Does Flexoelectricity Drive Triboelectricity?

The triboelectric effect, charge transfer during sliding, is well established but the thermodynamic driver is not well understood. We hypothesize here that flexoelectric potential differences induced by inhomogeneous strains at nanoscale asperities drive tribocharge separation. Modeling single asper...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical review letters Ročník 123; číslo 11; s. 1
Hlavní autoři: Mizzi, C. A., Lin, A. Y. W., Marks, L. D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: College Park American Physical Society 12.09.2019
Témata:
ISSN:0031-9007, 1079-7114, 1079-7114
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The triboelectric effect, charge transfer during sliding, is well established but the thermodynamic driver is not well understood. We hypothesize here that flexoelectric potential differences induced by inhomogeneous strains at nanoscale asperities drive tribocharge separation. Modeling single asperity elastic contacts suggests that nanoscale flexoelectric potential differences of ±1–10  V or larger arise during indentation and pull-off. This hypothesis agrees with several experimental observations, including bipolar charging during stick slip, inhomogeneous tribocharge patterns, charging between similar materials, and surface charge density measurements.
AbstractList The triboelectric effect, charge transfer during sliding, is well established but the thermodynamic driver is not well understood. We hypothesize here that flexoelectric potential differences induced by inhomogeneous strains at nanoscale asperities drive tribocharge separation. Modeling single asperity elastic contacts suggests that nanoscale flexoelectric potential differences of ±1-10  V or larger arise during indentation and pull-off. This hypothesis agrees with several experimental observations, including bipolar charging during stick slip, inhomogeneous tribocharge patterns, charging between similar materials, and surface charge density measurements.The triboelectric effect, charge transfer during sliding, is well established but the thermodynamic driver is not well understood. We hypothesize here that flexoelectric potential differences induced by inhomogeneous strains at nanoscale asperities drive tribocharge separation. Modeling single asperity elastic contacts suggests that nanoscale flexoelectric potential differences of ±1-10  V or larger arise during indentation and pull-off. This hypothesis agrees with several experimental observations, including bipolar charging during stick slip, inhomogeneous tribocharge patterns, charging between similar materials, and surface charge density measurements.
The triboelectric effect, charge transfer during sliding, is well established but the thermodynamic driver is not well understood. We hypothesize here that flexoelectric potential differences induced by inhomogeneous strains at nanoscale asperities drive tribocharge separation. Modeling single asperity elastic contacts suggests that nanoscale flexoelectric potential differences of ±1–10  V or larger arise during indentation and pull-off. This hypothesis agrees with several experimental observations, including bipolar charging during stick slip, inhomogeneous tribocharge patterns, charging between similar materials, and surface charge density measurements.
ArticleNumber 116103
Author Mizzi, C. A.
Marks, L. D.
Lin, A. Y. W.
Author_xml – sequence: 1
  givenname: C. A.
  orcidid: 0000-0002-4209-854X
  surname: Mizzi
  fullname: Mizzi, C. A.
– sequence: 2
  givenname: A. Y. W.
  surname: Lin
  fullname: Lin, A. Y. W.
– sequence: 3
  givenname: L. D.
  surname: Marks
  fullname: Marks, L. D.
BackLink https://www.osti.gov/biblio/1561402$$D View this record in Osti.gov
BookMark eNqFkE9LAzEQxYMoWP98BSl68bJ1JtkkXRBE1KpQUKSew252ipF1o0la7Lc3sh7Ei6eBx-_Nm3l7bLv3PTF2hDBBBHH2-LKJT7SeU0oT5CKLKstbbISgq0IjlttsBCCwqAD0LtuL8RUAkKvpiBXXnuJ41tGnp45sCs66tBlfB7em8SK45rd8ccB2lnUX6fBn7rPn2c3i6q6YP9zeX13OCytKkQqUNddNCRJEU2tU1KqqwanQklCrSrdTIUEBiUZK3mKrbaMsRwHLRpFqK7HPjoe9PiZnYs4m-2J93-dTDEqFJfAMnQ7Qe_AfK4rJvLloqevqnvwqGs6rSiulK5XRkz_oq1-FPr8wUFIpWWbqfKBs8DEGWpocXCfn-xRq1xkE8124-VW4yYWbofBsV3_s78G91WHzn_ELX8qIgA
CitedBy_id crossref_primary_10_3390_ma13040872
crossref_primary_10_1002_adfm_202103132
crossref_primary_10_1002_advs_202101793
crossref_primary_10_3390_act12030114
crossref_primary_10_3390_surfaces6030020
crossref_primary_10_1002_smll_202310546
crossref_primary_10_1016_j_apm_2023_11_015
crossref_primary_10_1016_j_nanoen_2020_104477
crossref_primary_10_1209_0295_5075_129_10006
crossref_primary_10_1038_s41467_023_44346_0
crossref_primary_10_1557_s43577_024_00848_w
crossref_primary_10_1002_aenm_202502920
crossref_primary_10_1038_s41467_025_61566_8
crossref_primary_10_26599_FRICT_2025_9440893
crossref_primary_10_1016_j_ijmecsci_2024_109280
crossref_primary_10_1016_j_cis_2025_103436
crossref_primary_10_1039_D4RA07768G
crossref_primary_10_1038_s41567_025_02995_6
crossref_primary_10_1016_j_nanoen_2024_110104
crossref_primary_10_1002_adfm_202110516
crossref_primary_10_1088_1361_6463_ac6f2e
crossref_primary_10_1002_adma_201907336
crossref_primary_10_1002_aenm_202003802
crossref_primary_10_1016_j_cap_2021_07_003
crossref_primary_10_1002_smll_202307167
crossref_primary_10_1016_j_nanoen_2019_104185
crossref_primary_10_1063_5_0269417
crossref_primary_10_1038_s41567_022_01714_9
crossref_primary_10_1103_PhysRevMaterials_6_055005
crossref_primary_10_1016_j_nanoen_2021_105849
crossref_primary_10_1016_j_scriptamat_2021_114427
crossref_primary_10_1021_acs_jchemed_4c00885
crossref_primary_10_1016_j_nanoen_2024_109918
crossref_primary_10_1016_j_nanoen_2022_107658
crossref_primary_10_1016_j_mtnano_2023_100374
crossref_primary_10_1016_j_apmt_2023_101981
crossref_primary_10_1002_adom_202102532
crossref_primary_10_1039_D2NR04817E
crossref_primary_10_1002_adfm_202404744
crossref_primary_10_1002_smtd_202100342
crossref_primary_10_1103_PhysRevResearch_4_023131
crossref_primary_10_1002_smll_202311570
crossref_primary_10_1063_5_0067429
crossref_primary_10_1016_j_nanoen_2024_110096
crossref_primary_10_1016_j_nanoen_2025_111382
crossref_primary_10_1016_j_ijmecsci_2025_109937
crossref_primary_10_1016_j_elstat_2022_103705
crossref_primary_10_1016_j_euromechsol_2023_104972
crossref_primary_10_1063_5_0049008
crossref_primary_10_1016_j_actbio_2021_05_057
crossref_primary_10_1063_5_0048989
crossref_primary_10_1002_aelm_202400019
crossref_primary_10_1016_j_measurement_2020_107986
crossref_primary_10_3390_nano12162790
crossref_primary_10_1103_PhysRevApplied_17_064065
crossref_primary_10_1016_j_actamat_2022_118640
crossref_primary_10_1088_1361_6463_accd04
crossref_primary_10_1002_adhm_202202673
crossref_primary_10_1016_j_nanoen_2020_105386
crossref_primary_10_1103_x3x7_s32f
crossref_primary_10_1002_eom2_12086
crossref_primary_10_1038_s41586_024_08530_6
crossref_primary_10_1002_adma_202007502
crossref_primary_10_1016_j_compstruc_2024_107591
crossref_primary_10_1002_adfm_201910461
crossref_primary_10_1002_aenm_202100065
crossref_primary_10_1016_j_cej_2022_140918
crossref_primary_10_1093_mam_ozaf048_761
crossref_primary_10_1126_sciadv_adt4003
crossref_primary_10_1063_5_0048920
crossref_primary_10_1016_j_eml_2023_101997
crossref_primary_10_1016_j_nanoen_2020_105216
crossref_primary_10_1016_j_nanoen_2023_108627
crossref_primary_10_1016_j_cap_2021_09_014
crossref_primary_10_1016_j_nanoen_2023_108502
crossref_primary_10_3390_atmos16030277
crossref_primary_10_1002_aelm_202300333
crossref_primary_10_1038_d41586_025_00298_7
crossref_primary_10_1038_s41467_020_15926_1
crossref_primary_10_1016_j_nanoen_2023_109036
Cites_doi 10.1007/s11249-012-9998-4
10.1021/acs.nanolett.8b01126
10.1016/S0304-4157(01)00007-7
10.1142/9764
10.1016/S0043-1648(99)00100-3
10.1088/0022-3727/35/12/101
10.1103/PhysRevB.34.5883
10.1103/PhysRevLett.121.026804
10.1103/PhysRevB.88.174107
10.1088/0957-4484/24/43/432001
10.1103/PhysRevLett.115.037601
10.1080/09500830701280923
10.1126/science.1201512
10.1103/PhysRevLett.121.205502
10.1126/sciadv.aau3808
10.1103/PhysRevB.85.094107
10.1146/annurev-matsci-071312-121634
10.1098/rspa.1971.0141
10.1088/0022-3727/19/7/018
10.1080/00018738000101466
10.1063/1.3231442
10.1038/s41467-019-08462-0
10.1007/s11249-006-9191-8
10.1103/PhysRevLett.118.076103
10.1063/1.4745037
10.1103/PhysRevB.92.094101
10.1021/nl302560k
10.1103/PhysRevLett.112.218001
10.1002/adma.201808197
10.1063/1.5028344
10.1016/0043-1648(95)06840-6
10.1016/j.diamond.2013.04.001
10.1063/1.5001265
10.1021/nl300988z
10.1002/anie.201406541
10.1063/1.4717983
10.1209/0295-5075/83/24004
10.1103/PhysRevE.79.051304
10.1088/0953-8984/22/11/112201
10.1103/PhysRevLett.100.188305
10.1103/PhysRevE.69.021603
10.1103/PhysRevLett.22.918
10.1038/nature07378
10.1063/1.1356444
10.1103/PhysRevB.96.184109
10.1002/anie.200701812
10.1063/1.4750064
10.1080/00018737700101483
10.1515/crll.1882.92.156
10.1016/j.elstat.2011.05.003
10.1038/nature19761
10.1038/nmat4139
10.1038/ncomms3693
10.1103/PhysRevB.80.054109
10.1039/C7EE01139C
10.1007/s10853-005-5916-6
10.1103/PhysRevB.93.245107
10.1007/BFb0114342
10.1103/PhysRevLett.102.028001
10.1021/acsnano.8b08533
10.1002/anie.201200057
10.1016/S0304-3886(02)00137-7
10.1021/ar50128a001
10.1021/la301228j
10.1103/PhysRevLett.99.167601
10.1103/PhysRevLett.63.2669
10.1039/C4RA09604E
10.1017/CBO9781139171731
10.1038/s41598-018-20413-1
10.1021/la00028a021
10.1063/1.4753799
10.1088/0022-3727/44/45/453001
10.1103/PhysRevB.98.075153
10.1103/PhysRevLett.107.057602
10.1080/09506608.2016.1213942
10.1103/PhysRevLett.120.186101
10.1038/nmat2160
10.1007/s11249-010-9629-x
10.1088/0022-3727/2/11/307
10.1039/c3ee42571a
10.1103/PhysRevB.90.201112
10.1103/PhysRevLett.105.127601
10.1038/srep02384
10.1016/0021-9797(77)90366-6
10.1103/PhysRevB.83.195313
10.1016/0021-9797(75)90018-1
ContentType Journal Article
Copyright Copyright American Physical Society Sep 13, 2019
Copyright_xml – notice: Copyright American Physical Society Sep 13, 2019
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
7X8
OTOTI
DOI 10.1103/PhysRevLett.123.116103
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Aerospace Database
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 1561402
10_1103_PhysRevLett_123_116103
GroupedDBID ---
-DZ
-~X
123
186
2-P
29O
3MX
3O-
41~
5VS
6TJ
85S
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ABSSX
ABUFD
ACBEA
ACGFO
ACKIV
ACNCT
ADXHL
AECSF
AENEX
AEQTI
AETEA
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CITATION
CS3
D0L
DU5
EBS
EJD
ER.
F5P
H~9
MVM
N9A
NEJ
NHB
NPBMV
OHT
OK1
P0-
P2P
RNS
ROL
S7W
SJN
T9H
TN5
UBC
UBE
VOH
WH7
XOL
XSW
YNT
YYP
ZCG
ZPR
ZY4
~02
7U5
8FD
H8D
L7M
7X8
60C
AAPBV
ABCKA
ABPTK
ADETJ
OTOTI
UCJ
VQA
XFK
ID FETCH-LOGICAL-c343t-15a27b40503ba716ed69b18375e17697d835060e3b552d1d7cb6c2130fb6e6d93
IEDL.DBID 3MX
ISICitedReferencesCount 104
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000485315000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9007
1079-7114
IngestDate Thu May 18 22:30:35 EDT 2023
Fri Jul 11 10:01:04 EDT 2025
Sun Nov 09 08:02:39 EST 2025
Sat Nov 29 05:55:29 EST 2025
Tue Nov 18 20:00:38 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-15a27b40503ba716ed69b18375e17697d835060e3b552d1d7cb6c2130fb6e6d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
FG02-01ER45945
ORCID 0000-0002-4209-854X
000000024209854X
PQID 2299756654
PQPubID 2048222
ParticipantIDs osti_scitechconnect_1561402
proquest_miscellaneous_2299766796
proquest_journals_2299756654
crossref_citationtrail_10_1103_PhysRevLett_123_116103
crossref_primary_10_1103_PhysRevLett_123_116103
PublicationCentury 2000
PublicationDate 2019-09-12
PublicationDateYYYYMMDD 2019-09-12
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-12
  day: 12
PublicationDecade 2010
PublicationPlace College Park
PublicationPlace_xml – name: College Park
– name: United States
PublicationTitle Physical review letters
PublicationYear 2019
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevLett.123.116103Cc26R1
PhysRevLett.123.116103Cc47R1
PhysRevLett.123.116103Cc28R1
PhysRevLett.123.116103Cc49R1
PhysRevLett.123.116103Cc33R1
PhysRevLett.123.116103Cc54R1
PhysRevLett.123.116103Cc79R1
PhysRevLett.123.116103Cc35R1
PhysRevLett.123.116103Cc56R1
PhysRevLett.123.116103Cc12R1
PhysRevLett.123.116103Cc50R1
PhysRevLett.123.116103Cc75R1
PhysRevLett.123.116103Cc10R1
PhysRevLett.123.116103Cc31R1
PhysRevLett.123.116103Cc52R1
PhysRevLett.123.116103Cc73R1
S. M. Kogan (PhysRevLett.123.116103Cc77R1) 1964; 5
PhysRevLett.123.116103Cc71R1
PhysRevLett.123.116103Cc90R1
PhysRevLett.123.116103Cc8R1
PhysRevLett.123.116103Cc6R1
F. P. Bowden (PhysRevLett.123.116103Cc14R1) 1958
PhysRevLett.123.116103Cc18R1
PhysRevLett.123.116103Cc16R1
PhysRevLett.123.116103Cc4R1
PhysRevLett.123.116103Cc2R1
PhysRevLett.123.116103Cc37R1
PhysRevLett.123.116103Cc58R1
PhysRevLett.123.116103Cc39R1
PhysRevLett.123.116103Cc21R1
PhysRevLett.123.116103Cc44R1
PhysRevLett.123.116103Cc23R1
PhysRevLett.123.116103Cc46R1
PhysRevLett.123.116103Cc65R1
PhysRevLett.123.116103Cc88R1
PhysRevLett.123.116103Cc40R1
PhysRevLett.123.116103Cc63R1
PhysRevLett.123.116103Cc86R1
PhysRevLett.123.116103Cc61R1
PhysRevLett.123.116103Cc84R1
PhysRevLett.123.116103Cc82R1
PhysRevLett.123.116103Cc80R1
W. R. Harper (PhysRevLett.123.116103Cc1R1) 1967
E. V. Bursian (PhysRevLett.123.116103Cc43R1) 1968; 10
PhysRevLett.123.116103Cc29R1
A. K. Tagantsev (PhysRevLett.123.116103Cc70R1) 2016
PhysRevLett.123.116103Cc25R1
PhysRevLett.123.116103Cc48R1
PhysRevLett.123.116103Cc27R1
PhysRevLett.123.116103Cc69R1
PhysRevLett.123.116103Cc32R1
PhysRevLett.123.116103Cc55R1
PhysRevLett.123.116103Cc78R1
PhysRevLett.123.116103Cc34R1
PhysRevLett.123.116103Cc57R1
K. L. Johnson (PhysRevLett.123.116103Cc67R1) 1985
PhysRevLett.123.116103Cc76R1
PhysRevLett.123.116103Cc13R1
PhysRevLett.123.116103Cc51R1
PhysRevLett.123.116103Cc74R1
PhysRevLett.123.116103Cc11R1
PhysRevLett.123.116103Cc30R1
PhysRevLett.123.116103Cc53R1
PhysRevLett.123.116103Cc72R1
PhysRevLett.123.116103Cc91R1
PhysRevLett.123.116103Cc9R1
PhysRevLett.123.116103Cc7R1
PhysRevLett.123.116103Cc17R1
PhysRevLett.123.116103Cc5R1
PhysRevLett.123.116103Cc19R1
PhysRevLett.123.116103Cc15R1
PhysRevLett.123.116103Cc3R1
PhysRevLett.123.116103Cc36R1
PhysRevLett.123.116103Cc59R1
PhysRevLett.123.116103Cc38R1
PhysRevLett.123.116103Cc22R1
PhysRevLett.123.116103Cc68R1
PhysRevLett.123.116103Cc89R1
PhysRevLett.123.116103Cc24R1
PhysRevLett.123.116103Cc45R1
PhysRevLett.123.116103Cc66R1
PhysRevLett.123.116103Cc87R1
PhysRevLett.123.116103Cc64R1
PhysRevLett.123.116103Cc85R1
PhysRevLett.123.116103Cc20R1
PhysRevLett.123.116103Cc41R1
PhysRevLett.123.116103Cc62R1
PhysRevLett.123.116103Cc83R1
PhysRevLett.123.116103Cc60R1
PhysRevLett.123.116103Cc81R1
References_xml – ident: PhysRevLett.123.116103Cc63R1
  doi: 10.1007/s11249-012-9998-4
– ident: PhysRevLett.123.116103Cc18R1
  doi: 10.1021/acs.nanolett.8b01126
– ident: PhysRevLett.123.116103Cc87R1
  doi: 10.1016/S0304-4157(01)00007-7
– volume-title: Flexoelectricity in Solids: From Theory to Applications
  year: 2016
  ident: PhysRevLett.123.116103Cc70R1
  doi: 10.1142/9764
– ident: PhysRevLett.123.116103Cc86R1
  doi: 10.1016/S0043-1648(99)00100-3
– ident: PhysRevLett.123.116103Cc91R1
  doi: 10.1088/0022-3727/35/12/101
– ident: PhysRevLett.123.116103Cc50R1
  doi: 10.1103/PhysRevB.34.5883
– ident: PhysRevLett.123.116103Cc27R1
  doi: 10.1103/PhysRevLett.121.026804
– ident: PhysRevLett.123.116103Cc38R1
  doi: 10.1103/PhysRevB.88.174107
– ident: PhysRevLett.123.116103Cc16R1
  doi: 10.1088/0957-4484/24/43/432001
– ident: PhysRevLett.123.116103Cc54R1
  doi: 10.1103/PhysRevLett.115.037601
– ident: PhysRevLett.123.116103Cc61R1
  doi: 10.1080/09500830701280923
– ident: PhysRevLett.123.116103Cc36R1
  doi: 10.1126/science.1201512
– ident: PhysRevLett.123.116103Cc53R1
  doi: 10.1103/PhysRevLett.121.205502
– ident: PhysRevLett.123.116103Cc25R1
  doi: 10.1126/sciadv.aau3808
– volume: 5
  start-page: 2069
  issn: 0038-5654
  year: 1964
  ident: PhysRevLett.123.116103Cc77R1
  publication-title: Sov. Phys. Solid State
– ident: PhysRevLett.123.116103Cc73R1
  doi: 10.1103/PhysRevB.85.094107
– ident: PhysRevLett.123.116103Cc17R1
  doi: 10.1146/annurev-matsci-071312-121634
– ident: PhysRevLett.123.116103Cc29R1
  doi: 10.1098/rspa.1971.0141
– ident: PhysRevLett.123.116103Cc13R1
  doi: 10.1088/0022-3727/19/7/018
– ident: PhysRevLett.123.116103Cc4R1
  doi: 10.1080/00018738000101466
– ident: PhysRevLett.123.116103Cc20R1
  doi: 10.1063/1.3231442
– ident: PhysRevLett.123.116103Cc23R1
  doi: 10.1038/s41467-019-08462-0
– ident: PhysRevLett.123.116103Cc62R1
  doi: 10.1007/s11249-006-9191-8
– ident: PhysRevLett.123.116103Cc65R1
  doi: 10.1103/PhysRevLett.118.076103
– ident: PhysRevLett.123.116103Cc72R1
  doi: 10.1063/1.4745037
– ident: PhysRevLett.123.116103Cc22R1
  doi: 10.1103/PhysRevB.92.094101
– ident: PhysRevLett.123.116103Cc83R1
  doi: 10.1021/nl302560k
– ident: PhysRevLett.123.116103Cc35R1
  doi: 10.1103/PhysRevLett.112.218001
– ident: PhysRevLett.123.116103Cc10R1
  doi: 10.1002/adma.201808197
– ident: PhysRevLett.123.116103Cc57R1
  doi: 10.1063/1.5028344
– ident: PhysRevLett.123.116103Cc26R1
  doi: 10.1016/0043-1648(95)06840-6
– ident: PhysRevLett.123.116103Cc31R1
  doi: 10.1016/j.diamond.2013.04.001
– ident: PhysRevLett.123.116103Cc55R1
  doi: 10.1063/1.5001265
– ident: PhysRevLett.123.116103Cc82R1
  doi: 10.1021/nl300988z
– ident: PhysRevLett.123.116103Cc30R1
  doi: 10.1002/anie.201406541
– ident: PhysRevLett.123.116103Cc60R1
  doi: 10.1063/1.4717983
– ident: PhysRevLett.123.116103Cc34R1
  doi: 10.1209/0295-5075/83/24004
– ident: PhysRevLett.123.116103Cc11R1
  doi: 10.1103/PhysRevE.79.051304
– ident: PhysRevLett.123.116103Cc51R1
  doi: 10.1088/0953-8984/22/11/112201
– ident: PhysRevLett.123.116103Cc12R1
  doi: 10.1103/PhysRevLett.100.188305
– ident: PhysRevLett.123.116103Cc76R1
  doi: 10.1103/PhysRevE.69.021603
– volume-title: Contact and Frictional Electrification
  year: 1967
  ident: PhysRevLett.123.116103Cc1R1
– ident: PhysRevLett.123.116103Cc44R1
  doi: 10.1103/PhysRevLett.22.918
– ident: PhysRevLett.123.116103Cc90R1
  doi: 10.1038/nature07378
– ident: PhysRevLett.123.116103Cc47R1
  doi: 10.1063/1.1356444
– ident: PhysRevLett.123.116103Cc74R1
  doi: 10.1103/PhysRevB.96.184109
– ident: PhysRevLett.123.116103Cc7R1
  doi: 10.1002/anie.200701812
– ident: PhysRevLett.123.116103Cc56R1
  doi: 10.1063/1.4750064
– ident: PhysRevLett.123.116103Cc88R1
  doi: 10.1080/00018737700101483
– ident: PhysRevLett.123.116103Cc28R1
  doi: 10.1515/crll.1882.92.156
– ident: PhysRevLett.123.116103Cc33R1
  doi: 10.1016/j.elstat.2011.05.003
– ident: PhysRevLett.123.116103Cc45R1
  doi: 10.1038/nature19761
– ident: PhysRevLett.123.116103Cc48R1
  doi: 10.1038/nmat4139
– ident: PhysRevLett.123.116103Cc49R1
  doi: 10.1038/ncomms3693
– ident: PhysRevLett.123.116103Cc52R1
  doi: 10.1103/PhysRevB.80.054109
– ident: PhysRevLett.123.116103Cc84R1
  doi: 10.1039/C7EE01139C
– ident: PhysRevLett.123.116103Cc15R1
  doi: 10.1007/s10853-005-5916-6
– ident: PhysRevLett.123.116103Cc40R1
  doi: 10.1103/PhysRevB.93.245107
– ident: PhysRevLett.123.116103Cc58R1
  doi: 10.1007/BFb0114342
– ident: PhysRevLett.123.116103Cc32R1
  doi: 10.1103/PhysRevLett.102.028001
– ident: PhysRevLett.123.116103Cc80R1
  doi: 10.1021/acsnano.8b08533
– ident: PhysRevLett.123.116103Cc8R1
  doi: 10.1002/anie.201200057
– ident: PhysRevLett.123.116103Cc81R1
  doi: 10.1016/S0304-3886(02)00137-7
– ident: PhysRevLett.123.116103Cc89R1
  doi: 10.1021/ar50128a001
– ident: PhysRevLett.123.116103Cc37R1
  doi: 10.1021/la301228j
– ident: PhysRevLett.123.116103Cc46R1
  doi: 10.1103/PhysRevLett.99.167601
– ident: PhysRevLett.123.116103Cc79R1
  doi: 10.1103/PhysRevLett.63.2669
– ident: PhysRevLett.123.116103Cc9R1
  doi: 10.1039/C4RA09604E
– volume-title: Contact Mechanics
  year: 1985
  ident: PhysRevLett.123.116103Cc67R1
  doi: 10.1017/CBO9781139171731
– ident: PhysRevLett.123.116103Cc78R1
  doi: 10.1038/s41598-018-20413-1
– ident: PhysRevLett.123.116103Cc6R1
  doi: 10.1021/la00028a021
– ident: PhysRevLett.123.116103Cc21R1
  doi: 10.1063/1.4753799
– ident: PhysRevLett.123.116103Cc2R1
  doi: 10.1088/0022-3727/44/45/453001
– ident: PhysRevLett.123.116103Cc41R1
  doi: 10.1103/PhysRevB.98.075153
– ident: PhysRevLett.123.116103Cc19R1
  doi: 10.1103/PhysRevLett.107.057602
– ident: PhysRevLett.123.116103Cc59R1
  doi: 10.1080/09506608.2016.1213942
– ident: PhysRevLett.123.116103Cc66R1
  doi: 10.1103/PhysRevLett.120.186101
– ident: PhysRevLett.123.116103Cc3R1
  doi: 10.1038/nmat2160
– ident: PhysRevLett.123.116103Cc64R1
  doi: 10.1007/s11249-010-9629-x
– ident: PhysRevLett.123.116103Cc5R1
  doi: 10.1088/0022-3727/2/11/307
– ident: PhysRevLett.123.116103Cc85R1
  doi: 10.1039/c3ee42571a
– volume: 10
  start-page: 1121
  issn: 0038-5654
  year: 1968
  ident: PhysRevLett.123.116103Cc43R1
  publication-title: Sov. Phys. Solid State
– ident: PhysRevLett.123.116103Cc71R1
  doi: 10.1103/PhysRevB.90.201112
– volume-title: The Friction and Lubrication of Solids
  year: 1958
  ident: PhysRevLett.123.116103Cc14R1
– ident: PhysRevLett.123.116103Cc39R1
  doi: 10.1103/PhysRevLett.105.127601
– ident: PhysRevLett.123.116103Cc24R1
  doi: 10.1038/srep02384
– ident: PhysRevLett.123.116103Cc69R1
  doi: 10.1016/0021-9797(77)90366-6
– ident: PhysRevLett.123.116103Cc75R1
  doi: 10.1103/PhysRevB.83.195313
– ident: PhysRevLett.123.116103Cc68R1
  doi: 10.1016/0021-9797(75)90018-1
SSID ssj0001268
Score 2.6089022
Snippet The triboelectric effect, charge transfer during sliding, is well established but the thermodynamic driver is not well understood. We hypothesize here that...
SourceID osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Asperity
Charge density
Charge materials
Charge transfer
Charging
Indentation
Surface charge
Triboelectric effect
Title Does Flexoelectricity Drive Triboelectricity?
URI https://www.proquest.com/docview/2299756654
https://www.proquest.com/docview/2299766796
https://www.osti.gov/biblio/1561402
Volume 123
WOSCitedRecordID wos000485315000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: ER.
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-MoeDFb7FuSgWvdWnSJO1JRB1eHCIKvZXmozCQVdZt-Of70nZjoiK79JAmIbzvJC-_B3AlCdd5zuOAGKKCiDPUubjIg8QkUhFWRJqoutiEHI3iNE2eO0B-v8EPCRu4TMgXu3CvW67RzGIjevwa3jOOnGCzp3RlekMqGtPLXN4Bke2T4L-n-eaNuiVq1Q-bXDua4d7mS9yH3Tao9G8bKTiAjp0cwnad3KmrIwjuS1v5yKHPsql6M9YYe_v3U7R0voMOWW--OYa34cPr3WPQlkkINIvYLAh5TqWKHLCLynH7Y41IFGqq5DaUIpEGgywiiGWKc2pCI7USmqLvKpSwwiTsBLqTcmJPwedGyCLhlHArIlVIjGlprvJY48zUsNADviRXplsMcVfK4j2r9xKEZWukyJAUWUMKDwarcR8Nisa_I3qOGxnGAQ7MVrusH40dHHApoR70l0zKWp2rMoqeVXJXTdmDy9Vv1BZ3BZJPbDlv-wh3dna28ZJ6sIPRUp1gFtI-dGfTuT2HLb2YjavpRS2I-JVp_AWvg9p_
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Does+Flexoelectricity+Drive+Triboelectricity%3F&rft.jtitle=Physical+review+letters&rft.au=Mizzi%2C+C.%E2%80%89A.&rft.au=Lin%2C+A.%E2%80%89Y.%E2%80%89W.&rft.au=Marks%2C+L.%E2%80%89D.&rft.date=2019-09-12&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=123&rft.issue=11&rft_id=info:doi/10.1103%2FPhysRevLett.123.116103&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevLett_123_116103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon