref_primary_10_1002_aenm_202003802 crossref_primary_10_1016_j_cap_2021_07_003 crossref_primary_10_1002_smll_202307167 crossref_primary_10_1016_j_nanoen_2019_104185 crossref_primary_10_1063_5_0269417 crossref_primary_10_1038_s41567_022_01714_9 crossref_primary_10_1103_PhysRevMaterials_6_055005 crossref_primary_10_1016_j_nanoen_2021_105849 crossref_primary_10_1016_j_scriptamat_2021_114427 crossref_primary_10_1021_acs_jchemed_4c00885 crossref_primary_10_1016_j_nanoen_2024_109918 crossref_primary_10_1016_j_nanoen_2022_107658 crossref_primary_10_1016_j_mtnano_2023_100374 crossref_primary_10_1016_j_apmt_2023_101981 crossref_primary_10_1002_adom_202102532 crossref_primary_10_1039_D2NR04817E crossref_primary_10_1002_adfm_202404744 crossref_primary_10_1002_smtd_202100342 crossref_primary_10_1103_PhysRevResearch_4_023131 crossref_primary_10_1002_smll_202311570 crossref_primary_10_1063_5_0067429 crossref_primary_10_1016_j_nanoen_2024_110096 crossref_primary_10_1016_j_nanoen_2025_111382 crossref_primary_10_1016_j_ijmecsci_2025_109937 crossref_primary_10_1016_j_elstat_2022_103705 crossref_primary_10_1016_j_euromechsol_2023_104972 crossref_primary_10_1063_5_0049008 crossref_primary_10_1016_j_actbio_2021_05_057 crossref_primary_10_1063_5_0048989 crossref_primary_10_1002_aelm_202400019 crossref_primary_10_1016_j_measurement_2020_107986 crossref_primary_10_3390_nano12162790 crossref_primary_10_1103_PhysRevApplied_17_064065 crossref_primary_10_1016_j_actamat_2022_118640 crossref_primary_10_1088_1361_6463_accd04 crossref_primary_10_1002_adhm_202202673 crossref_primary_10_1016_j_nanoen_2020_105386 crossref_primary_10_1103_x3x7_s32f crossref_primary_10_1002_eom2_12086 crossref_primary_10_1038_s41586_024_08530_6 crossref_primary_10_1002_adma_202007502 crossref_primary_10_1016_j_compstruc_2024_107591 crossref_primary_10_1002_adfm_201910461 crossref_primary_10_1002_aenm_202100065 crossref_primary_10_1016_j_cej_2022_140918 crossref_primary_10_1093_mam_ozaf048_761 crossref_primary_10_1126_sciadv_adt4003 crossref_primary_10_1063_5_0048920 crossref_primary_10_1016_j_eml_2023_101997 crossref_primary_10_1016_j_nanoen_2020_105216 crossref_primary_10_1016_j_nanoen_2023_108627 crossref_primary_10_1016_j_cap_2021_09_014 crossref_primary_10_1016_j_nanoen_2023_108502 crossref_primary_10_3390_atmos16030277 crossref_primary_10_1002_aelm_202300333 crossref_primary_10_1038_d41586_025_00298_7 crossref_primary_10_1038_s41467_020_15926_1 crossref_primary_10_1016_j_nanoen_2023_109036 |
| Cites_doi | 10.1007/s11249-012-9998-4 10.1021/acs.nanolett.8b01126 10.1016/S0304-4157(01)00007-7 10.1142/9764 10.1016/S0043-1648(99)00100-3 10.1088/0022-3727/35/12/101 10.1103/PhysRevB.34.5883 10.1103/PhysRevLett.121.026804 10.1103/PhysRevB.88.174107 10.1088/0957-4484/24/43/432001 10.1103/PhysRevLett.115.037601 10.1080/09500830701280923 10.1126/science.1201512 10.1103/PhysRevLett.121.205502 10.1126/sciadv.aau3808 10.1103/PhysRevB.85.094107 10.1146/annurev-matsci-071312-121634 10.1098/rspa.1971.0141 10.1088/0022-3727/19/7/018 10.1080/00018738000101466 10.1063/1.3231442 10.1038/s41467-019-08462-0 10.1007/s11249-006-9191-8 10.1103/PhysRevLett.118.076103 10.1063/1.4745037 10.1103/PhysRevB.92.094101 10.1021/nl302560k 10.1103/PhysRevLett.112.218001 10.1002/adma.201808197 10.1063/1.5028344 10.1016/0043-1648(95)06840-6 10.1016/j.diamond.2013.04.001 10.1063/1.5001265 10.1021/nl300988z 10.1002/anie.201406541 10.1063/1.4717983 10.1209/0295-5075/83/24004 10.1103/PhysRevE.79.051304 10.1088/0953-8984/22/11/112201 10.1103/PhysRevLett.100.188305 10.1103/PhysRevE.69.021603 10.1103/PhysRevLett.22.918 10.1038/nature07378 10.1063/1.1356444 10.1103/PhysRevB.96.184109 10.1002/anie.200701812 10.1063/1.4750064 10.1080/00018737700101483 10.1515/crll.1882.92.156 10.1016/j.elstat.2011.05.003 10.1038/nature19761 10.1038/nmat4139 10.1038/ncomms3693 10.1103/PhysRevB.80.054109 10.1039/C7EE01139C 10.1007/s10853-005-5916-6 10.1103/PhysRevB.93.245107 10.1007/BFb0114342 10.1103/PhysRevLett.102.028001 10.1021/acsnano.8b08533 10.1002/anie.201200057 10.1016/S0304-3886(02)00137-7 10.1021/ar50128a001 10.1021/la301228j 10.1103/PhysRevLett.99.167601 10.1103/PhysRevLett.63.2669 10.1039/C4RA09604E 10.1017/CBO9781139171731 10.1038/s41598-018-20413-1 10.1021/la00028a021 10.1063/1.4753799 10.1088/0022-3727/44/45/453001 10.1103/PhysRevB.98.075153 10.1103/PhysRevLett.107.057602 10.1080/09506608.2016.1213942 10.1103/PhysRevLett.120.186101 10.1038/nmat2160 10.1007/s11249-010-9629-x 10.1088/0022-3727/2/11/307 10.1039/c3ee42571a 10.1103/PhysRevB.90.201112 10.1103/PhysRevLett.105.127601 10.1038/srep02384 10.1016/0021-9797(77)90366-6 10.1103/PhysRevB.83.195313 10.1016/0021-9797(75)90018-1 |
| ContentType | Journal Article |
| Copyright | Copyright American Physical Society Sep 13, 2019 |
| Copyright_xml | – notice: Copyright American Physical Society Sep 13, 2019 |
| DBID | AAYXX CITATION 7U5 8FD H8D L7M 7X8 OTOTI |
| DOI | 10.1103/PhysRevLett.123.116103 |
| DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic OSTI.GOV |
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Aerospace Database |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1079-7114 |
| ExternalDocumentID | 1561402 10_1103_PhysRevLett_123_116103 |
| GroupedDBID | --- -DZ -~X 123 186 2-P 29O 3MX 3O- 41~ 5VS 6TJ 85S 8NH 8WZ 9M8 A6W AAYJJ AAYXX ABSSX ABUFD ACBEA ACGFO ACKIV ACNCT ADXHL AECSF AENEX AEQTI AETEA AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CITATION CS3 D0L DU5 EBS EJD ER. F5P H~9 MVM N9A NEJ NHB NPBMV OHT OK1 P0- P2P RNS ROL S7W SJN T9H TN5 UBC UBE VOH WH7 XOL XSW YNT YYP ZCG ZPR ZY4 ~02 7U5 8FD H8D L7M 7X8 60C AAPBV ABCKA ABPTK ADETJ OTOTI UCJ VQA XFK |
| ID | FETCH-LOGICAL-c343t-15a27b40503ba716ed69b18375e17697d835060e3b552d1d7cb6c2130fb6e6d93 |
| IEDL.DBID | 3MX |
| ISICitedReferencesCount | 104 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000485315000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-9007 1079-7114 |
| IngestDate | Thu May 18 22:30:35 EDT 2023 Fri Jul 11 10:01:04 EDT 2025 Sun Nov 09 08:02:39 EST 2025 Sat Nov 29 05:55:29 EST 2025 Tue Nov 18 20:00:38 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c343t-15a27b40503ba716ed69b18375e17697d835060e3b552d1d7cb6c2130fb6e6d93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) FG02-01ER45945 |
| ORCID | 0000-0002-4209-854X 000000024209854X |
| PQID | 2299756654 |
| PQPubID | 2048222 |
| ParticipantIDs | osti_scitechconnect_1561402 proquest_miscellaneous_2299766796 proquest_journals_2299756654 crossref_citationtrail_10_1103_PhysRevLett_123_116103 crossref_primary_10_1103_PhysRevLett_123_116103 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-12 |
| PublicationDateYYYYMMDD | 2019-09-12 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-12 day: 12 |
| PublicationDecade | 2010 |
| PublicationPlace | College Park |
| PublicationPlace_xml | – name: College Park – name: United States |
| PublicationTitle | Physical review letters |
| PublicationYear | 2019 |
| Publisher | American Physical Society |
| Publisher_xml | – name: American Physical Society |
| References | PhysRevLett.123.116103Cc26R1 PhysRevLett.123.116103Cc47R1 PhysRevLett.123.116103Cc28R1 PhysRevLett.123.116103Cc49R1 PhysRevLett.123.116103Cc33R1 PhysRevLett.123.116103Cc54R1 PhysRevLett.123.116103Cc79R1 PhysRevLett.123.116103Cc35R1 PhysRevLett.123.116103Cc56R1 PhysRevLett.123.116103Cc12R1 PhysRevLett.123.116103Cc50R1 PhysRevLett.123.116103Cc75R1 PhysRevLett.123.116103Cc10R1 PhysRevLett.123.116103Cc31R1 PhysRevLett.123.116103Cc52R1 PhysRevLett.123.116103Cc73R1 S. M. Kogan (PhysRevLett.123.116103Cc77R1) 1964; 5 PhysRevLett.123.116103Cc71R1 PhysRevLett.123.116103Cc90R1 PhysRevLett.123.116103Cc8R1 PhysRevLett.123.116103Cc6R1 F. P. Bowden (PhysRevLett.123.116103Cc14R1) 1958 PhysRevLett.123.116103Cc18R1 PhysRevLett.123.116103Cc16R1 PhysRevLett.123.116103Cc4R1 PhysRevLett.123.116103Cc2R1 PhysRevLett.123.116103Cc37R1 PhysRevLett.123.116103Cc58R1 PhysRevLett.123.116103Cc39R1 PhysRevLett.123.116103Cc21R1 PhysRevLett.123.116103Cc44R1 PhysRevLett.123.116103Cc23R1 PhysRevLett.123.116103Cc46R1 PhysRevLett.123.116103Cc65R1 PhysRevLett.123.116103Cc88R1 PhysRevLett.123.116103Cc40R1 PhysRevLett.123.116103Cc63R1 PhysRevLett.123.116103Cc86R1 PhysRevLett.123.116103Cc61R1 PhysRevLett.123.116103Cc84R1 PhysRevLett.123.116103Cc82R1 PhysRevLett.123.116103Cc80R1 W. R. Harper (PhysRevLett.123.116103Cc1R1) 1967 E. V. Bursian (PhysRevLett.123.116103Cc43R1) 1968; 10 PhysRevLett.123.116103Cc29R1 A. K. Tagantsev (PhysRevLett.123.116103Cc70R1) 2016 PhysRevLett.123.116103Cc25R1 PhysRevLett.123.116103Cc48R1 PhysRevLett.123.116103Cc27R1 PhysRevLett.123.116103Cc69R1 PhysRevLett.123.116103Cc32R1 PhysRevLett.123.116103Cc55R1 PhysRevLett.123.116103Cc78R1 PhysRevLett.123.116103Cc34R1 PhysRevLett.123.116103Cc57R1 K. L. Johnson (PhysRevLett.123.116103Cc67R1) 1985 PhysRevLett.123.116103Cc76R1 PhysRevLett.123.116103Cc13R1 PhysRevLett.123.116103Cc51R1 PhysRevLett.123.116103Cc74R1 PhysRevLett.123.116103Cc11R1 PhysRevLett.123.116103Cc30R1 PhysRevLett.123.116103Cc53R1 PhysRevLett.123.116103Cc72R1 PhysRevLett.123.116103Cc91R1 PhysRevLett.123.116103Cc9R1 PhysRevLett.123.116103Cc7R1 PhysRevLett.123.116103Cc17R1 PhysRevLett.123.116103Cc5R1 PhysRevLett.123.116103Cc19R1 PhysRevLett.123.116103Cc15R1 PhysRevLett.123.116103Cc3R1 PhysRevLett.123.116103Cc36R1 PhysRevLett.123.116103Cc59R1 PhysRevLett.123.116103Cc38R1 PhysRevLett.123.116103Cc22R1 PhysRevLett.123.116103Cc68R1 PhysRevLett.123.116103Cc89R1 PhysRevLett.123.116103Cc24R1 PhysRevLett.123.116103Cc45R1 PhysRevLett.123.116103Cc66R1 PhysRevLett.123.116103Cc87R1 PhysRevLett.123.116103Cc64R1 PhysRevLett.123.116103Cc85R1 PhysRevLett.123.116103Cc20R1 PhysRevLett.123.116103Cc41R1 PhysRevLett.123.116103Cc62R1 PhysRevLett.123.116103Cc83R1 PhysRevLett.123.116103Cc60R1 PhysRevLett.123.116103Cc81R1 |
| References_xml | – ident: PhysRevLett.123.116103Cc63R1 doi: 10.1007/s11249-012-9998-4 – ident: PhysRevLett.123.116103Cc18R1 doi: 10.1021/acs.nanolett.8b01126 – ident: PhysRevLett.123.116103Cc87R1 doi: 10.1016/S0304-4157(01)00007-7 – volume-title: Flexoelectricity in Solids: From Theory to Applications year: 2016 ident: PhysRevLett.123.116103Cc70R1 doi: 10.1142/9764 – ident: PhysRevLett.123.116103Cc86R1 doi: 10.1016/S0043-1648(99)00100-3 – ident: PhysRevLett.123.116103Cc91R1 doi: 10.1088/0022-3727/35/12/101 – ident: PhysRevLett.123.116103Cc50R1 doi: 10.1103/PhysRevB.34.5883 – ident: PhysRevLett.123.116103Cc27R1 doi: 10.1103/PhysRevLett.121.026804 – ident: PhysRevLett.123.116103Cc38R1 doi: 10.1103/PhysRevB.88.174107 – ident: PhysRevLett.123.116103Cc16R1 doi: 10.1088/0957-4484/24/43/432001 – ident: PhysRevLett.123.116103Cc54R1 doi: 10.1103/PhysRevLett.115.037601 – ident: PhysRevLett.123.116103Cc61R1 doi: 10.1080/09500830701280923 – ident: PhysRevLett.123.116103Cc36R1 doi: 10.1126/science.1201512 – ident: PhysRevLett.123.116103Cc53R1 doi: 10.1103/PhysRevLett.121.205502 – ident: PhysRevLett.123.116103Cc25R1 doi: 10.1126/sciadv.aau3808 – volume: 5 start-page: 2069 issn: 0038-5654 year: 1964 ident: PhysRevLett.123.116103Cc77R1 publication-title: Sov. Phys. Solid State – ident: PhysRevLett.123.116103Cc73R1 doi: 10.1103/PhysRevB.85.094107 – ident: PhysRevLett.123.116103Cc17R1 doi: 10.1146/annurev-matsci-071312-121634 – ident: PhysRevLett.123.116103Cc29R1 doi: 10.1098/rspa.1971.0141 – ident: PhysRevLett.123.116103Cc13R1 doi: 10.1088/0022-3727/19/7/018 – ident: PhysRevLett.123.116103Cc4R1 doi: 10.1080/00018738000101466 – ident: PhysRevLett.123.116103Cc20R1 doi: 10.1063/1.3231442 – ident: PhysRevLett.123.116103Cc23R1 doi: 10.1038/s41467-019-08462-0 – ident: PhysRevLett.123.116103Cc62R1 doi: 10.1007/s11249-006-9191-8 – ident: PhysRevLett.123.116103Cc65R1 doi: 10.1103/PhysRevLett.118.076103 – ident: PhysRevLett.123.116103Cc72R1 doi: 10.1063/1.4745037 – ident: PhysRevLett.123.116103Cc22R1 doi: 10.1103/PhysRevB.92.094101 – ident: PhysRevLett.123.116103Cc83R1 doi: 10.1021/nl302560k – ident: PhysRevLett.123.116103Cc35R1 doi: 10.1103/PhysRevLett.112.218001 – ident: PhysRevLett.123.116103Cc10R1 doi: 10.1002/adma.201808197 – ident: PhysRevLett.123.116103Cc57R1 doi: 10.1063/1.5028344 – ident: PhysRevLett.123.116103Cc26R1 doi: 10.1016/0043-1648(95)06840-6 – ident: PhysRevLett.123.116103Cc31R1 doi: 10.1016/j.diamond.2013.04.001 – ident: PhysRevLett.123.116103Cc55R1 doi: 10.1063/1.5001265 – ident: PhysRevLett.123.116103Cc82R1 doi: 10.1021/nl300988z – ident: PhysRevLett.123.116103Cc30R1 doi: 10.1002/anie.201406541 – ident: PhysRevLett.123.116103Cc60R1 doi: 10.1063/1.4717983 – ident: PhysRevLett.123.116103Cc34R1 doi: 10.1209/0295-5075/83/24004 – ident: PhysRevLett.123.116103Cc11R1 doi: 10.1103/PhysRevE.79.051304 – ident: PhysRevLett.123.116103Cc51R1 doi: 10.1088/0953-8984/22/11/112201 – ident: PhysRevLett.123.116103Cc12R1 doi: 10.1103/PhysRevLett.100.188305 – ident: PhysRevLett.123.116103Cc76R1 doi: 10.1103/PhysRevE.69.021603 – volume-title: Contact and Frictional Electrification year: 1967 ident: PhysRevLett.123.116103Cc1R1 – ident: PhysRevLett.123.116103Cc44R1 doi: 10.1103/PhysRevLett.22.918 – ident: PhysRevLett.123.116103Cc90R1 doi: 10.1038/nature07378 – ident: PhysRevLett.123.116103Cc47R1 doi: 10.1063/1.1356444 – ident: PhysRevLett.123.116103Cc74R1 doi: 10.1103/PhysRevB.96.184109 – ident: PhysRevLett.123.116103Cc7R1 doi: 10.1002/anie.200701812 – ident: PhysRevLett.123.116103Cc56R1 doi: 10.1063/1.4750064 – ident: PhysRevLett.123.116103Cc88R1 doi: 10.1080/00018737700101483 – ident: PhysRevLett.123.116103Cc28R1 doi: 10.1515/crll.1882.92.156 – ident: PhysRevLett.123.116103Cc33R1 doi: 10.1016/j.elstat.2011.05.003 – ident: PhysRevLett.123.116103Cc45R1 doi: 10.1038/nature19761 – ident: PhysRevLett.123.116103Cc48R1 doi: 10.1038/nmat4139 – ident: PhysRevLett.123.116103Cc49R1 doi: 10.1038/ncomms3693 – ident: PhysRevLett.123.116103Cc52R1 doi: 10.1103/PhysRevB.80.054109 – ident: PhysRevLett.123.116103Cc84R1 doi: 10.1039/C7EE01139C – ident: PhysRevLett.123.116103Cc15R1 doi: 10.1007/s10853-005-5916-6 – ident: PhysRevLett.123.116103Cc40R1 doi: 10.1103/PhysRevB.93.245107 – ident: PhysRevLett.123.116103Cc58R1 doi: 10.1007/BFb0114342 – ident: PhysRevLett.123.116103Cc32R1 doi: 10.1103/PhysRevLett.102.028001 – ident: PhysRevLett.123.116103Cc80R1 doi: 10.1021/acsnano.8b08533 – ident: PhysRevLett.123.116103Cc8R1 doi: 10.1002/anie.201200057 – ident: PhysRevLett.123.116103Cc81R1 doi: 10.1016/S0304-3886(02)00137-7 – ident: PhysRevLett.123.116103Cc89R1 doi: 10.1021/ar50128a001 – ident: PhysRevLett.123.116103Cc37R1 doi: 10.1021/la301228j – ident: PhysRevLett.123.116103Cc46R1 doi: 10.1103/PhysRevLett.99.167601 – ident: PhysRevLett.123.116103Cc79R1 doi: 10.1103/PhysRevLett.63.2669 – ident: PhysRevLett.123.116103Cc9R1 doi: 10.1039/C4RA09604E – volume-title: Contact Mechanics year: 1985 ident: PhysRevLett.123.116103Cc67R1 doi: 10.1017/CBO9781139171731 – ident: PhysRevLett.123.116103Cc78R1 doi: 10.1038/s41598-018-20413-1 – ident: PhysRevLett.123.116103Cc6R1 doi: 10.1021/la00028a021 – ident: PhysRevLett.123.116103Cc21R1 doi: 10.1063/1.4753799 – ident: PhysRevLett.123.116103Cc2R1 doi: 10.1088/0022-3727/44/45/453001 – ident: PhysRevLett.123.116103Cc41R1 doi: 10.1103/PhysRevB.98.075153 – ident: PhysRevLett.123.116103Cc19R1 doi: 10.1103/PhysRevLett.107.057602 – ident: PhysRevLett.123.116103Cc59R1 doi: 10.1080/09506608.2016.1213942 – ident: PhysRevLett.123.116103Cc66R1 doi: 10.1103/PhysRevLett.120.186101 – ident: PhysRevLett.123.116103Cc3R1 doi: 10.1038/nmat2160 – ident: PhysRevLett.123.116103Cc64R1 doi: 10.1007/s11249-010-9629-x – ident: PhysRevLett.123.116103Cc5R1 doi: 10.1088/0022-3727/2/11/307 – ident: PhysRevLett.123.116103Cc85R1 doi: 10.1039/c3ee42571a – volume: 10 start-page: 1121 issn: 0038-5654 year: 1968 ident: PhysRevLett.123.116103Cc43R1 publication-title: Sov. Phys. Solid State – ident: PhysRevLett.123.116103Cc71R1 doi: 10.1103/PhysRevB.90.201112 – volume-title: The Friction and Lubrication of Solids year: 1958 ident: PhysRevLett.123.116103Cc14R1 – ident: PhysRevLett.123.116103Cc39R1 doi: 10.1103/PhysRevLett.105.127601 – ident: PhysRevLett.123.116103Cc24R1 doi: 10.1038/srep02384 – ident: PhysRevLett.123.116103Cc69R1 doi: 10.1016/0021-9797(77)90366-6 – ident: PhysRevLett.123.116103Cc75R1 doi: 10.1103/PhysRevB.83.195313 – ident: PhysRevLett.123.116103Cc68R1 doi: 10.1016/0021-9797(75)90018-1 |
| SSID | ssj0001268 |
| Score | 2.6089022 |
| Snippet | The triboelectric effect, charge transfer during sliding, is well established but the thermodynamic driver is not well understood. We hypothesize here that... |
| SourceID | osti proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1 |
| SubjectTerms | Asperity Charge density Charge materials Charge transfer Charging Indentation Surface charge Triboelectric effect |
| Title | Does Flexoelectricity Drive Triboelectricity? |
| URI | https://www.proquest.com/docview/2299756654 https://www.proquest.com/docview/2299766796 https://www.osti.gov/biblio/1561402 |
| Volume | 123 |
| WOSCitedRecordID | wos000485315000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABR databaseName: American Physical Society Journals customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 0031-9007 databaseCode: 3MX dateStart: 20020101 isFulltext: true titleUrlDefault: https://journals.aps.org/ providerName: American Physical Society – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 0031-9007 databaseCode: ER. dateStart: 20180101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-MoeDFb7FuSgWvdWnSJO1JRB1eHCIKvZXmozCQVdZt-Of70nZjoiK79JAmIbzvJC-_B3AlCdd5zuOAGKKCiDPUubjIg8QkUhFWRJqoutiEHI3iNE2eO0B-v8EPCRu4TMgXu3CvW67RzGIjevwa3jOOnGCzp3RlekMqGtPLXN4Bke2T4L-n-eaNuiVq1Q-bXDua4d7mS9yH3Tao9G8bKTiAjp0cwnad3KmrIwjuS1v5yKHPsql6M9YYe_v3U7R0voMOWW--OYa34cPr3WPQlkkINIvYLAh5TqWKHLCLynH7Y41IFGqq5DaUIpEGgywiiGWKc2pCI7USmqLvKpSwwiTsBLqTcmJPwedGyCLhlHArIlVIjGlprvJY48zUsNADviRXplsMcVfK4j2r9xKEZWukyJAUWUMKDwarcR8Nisa_I3qOGxnGAQ7MVrusH40dHHApoR70l0zKWp2rMoqeVXJXTdmDy9Vv1BZ3BZJPbDlv-wh3dna28ZJ6sIPRUp1gFtI-dGfTuT2HLb2YjavpRS2I-JVp_AWvg9p_ |
| linkProvider | American Physical Society |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Does+Flexoelectricity+Drive+Triboelectricity%3F&rft.jtitle=Physical+review+letters&rft.au=Mizzi%2C+C.%E2%80%89A.&rft.au=Lin%2C+A.%E2%80%89Y.%E2%80%89W.&rft.au=Marks%2C+L.%E2%80%89D.&rft.date=2019-09-12&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=123&rft.issue=11&rft_id=info:doi/10.1103%2FPhysRevLett.123.116103&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevLett_123_116103 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon |